Research Activities早稲田大学 研究活動

Distribution Bias Aware Collaborative Generative Adversarial Network for Imbalanced Deep Learning in Industrial IoT(Published in IEEE Transactions on Industrial Informatics, April 2022)

Journal Title
/掲載ジャーナル名
IEEE Transactions on Industrial Informatics
Publication Year and Month
/掲載年月
April, 2022
Paper Title
/論文タイトル
Distribution Bias Aware Collaborative Generative Adversarial Network for Imbalanced Deep Learning in Industrial IoT
DOI
/論文DOI
10.1109/TII.2022.3170149
Author of Waseda University
/本学の著者
JIN, Qun (Professor, Faculty of Human Sciences, School of Human Sciences): Last Author

早稲田大学研究者データベース(日本語)

Waseda University Researchers Database(English)

Related Websites
/関連Web
Abstract
/抄録
In this study, we propose a DB-CGAN model to deal with distribution bias issues for imbalanced deep learning in industrial IoT. An integrated data augmentation framework is constructed based on introduction of a complementary classifier into the basic GAN model. Specifically, a conditional generator with random labels is designed and trained adversarially with the classifier to effectively enhance the augmentation of number of data samples in minority classes, while a weight sharing scheme is newly devised between two separated feature extractors, enabling the collaborative adversarial training among generator, discriminator, and classifier. An augmentation algorithm is then developed to facilitate intelligent anomaly detection, which can efficiently improve the classification accuracy based on the correction of distribution bias. Experiment evaluations based on two real-world imbalanced datasets demonstrate the outstanding performance of our proposed model in tackling distribution bias issues for imbalanced learning in industrial IoT applications, compared with five baseline methods.
Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/research/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる