Research Activities早稲田大学 研究活動

Edge Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything(Published in IEEE Internet of Things Journal, May 2022)

Journal Title
/掲載ジャーナル名
IEEE Internet of Things Journal
Publication Year and Month
/掲載年月
May, 2022
Paper Title
/論文タイトル
Edge Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything
DOI
/論文DOI
10.1109/JIOT.2022.3179231
Author of Waseda University
/本学の著者
JIN, Qun (Professor, Faculty of Human Sciences, School of Human Sciences): Last Author

早稲田大学研究者データベース(日本語)

Waseda University Researchers Database(English)

Related Websites
/関連Web
Abstract
/抄録
Internet of Everything (IoE) is playing an increasingly indispensable role in modern intelligent applications. These smart applications are known for their real-time requirements under limited network and computing resources, in which it becomes a high consuming task to transform and compute tremendous amount of raw data in cloud center. The edge-cloud computing infrastructure allows large amount of data to be processed on nearby edge nodes and then only the extracted and encrypted key features are transmitted to the data center. This offers the potential to achieve an edge-cloud based big data intelligence for IoE in a typical two-stage data processing scheme, while satisfying data security constraint. In this study, a deep reinforcement learning enhanced scheduling method is proposed to address the NP-hard challenge of two-stage scheduling, which is able to allocate computing resources within an edge-cloud infrastructure to ensure computing task to be completed with minimum cost. The proposed reinforcement learning algorithm, which incorporates the Johnson’s rule, is designed to achieve an optimal schedule in IoE. The performance of our method is evaluated and compared with several existing scheduling techniques, and experiment results demonstrate the ability of our proposed algorithm in achieving a more efficient schedule with 1.1-approximation to the targeted optimal IoE applications.
Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/research/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる