Research Activities早稲田大学 研究活動

Segmented Recurrent Transformer with Cubed 3D-Multiscanning Strategy for Hyperspectral Image Classification(Published in IEEE Transactions on Geoscience and Remote Sensing, April 2024)

Journal Title
/掲載ジャーナル名
IEEE Transactions on Geoscience and Remote Sensing
Publication Year and Month
/掲載年月
April, 2024
Paper Title
/論文タイトル
Segmented Recurrent Transformer with Cubed 3D-Multiscanning Strategy for Hyperspectral Image Classification
DOI
/論文DOI
10.1109/TGRS.2024.3384403
 Author of Waseda University
/本学の著者
ZHOU, Weilian(Assistant Professor, Faculty of Science and Engineering, Information, Production, and Systems Center):Lasr Author
Related Websites
/関連Web
Abstract
/抄録
This study introduces an innovative approach to hyperspectral imaging (HSI) classification by integrating convolution, recurrence, and self-attention mechanisms in a 3-D configuration. We address several challenges such as the 1) disruption of spectral continuity by traditional dimensionality reduction methods like PCA, 2) the overlooking of band-to-band continuous features in existing spatial-only 2-D multiscanning strategy, and 3) the limitations in model design by simply cascading recurrent neural networks (RNNs) with transformers for HSI analysis. Our solution involves three core components: 1) subband grouping with group-wise convolution for refined dimension reduction; 2) a novel cubed 3-D-multiscanning technique enabling thorough multidirectional analysis in both spectral and spatial domains; and 3) the development of a Cubic-Net framework with a specially designed segmented recurrent transformer (SRT). This SRT is tailored to effectively utilize spectral continuity along with spatial contextual features, overcoming common sequential data analysis challenges seen in RNNs and transformers. Furthermore, our feature fusion strategy successively integrates “short-term” and “long-term” SRT features, thereby enhancing the model’s ability to process both spectral and spatial features effectively. Experimental results from three public HSI datasets indicate our method’s improved performance over existing baselines and state-of-the-art methods. This research offers a new perspective on 3-D sequential HSI classification.
Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/research/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる