Notice大切なお知らせ

大動脈瘤診断マーカースペクトル同定

ラマン分光法における大動脈瘤の診断マーカースペクトルを同定

Image by shutterstock

研究概要

大動脈瘤は、血管が瘤(こぶ)のように異常に拡張する疾患で、無症状に経過することが多く、瘤が成長して破裂すると死に至る、大変危険な疾患です。しかしながら、大動脈瘤の発症と瘤の成長を根本的に阻止する薬剤や大動脈瘤形成を予測できるバイオマーカーがなく、治療法としては、超音波検査やCT検査などで血管径をモニターし、瘤径が一定基準以上になると手術を行うしかないのが現状です。

血管壁を構成する成分として、コラーゲンなどの膠原線維や、エラスチンなどの弾性線維という細胞外マトリクスが知られており、その異常が大動脈瘤形成に関わることが報告されています。従って、細胞外マトリクスの変化を臨床的に観察することができれば、大動脈瘤形成の診断マーカーとなり得ると考えられます。

近年、非侵襲的に生体分子構造情報を取得する方法として、分光学的手法が注目されています。その一つであるラマン分光法は、物質に光を当てた際に生じる、入射光とは異なるエネルギーを持つ散乱光(ラマン散乱)から、分子の振動などの分子構造情報を得るもので、医学分野への応用が進んでいます。

本研究では、ラマン分光法と多変量解析を組み合わせたアプローチにより、マウスとヒトの大動脈瘤に特異的な、新規マーカースペクトル成分を同定するとともに、大動脈瘤の有無により、弾性線維および膠原線維の構造が異なっていることを解明しました。このような、分光学的手法により非侵襲的に病状を観察する方法は、さまざまな疾患への応用が期待されます。

研究代表者

研究の背景

大動脈瘤は、大動脈径が通常の1.5倍以上に拡張し、破裂により死に至る疾患で、患者数は年々増加傾向にあります。しかしながら、大動脈瘤破裂の予兆は少なく、根本的な治療薬もありません。そのため臨床においては、超音波検査やCT検査で大動脈径の拡張をモニターし、既定の瘤径以上になると外科的修復を行います。しかし、基礎疾患を抱えた患者や高齢者への適応は限定的であり、バイオマーカーなどを用いた病状の追跡方法や、病態に応じた治療法の開発が求められています。

大動脈には、心拍出に伴う血流によって生じるメカニカルストレスに耐えられる伸縮性と硬さが必要です。血管壁を構成する主要成分として、伸び縮みを司る弾性線維や、硬さの保持に資する膠原線維などの細胞外マトリクス注1が存在します。弾性線維形成に必要なタンパク質として、フィブリン4やフィブリン5が知られています。本研究グループは、これまでに、マウスの平滑筋細胞特異的フィブリン4の欠損が大動脈瘤をもたらすことや、フィブリン5欠損マウスでは大動脈瘤は形成されないものの、大動脈の蛇行と伸長を引き起こすことを見出しています。これらのマウスでは、大動脈瘤の有無に関わらず、弾性線維の異常が認められています。そこで、「瘤がある大動脈」と「ない大動脈」における血管壁の分子構造の詳細な違いを調べるために、近年、医学分野での活用が進んでいるラマン分光法注2を用いて、解析を行いました。

研究内容と成果

本研究では、マウスとヒトの大動脈瘤において、ラマン分光法と多変量解析を組み合わせることで、この疾患に特異的な弾性線維と膠原線維由来のラマンマーカースペクトル成分の同定を試みました(参考図)。具体的には、野生型マウス、大動脈瘤マウス(平滑筋細胞特異的フィブリン4欠損マウス)、大動脈瘤を伴わない大動脈蛇行マウス(フィブリン5欠損マウス)、およびヒトの大動脈凍結組織の切片をスライドガラス上に作成し、染色等を行うことなく、洗浄後ラマン顕微鏡でラマン分光測定を行います。そのデータを3種類の多変量データ解析注3手法(True Component Analysis; TCA、主成分分析、多変量スペクトル分解)を用いて解析しました。

まず、得られたラマン分光スペクトルから、細胞外マトリクスである弾性線維、膠原線維、アグリカンやバーシカンなどのプロテオグリカン注4および、細胞核、脂質、その他のマトリクス成分のスペクトルをそれぞれ抽出し、TCA解析によりラベルフリーイメージング注5を作製しました(参考図左下)。続いて、その中から弾性線維と膠原線維の主成分分析を行ったところ、血管壁におけるこれらのクラスター分布が、野生型と大動脈瘤マウスとで異なっていることを見出しました(参考図中下)。さらに、弾性線維と膠原線維由来の成分に対して、多変量スペクトル分解を行い、マウスにおける大動脈瘤部位に特異的なマーカースペクトル成分を同定しました(参考図右下)。ヒト大動脈瘤患者の大動脈切片に対して同様の解析を行ったところ、マウスと同じ結果が得られました。ことから、このスペクトル成分が、マウス大動脈瘤とヒト大動脈瘤にのみ存在する、新たな大動脈瘤の診断マーカーとなり得ることが分かりました。

今後の展開

本研究により同定された大動脈瘤特異的マーカースペクトル成分は、大動脈瘤の発症や経過の予測に有用だと考えられます。このような、ラマンスペクトルを、病状を解析するための診断スペクトルとして活用する手法は、従来の組織学では診断が難しい疾患への診断や、処置後の患部の治癒経過の評価、さらに将来的には、疾患予防へも応用可能になることが期待されます。

図 本研究に用いた実験手法と結果

マウスとヒトの、コントロール(野生型)と大動脈瘤組織において、染色等の前処理を行わずにラマン顕微鏡による測定を行いました。得られたデータの多変量データ解析から、血管壁におけるラマンイメージングの作製、細胞外マトリクス成分の大動脈瘤の有無によるクラスター分布の特定、大動脈瘤に特異的なマーカースペクトル成分の同定を行いました。

用語解説

注1) 細胞外マトリクス
  • 生体の臓器や組織は、細胞と非細胞物質で構成されており、非細胞性物質の主要な構成成分を細胞外マトリクスという。細胞を支える足場や組織の形成や分化、細胞接着を担っており、主に、線維状タンパク質とプロテオグリカンの高分子から成る。
注2) ラマン分光法
  • 物質に光を当てると散乱光が生じ、そのうち、入射光とは異なるエネルギーを持つものをラマン散乱という。このラマン散乱を利用し、分子構造の情報を得る手法をラマン分光法という。非侵襲的に物質の構造情報が得られるため、分子の指紋とも呼ばれる。
注3) 多変量データ解析
  • 複数の変数に関わる大量のデータに対して、変数間の相互関係を分析する統計的手法を、多変量データ解析という。変数を数学的に変換したり、行列因子分解したりすることで、結果が可視化される。
注4) プロテオグリカン
  • コアタンパク質に、原則としてウロン酸とアミノ糖の2糖の繰り返し構造からなる直鎖状糖鎖が結合したもの。
注5)ラベルフリーイメージング
  •  染色等の前処理を行わず、ありのままの細胞や組織を非標識で画像化する手法。

研究資金

本研究は、科研費、JST戦略的創造研究推進事業(さきがけ)、先進医薬研究振興財団、他の研究プロジェクトの一環として実施されました。

掲載論文

  • 【題名】Raman microspectroscopy and Raman imaging reveal biomarkers specific for thoracic aortic aneurysms (胸部大動脈瘤におけるラマン顕微鏡とイメージングによるバイオマーカーの同定)
  • 【著者名】Kaori Sugiyama, Julia Marzi, Julia Alber, Eva M. Brauchle, Masahiro Ando, Yoshito Yamashiro, Bhama Ramkhelawon, Katja Schenke-Layland*, Hiromi Yanagisawa*.
    †Co-first authors, *Co-corresponding authors 本研究は、筑波大学、早稲田大学、Eberhard Karls University Tübingen(ドイツ)、New York University Langone Health(アメリカ)との国際共同研究によって行われました。
  • 【掲載誌】 Cell Reports Medicine
  • 【掲載日】 2021年4月28日
  • 【DOI】10.2139/ssrn.3606775
Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/top/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる