Mathematics and Physics Unit “Multiscale Analysis, Modelling and Simulation”, Top Global University Project早稲田大学 数物系科学拠点

News

ニュース

Seminar Vakhtang PUTKARADZE (University of Alberta)

日時

2018年3月23日(金) 16:30-18:00

場所

早稲田大学 西早稲田キャンパス 55号館N棟 1階 第一会議室

言語

英語

題目

Variational approach to inertia, dissipation, and constraints realization.

概要

We consider the problem of dissipative systems where the main part of dynamics can be described by Lagrangian methods. Such problems are frequently encountered in mechanical and electrical engineering problems. We shall focus mainly on the mechanical analogues of fluid-structure interaction, especially in the presence of friction. Variational approaches are particularly useful for deriving equations for arbitrary lagrangians. We discuss a variational approach to the dynamics of porous media by incorporating viscous forces in the variational principle. To elucidate the physics and mathematics of the problem, we study some simplified cases such as a pendulum with a moving viscous droplet. We show that the analog of Darcy’s law for porous media (velocity proportional to force) in these simplified models comes from the short-term convergence to a ‘constraint manifold’ in a singular perturbation problem and the following long-term dynamics on that manifold. The resulting Darcy’s law can reduce to either holonomic or non-holonomic constraint for the motion, depending on the physical realization. We then discuss the relevance of our results to other dissipative systems and outline methods that can be useful for other applications in Mechanical and Electrical Engineering. This work was partially supported by NSERC and the University of Alberta.

Dates
  • 0323

    FRI
    2018

Place

早稲田大学 西早稲田キャンパス 55号館N棟 1階 第一会議室

Tags
Posted

Tue, 23 Jan 2018

Page Top
WASEDA University

早稲田大学オフィシャルサイト(https://www.waseda.jp/fsci/mathphys/)は、以下のWebブラウザでご覧いただくことを推奨いたします。

推奨環境以外でのご利用や、推奨環境であっても設定によっては、ご利用できない場合や正しく表示されない場合がございます。より快適にご利用いただくため、お使いのブラウザを最新版に更新してご覧ください。

このままご覧いただく方は、「このまま進む」ボタンをクリックし、次ページに進んでください。

このまま進む

対応ブラウザについて

閉じる