Research Activities早稲田大学 研究活動

News

ニュース

屈折率1.8超、分解可能な透明プラスチックを開発

硫黄と水素結合を組み合わせ、発光デバイスの効率向上につながる新材料を実現

屈折率1.8超、分解可能な透明プラスチックを開発

発表のポイント

「分極性水素結合」という新たな構造に着目し、1.8以上の超高屈折率と可視光透明性を同時に満たすプラスチックを開発した。
今回開発したプラスチックは、優れた光学特性と柔軟性、リサイクル性を併せ持ち、従来よりも低負荷で発光電気化学セル (LEC) を作動させることにも成功した。
有機ELディスプレイの輝度や光学素子の画素向上が期待できるほか、光学プラスチックに環境適合性を付与する第1歩に繋がる。

図1.本研究の概要。「分極性」を有する水素結合に由来して、光学デバイスの発光効率向上、超高屈折率、分解性などの機能を付与できることを見出した (”Ar” はaromatic ring (芳香環) を示す略称)。

早稲田大学 理工学術院の小柳津研一(おやいづけんいち)教授、および渡辺清瑚(わたなべせいご)次席研究員、ミュンヘン工科大学 StraubingキャンパスのRubén D. Costa 教授、およびLuca M. Cavinato 博士課程学生らの研究グループ(以下、本研究グループ)は、硫黄を含む水素結合を組み込んだ独自の高分子を設計し、従来達成が難しいとされていた1.8以上の超高屈折率と透明性を両立し、使用後には分解できる新しいプラスチックを開発しました。

従来の超高屈折率高分子は多くが着色を呈するため、有機発光ダイオード (OLED) などの可視光用途への応用が難しい課題がありました。今回開発した材料はポリマー鎖同士が「分極性水素結合」により密に絡み合うことで、着色なく屈折率を向上できるほか、柔軟性と分解性も併せ持つため、従来よりも低負荷で作動する、リサイクル可能な発光素子の実現に繋がります。本研究の概念は、有機ELディスプレイの輝度向上や、より高画素なマイクロレンズを実現できる透明材料の開発に繋がるほか、環境適合性の高い光学プラスチックの設計指針を提示する重要な知見を与えるものと考えられます。

本研究成果は、2024年4月12日 (金曜日) 8時(現地時間)にWiley-VCH刊行の『Advanced Functional Materials』誌にオンライン掲載されました(論文名:Polarizable H-bond Concept in Aromatic Poly(thiourea)s: Unprecedented High Refractive Index, Transmittance and Degradability at Force to Enhance Lighting Efficiency)。

(1)これまでの研究で分かっていたこと(科学史的・歴史的な背景など)

高屈折率ポリマー (以下、HRIP) *1 は発光デバイス (有機発光ダイオード (OLED) など) の輝度や効率の向上に欠かせない材料で、デバイスのコーティング剤として使うことでより多くの光を取り出せるようになります。近年、HRIPの屈折率を向上させる研究の進歩は顕著で、例えば硫黄の含有率を高める手法が基本的な方法論として確立されています。一方で、HRIPの開発において屈折率と可視光透明性はトレードオフの関係にあるため、1.8以上の超高屈折率と、発光素子に適用できる十分な透明性を併せ持つHRIPの実現は困難でした。

(2)今回の新たに実現しようとしたこと、明らかになったこと、新しく開発した手法

(新たに実現しようとしたこと、明らかになったこと)

本研究グループは、HRIPがフィルムなどの固体状態で生じる高分子鎖の隙間 (空気など) が屈折率低下の要因であると捉え、分子間の相互作用力の一つである水素結合*2を組み込むことで隙間を減らし、屈折率が向上すると着想しました。その結果、透明性を保てる範囲で硫黄含量をできるだけ大きくしつつ、この隙間の割合を減らした分子設計を施すことで、HRIPの屈折率と透明性を同時に向上させることに成功しました。

(そのために新しく開発した手法)

研究グループは以前、硫黄を含むポリマーの1つであるポリ(フェニレンスルフィド) *3の側鎖に、水素結合性のヒドロキシ基 *4を導入することで、屈折率が劇的に向上することを見出しました (Macromolecules 2022: https://doi.org/10.1021/acs.macromol.1c02412など)。今回の研究は、本概念を拡張し、HRIPの構造としてポリ(チオウレア*5)に初めて着目したものです (図2)。

図2:本研究の概念図。(a) ポリ(チオウレア)の分子設計。今回新たに着目したのは「分極性水素結合」をもつチオウレアで、芳香族スペーサーと合わせると屈折率が両者の相乗的な効果により向上する。(b) チオウレアが形成する「無秩序で密な」多点水素結合の模式図。可視光透明性を維持しながら屈折率を向上させる鍵構造となる。(c) 新たに提案した発光電気化学セルの素子構成。(CCライセンスに基づき、論文中の模式図を一部改変及び翻訳)

チオウレアに含まれる硫黄原子は分極*6しやすいため、密で無秩序な「分極性水素結合」を形成できる特殊な性質を示し、可視光域 (400-800 nm) で超高屈折率 (1.8) と十分な透過率 (92%以上) を両立しました。溶液プロセス*7により均一で透明な薄膜も作製でき、ポリ(チオウレア)をコーティングした発光電気化学セル (LEC)*8の外部量子効率*9は最高12% (相対比) 向上しました。またポリ(チオウレア)に対し、原料のジアミン化合物を添加して50℃で加熱するのみで、急速に分子量*10が低減し原料に近いレベルまで分解できることを明らかにしました。この性質は材料の循環性や再利用性の向上に寄与し、寿命を高めることにも繋がります。

図3:ポリ(チオウレア)の特徴的性質。(a) 丈夫、超高屈折率、透明なポリ(チオウレア)フィルム。(b) ポリ(チオウレア)をコーティングしたLEC素子が作動する様子。(c) ポリ(チオウレア)の分解過程におけるサイズ排除クロマトグラム。保持時間が長いほど分子量が低く、原料に近いことを意味する。(CCライセンスに基づき、論文中の模式図を一部改変及び翻訳)

(3)研究の波及効果や社会的影響

本研究で開発したポリ(チオウレア)は、従来の光学材料が抱えていたトレードオフを解消できるとともに、穏和な条件での分解性を付与した初めての例であり、従来よりも低負荷で作動しリサイクル可能な有機ELの実現が期待できます。種々の基板に対して簡便に製膜できる点も魅力的で、「一塗りするだけで」発光効率を上げることができる画期的な材料です。

(4)課題、今後の展望

本研究でポリ(チオウレア)が超高屈折率と透明性を両立することは実証されたものの、その限界値は未解明である上、さらに厳密かつ迅速に分解可能な構造を探索する必要があります。今後、ポリ(チオウレア)の化学構造や硫黄含量などを精密に制御することで、「使用時はさらに優れた屈折率と安定性を両立し、使用後のリサイクル効率の高いHRIP」の実現に繋げたいと考えています。

(5)研究者のコメント

HRIPの屈折率を高める研究は顕著に発展していますが、実際のデバイスで要求される透明性、製膜性、耐久性を網羅的に両立できる設計や、環境問題を志向した機能付与に関する研究はまだ十分行われているとはいえません。本研究では、これらの課題を一挙に解決しうる第一歩を実証できたことから、今後更なる化学構造の拡張と材料開拓によって、従来ない画期的機能を示す透明材料が生まれることが強く期待できます。

本論文は早稲田大学とミュンヘン工科大学との共同研究によるものです。ミュンヘン工科大学側の共著者の一人であるRubén Costa教授は、早稲田大学スーパーグローバル大学 (SGU) 創成支援事業によるエネルギー・ナノマテリアル拠点のジョイントアポイントメント教員として早稲田大学に滞在したことがあり、本成果はSGUプログラムによる研究の国際化の成果の一つと位置付けられます。第一著者である渡辺清瑚氏はこの3月に早稲田大学で博士学位を取得し、4月から早稲田大学の講師として研究を継続しています。現在は更なる展開を期待してCosta教授の研究室との共同研究を展開中です。

(6)用語解説

※1 高屈折率ポリマー (HRIP)

定義により異なるが、一般的に1.7以上の屈折率を示す透明な高分子 (ポリマー) の一群。高屈折率であればあるほど、光を大きな角度で曲げることができる。

※2 水素結合

電気陰性度の低い水素原子と、電気陰性度の高いヘテロ原子 (酸素・窒素・硫黄など) が有する孤立電子対の間で働く静電的な相互作用。

※3 ポリ(フェニレンスルフィド)

ベンゼン環と硫黄の繰り返し構造を有する、スーパーエンジニアリングプラスチック (スーパーエンプラ) の一つ。耐熱性や耐薬品性に優れるなどの特徴を有する。

※4 ヒドロキシ基

酸素原子と水素原子が共有結合でつながった構造を有する官能基。水素結合を形成する代表的な化学構造である。

※5 チオウレア

窒素原子、硫黄原子を多量に含む、水素結合性を示す化学構造の一種。従来は有機合成反応の触媒や、エネルギー貯蔵高分子の部分構造として用いられてきた。

※6 分極

光 (主に紫外〜可視光) が照射された際に電子の偏りが生じる性質。ベンゼン環、硫黄などが分極性の高い官能基の例として挙げられる。

※7 溶液プロセス

ポリマーを溶媒に溶かし、製膜する手法のこと。例えば、溶液を基板に滴下して風乾するドロップキャスト法や、遠心力を利用して製膜するスピンコート法が挙げられる。発光素子の作製工程に用いられる場合が多い。

※8 発光電気化学セル (LEC)

発光素子の一種で、発光する化合物と電解質を混合した発光層を有する点が特徴。一般的な発光素子として知られる有機発光ダイオード (OLED) と比較し、単純な素子構成、要求される印加電圧が低い、より簡便に作成できるなどの利点を有する。

※9 外部量子効率

発光素子に注入されたキャリア (電荷) のうち、光子 (フォトン) として取り出された数の割合。高いほど損失なく光が取り出されていることを意味する。

※10 分子量

化合物の質量。ポリマーの場合、鎖の長さに対応する。分解反応が進行する場合、時間の経過とともに分子量は低く遷移する。

(7)論文情報

雑誌名:Advanced Functional Materials
論文名:Polarizable H-bond Concept in Aromatic Poly(thiourea)s: Unprecedented High Refractive Index, Transmittance and Degradability at Force to Enhance Lighting Efficiency
執筆者名(所属機関名):Seigo Watanabe1, Luca M. Cavinato2, Vladimir Calvi3, Richard van Rijn3, Rubén D. Costa2, Kenichi Oyaizu1
 1早稲田大学、2ミュンヘン工科大学、3 Applied Nanolayers
掲載日時(現地時間):2024年4月12日(金)8時
掲載日時(日本時間):2024年4月12日(金)15時
掲載URL:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404433
DOI:10.1002/adfm.202404433

(8)研究助成

研究費名:有機エネルギーマテリアル化学の確立と展開
研究課題名:文部科学省 科研費 基盤研究(A) (21H04695)
研究代表者名(所属機関名):小柳津研一(早稲田大学)

研究費名:ソフト分極構造の多重集積による光・電場機能高分子の革新
研究課題名:文部科学省 科研費 挑戦的研究 (開拓) (22K18335)
研究代表者名(所属機関名):小柳津研一(早稲田大学)

研究費名:分子間相互作用の制御に基づく含硫黄超高屈折率ポリマーの創出
研究課題名:文部科学省 科研費 特別研究員奨励費 (22KJ2927)
研究代表者名(所属機関名):渡辺清瑚(早稲田大学)

上記のほかに、早稲田大学理工総研アーリーバード、みずほ学術振興財団 工学研究助成、EU DET-OPEN (MSCA-ITN STiBNite No. 956923) の支援により実施されました。

【キーワード】

透明プラスチック、発光デバイス、屈折率、硫黄、水素結合、分解性

Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/inst/research/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる