Understanding extracellular vesicle transfer within tumor tissue context Nao Nishida-Aoki Waseda Institute for Advanced Study, nnishida@aoni.waseda.jp

EVs are lipid bilayer vesicles with cellular components.

EVs are exchanged among cells to transmit intercellular signals.

Tumors as a complex system

Cancer-derived extracellular vesicles (EVs) Normal cells Proliferation 100 nm Fibroblasts Invasior Cancer cells Immuno Cancer suppression Progression Immune cells

Cells at

distal organs

Cancer EVs educate surrounding cells

Tumor comprise of cancer cells, noncancerous cells, and structural scaffold (extracellular matrix).

Cancer EVs alter the surrounding cells to accelerate tumor progression and metastasis.

How to study cancer EVs

Tissue slices as a versatile tumor model

in a physiological context?

Tumor tissue slices maintain tissue architecture while adding experimental advantages.

Research Aim:

Tumor

Antibody

Tumor model in the lab Drug screening Gene introduction Microscopic observation etc.

Metastasis

Nishida-Aoki, N. et al., Mol. Ther., (2017)

WIAS

Altered drug efficacy by tumor tissue architecture

Elucidate spatiotemporal EV transfer within tumor tissues

Cancer EV transfer within tissue

Quantitative measure of EV transfer within tumor tissues

Possible effect of tissue architecture on EV transfer

- Altered properties (amount, size, cargo) • Cell type-specific uptake
- Distribution, reaching distance

Tissue slice culture

Cancer cells

(Fluorescent)

EV transfer within tissue context

Detection & Analysis

Elucidate intercellular network

a) Which cell type? b) Amount? c) How far? d) How fast?

Cellular network within tumor tissues

Current plans

- Imaging analysis
- Particle tracking
- Modeling and simulation
- Network analysis