Research Activities早稲田大学 研究活動

QA-Filter:A QP-Adaptive Convolutional Neural Network Filter for Video Coding(Published in IEEE Transactions on Image Processing, January 2022)

Journal Title
/掲載ジャーナル名
IEEE Transactions on Image Processing
Publication Year and Month
/掲載年月
January, 2022
Paper Title
/論文タイトル
QA-Filter:A QP-Adaptive Convolutional Neural Network Filter for Video Coding
DOI
/論文DOI
10.1109/TIP.2022.3152627
Author of Waseda University
/本学の著者
SUN, Heming(Junior Researcher, Faculty of Science and Engineering, Waseda Research Institute for Science and Engineering):Corresponding Author

早稲田大学研究者データベース(日本語)

Waseda University Researchers Database(English)

Related Websites
/関連Web
Abstract
/抄録
Convolutional neural network (CNN)-based filters have achieved great success in video coding. However, in most previous works, individual models were needed for each quantization parameter (QP) band, which is impractical due to limited storage resources. To explore this, our work consists of two parts. First, we propose a frequency and spatial QP-adaptive mechanism (FSQAM), which can be directly applied to the (vanilla) convolution to help any CNN filter handle different quantization noise. From the frequency domain, a FQAM that introduces the quantization step (Qstep) into the convolution is proposed. When the quantization noise increases, the ability of the CNN filter to suppress noise improves. Moreover, SQAM is further designed to compensate for the FQAM from the spatial domain. Second, based on FSQAM, a QP-adaptive CNN filter called QA-Filter that can be used under a wide range of QP is proposed. By factorizing the mixed features to high-frequency and low-frequency parts with the pair of pooling and upsampling operations, the QA-Filter and FQAM can promote each other to obtain better performance. Compared to the H.266/VVC baseline, average 5.25% and 3.84% BD-rate reductions for luma are achieved by QA-Filter with default all-intra (AI) and random-access (RA) configurations, respectively. Additionally, an up to 9.16% BD-rate reduction is achieved on the luma of sequence BasketballDrill. Besides, FSQAM achieves measurably better BD-rate performance compared with the previous QP map method.
Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/research/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる