Visiting Researcher Seminar: A general definition of perfect equilibrium(12/3)
Details
We propose a general definition of perfect equilibrium, designed to be applicable to a wide class of strategic form games. Two key features in our definition enable this: a) the use of nets instead of sequences, and b) a new concept of completely mixed nets of strategies, drawing on a more detailed interpretation of the notion of a carrier of a strategy.
For finite action sets, our notion of perfect equilibrium coincides with the notion of perfect equilibrium defined by Selten (1975). In the compact-continuous case, our definition yields a nonempty and compact set of perfect equilibria, all of which are weak perfect equilibria in the sense of Simon Stinchcomb (1995). We examine the conditions under which perfect equilibrium meets game-theoretic desiderata such as limit undominatedness and invariance. We provide a variety of examples to motivate our definition, and to illustrate its applicability. Notably, the examples include applications to games with discontinuous payoffs and games played with finitely additive strategies.
Speaker
Co-author
János Flesch, Christopher Kops, Anna Zseleva
Date & Time
Dec 3, 2024 (Tue.) 17:00 – 18:30
Venue
Building#7 Room#209, Waseda Campus, Waseda University
Language
English
Prospected Audience
Undergraduate, Graduate, Researchers, Faculty members, general audience
Co-Organizer
Waseda Institute for Advanced Studies (WIAS)
Registration
Registration is not required to participate.