Sustainable Energy & Environmental Society Open Innovation Research Organization早稲田大学 持続的環境エネルギー社会共創研究機構(SEES)

News

【応用数理科学研究所・講義のお知らせ】Crossroads between Geometric Numerical Integration and Scientific Machine Learning

Crossroads between Geometric Numerical Integration and Scientific Machine Learning

場所:51号館 3階 第二会議室
日時:第1回 8月22日 13時00分~14時40分
   第2回 8月22日 15時00分~16時40分
   第3回 8月23日 13時00分~14時40分
   第4回 8月23日 15時00分~16時40分

Abstract:

Many dynamical systems in physics and other fields possess some form of geometric structure, such as Lagrangian or Hamiltonian structure, symmetries and conservation laws. Geometric numerical integration describes the research field that aims at developing numerical algorithms for solving such systems while preserving their geometric structure. Usually such algorithms show greatly reduced errors and better long-time stability compared to non-structure-preserving algorithms. Scientific machine learning, on the other hand, is a relatively new research field that aims at using machine learning methods for the solution of differential equations. In this lecture series, we will explore how ideas of geometric numerical integration can be brought forward to the realms of scientific machine learning.

In the first part, important mathematical structures of Hamiltonian systems will be reviewed and consequences of their non-preservation in numerical simulations highlighted. Some basic structure-preserving algorithms for canonical Hamiltonian systems will be introduced and compared with their non-structure-preserving counterparts.

In the second part, different approaches of how machine learning techniques can be used for the solution of differential equations are described. After exploring once more the consequences of disregarding the structure of the dynamical system, we will discuss in detail how geometric structure can be incorporated into machine learning methods such as neural networks.

Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/sees/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる