
Proof theory and computation

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Waseda University, Tokyo, March 2018

1 / 107

Proof: two aspects

I provides insight (uniformity)

I may have computational content

Mathematics = logic + data + (co)inductive definitions

I Logic: minimal, intro and elim for →, ∀
I Proof ∼ lambda-term (Curry-Howard correspondence)

I Can embed classical and intuitionistic logic

2 / 107

Overview

I Initial cases of transfinite induction in arithmetic

I Partial continuous functionals

I Paths in trees

I Exact real arithmetic

I Linear two-sorted arithmetic

3 / 107

Goal: study “most complex” proofs in first-order arithmetic.

I The main tool for proving theorems in arithmetic is clearly the
induction schema

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x).

I An equivalent form of this schema is “course-of-values” or
cumulative induction

∀x(∀y<xA(y)→ A(x))→ ∀xA(x).

4 / 107

I Both schemes refer to the standard ordering of N. Tempting:
strengthen arithmetic by allowing more general induction
schemes, e.g., w.r.t. the lexicographical ordering of N× N.

I Even more generally, let ≺ be a well-ordering of N and use
transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

Suppose the property A(x) is “progressive”, i.e., from the
validity of A(y) for all y ≺ x we can conclude that A(x)
holds. Then A(x) holds for all x.

5 / 107

Recall transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

For which well-orderings this schema is derivable in arithmetic?

I We will prove a classic result of Gentzen (1943) which in a
sense answers this question completely.

I However, to state the result we have to be more explicit about
the well-orderings used.

6 / 107

Ordinals below ε0

I Need some knowledge and notations for ordinals.

I Do not want to assume set theory here.

I Introduce an initial segment of the ordinals (the ones < ε0) in
a formal, combinatorial way, i.e., via ordinal notations based
on “Cantor normal form”.

I From now on “ordinal” means “ordinal notation”.

7 / 107

We define

I α is an ordinal

I α < β for ordinals α, β

simultaneously by induction.

1. If αm, . . . , α0 are ordinals, m ≥ −1 and αm ≥ · · · ≥ α0

(where α ≥ β means α > β or α = β), then

ωαm + · · ·+ ωα0

is an ordinal. The empty sum (denoted by 0) is allowed.

2. If ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 are ordinals, then

ωαm + · · ·+ ωα0 < ωβn + · · ·+ ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i , αm−i+1 = βn−i+1,
. . . , αm = βn, or else m < n and αm = βn, . . . , α0 = βn−m.

8 / 107

I Notation:

1 := ω0,

k := ω0 + · · ·+ ω0 with k copies of ω0,

ωαk := ωα + · · ·+ ωα with k copies of ωα.

I lev(0) := 0, lev(ωαm + · · ·+ ωα0) := lev(αm) + 1.

I For ordinals of level k + 1 we have ωk ≤ α < ωk+1, where
ω0 := 0, ω1 := ω1, ωk+1 := ωωk .

I Easy (by induction on the levels): < is a linear order with 0
the least element.

0 < 1 < 2 · · · < ω < ω + 1 · · · < ω2 < ω2 + 1 · · · < ω3 · · · < ω2

< ω2 + 1 · · · < ω2 + ω · · · < ω3 · · · < ωω = ω2 · · · < ω3 · · ·

9 / 107

Addition for ordinals:

(ωαm+· · ·+ωα0)+(ωβn+· · ·+ωβ0) := ωαm+· · ·+ωαi +ωβn+· · ·+ωβ0

where i is minimal such that αi ≥ βn.

Lemma
+ is an associative operation which is strictly monotonic in the
second argument and weakly monotonic in the first argument.

+ is not commutative:

1 + ω = ω 6= ω + 1

10 / 107

There is also a commutative version on addition. The natural sum
(or Hessenberg sum) of two ordinals is defined by

(ωαm + · · ·+ ωα0)#(ωβn + · · ·+ ωβ0) := ωγm+n + · · ·+ ωγ0 ,

where γm+n, . . . , γ0 is a decreasing permutation of
αm, . . . , α0, βn, . . . , β0.

Easy: # is associative, commutative and strictly monotonic in
both arguments.

11 / 107

How ordinals of the form β + ωα can be approximated from below?

I First note that

δ < α→ β + ωδk < β + ωα.

I For any γ < β + ωα we can find a δ < α and a k such that

γ < β + ωδk .

12 / 107

Enumerating ordinals

I To work with ordinals in a purely arithmetical system we set
up some effective bijection between our ordinals < ε0 and
non-negative integers (i.e., a Gödel numbering).

I For its definition it is useful to refer to ordinals in the form

ωαmkm+· · ·+ωα0k0 with αm > · · · > α0 and ki 6= 0 (m ≥ −1).

(By convention, m = −1 corresponds to the empty sum.)

13 / 107

I For every ordinal α we define its Gödel number pαq by

pωαmkm + · · ·+ ωα0k0q :=
(∏
i≤m

pki
pαiq

)
− 1,

where pn is the n-th prime (starting with p0 := 2).

I For every integer x ≥ 0 we define its ordinal o(x) by

o
((∏

i≤l
pqi
i

)
− 1
)

:=
∑
i≤l

ωo(i)qi ,

where the sum is understood as the natural sum.

Lemma (Bijection between ordinals and non-negative integers)

1. o(pαq) = α,

2. po(x)q = x.

14 / 107

Can transfer relations and operations on ordinals to computable
relations and operations on non-negative integers. Abbreviations:

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,

x ⊕ y := po(x) + o(y)q,

xk := po(x)kq,

ωk := pωkq.

15 / 107

Provability of initial cases of transfinite induction

I We derive initial cases of transfinite induction in arithmetic:

∀x(∀y≺xPy → Px)→ ∀x≺aPx

for some number a and a predicate symbol P, where ≺ is the
standard order of order type ε0 defined before.

I This result is optimal in the sense that for the full system of
ordinals < ε0 the principle

∀x(∀y≺xPy → Px)→ ∀xPx

of transfinite induction is underivable.

I All these results are due to Gentzen (1943).

16 / 107

Arithmetical systems

By an arithmetical system Z we mean a theory based on minimal
logic in the ∀→-language (including equality axioms) such that

I The language of Z consists of a fixed supply of function and
relation constants assumed to denote computable functions
and relations on the non-negative integers.

I Among the function constants there is a constant S for the
successor function and 0 for (the 0-place function) zero.

I Among the relation constants we have =, P and also ≺ for
the ordering of type ε0 of N, as introduced before.

17 / 107

I Terms are built up from object variables x , y , z by
f (t1, . . . , tm), where f is a function constant.

I We identify closed terms which have the same value; this
expresses that each function constant is computable.

I Terms of the form S(S(. . . S0 . . .)) are called numerals.
Notation: Sn0 or n or just n.

I Formulas are built up from atomic formulas R(t1, . . . , tm),
with R a relation constant, by A→ B and ∀xA.

18 / 107

Axioms of Z

I Compatibility of equality

x = y → A(x)→ A(y),

I the Peano axioms, i.e., the universal closures of

Sx = Sy → x = y , (1)

Sx = 0→ A, (2)

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x), (3)

with A(x) an arbitrary formula.

I R~n whenever R~n is true (to express that R is computable).

I Irreflexivity and transitivity for ≺

x ≺ x → A,

x ≺ y → y ≺ z → x ≺ z

19 / 107

Axioms of Z (continued)
Further axioms – following Schütte – are the universal closures of

x ≺ 0→ A, (4)

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A, (5)

x ⊕ 0 = x , (6)

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z , (7)

0⊕ x = x , (8)

ωx0 = 0, (9)

ωx(Sy) = ωxy ⊕ ωx , (10)

z ≺ y ⊕ ωSx → z ≺ y ⊕ ωe(x ,y ,z)m(x , y , z), (11)

z ≺ y ⊕ ωSx → e(x , y , z) ≺ Sx , (12)

where ⊕, λx ,y (ωxy), e and m denote function constants and A is
any formula. These axioms are formal counterparts to the
properties of the ordinal notations observed above.

20 / 107

Theorem (Provable initial cases of transfinite induction in Z)

Transfinite induction up to ωn, i.e., for arbitrary A(x) the formula

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωn A(x),

is derivable in Z.

Proof. To every formula A(x) we assign a formula A+(x) (with
respect to a fixed variable x) by

A+(x) := ∀y (∀z≺y A(z)→ ∀z≺y⊕ωx A(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x(∀y≺xB(y)→ B(x)).

21 / 107

If A(x) is progressive, then A+(x) is progressive

Assume that A(x) is progressive and

∀y≺xA+(y). (13)

Goal: A+(x) := ∀y (∀z≺y A(z)→ ∀z≺y⊕ωx A(z)). Assume

∀z≺yA(z) (14)

and z ≺ y ⊕ ωx . We have to show A(z).

Case x = 0. Then z ≺ y ⊕ ω0. By (5):

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A

it suffices to derive A(z) from z ≺ y as well as from z = y .
If z ≺ y , then A(z) follows from (14), and if z = y , then A(z)
follows from (14) and the progressiveness of A(x).

22 / 107

If A(x) is progressive, then A+(x) is progressive (ctd.)

Case Sx . From z ≺ y ⊕ ωSx we obtain z ≺ y ⊕ ωe(x ,y ,z)m(x , y , z)
by (11) and e(x , y , z) ≺ Sx by (12). By (13): A+(e(x , y , z)), i.e.

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺(y⊕ωe(x,y,z)v)⊕ωe(x,y,z)A(u)

and hence, using (7) and (10)

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺y⊕ωe(x,y,z)(Sv)A(u).

Also from (14) and (9), (6) we obtain

∀u≺y⊕ωe(x,y,z)0A(u).

By induction:
∀u≺y⊕ωe(x,y,z)m(x ,y ,z)A(u)

and hence A(z).

23 / 107

Next: show, by induction on n, how to derive

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωnA(x) for arbitrary A(x).

Assume the left hand side, i.e., that A(x) is progressive.

Case 0. Then x ≺ ω0 and hence x ≺ 0⊕ ω0 by (8). By (5) it
suffices to derive A(x) from x ≺ 0 as well as from x = 0. Now
x ≺ 0→ A(x) holds by (4), and A(0) then follows from the
progressiveness of A(x).

Case n + 1. Since A(x) is progressive, by the above also A+(x) is.
By IH: ∀x≺ωnA+(x), hence A+(ωn) since A+(x) is progressive.
By definition of A+(x) (with (4): x ≺ 0→ A and (8): 0⊕ x = x)
we obtain ∀z≺ωωn A(z).

24 / 107

Definition (Level of a formula)

lev(R~t) := 0,

lev(A→ B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).

I In the induction step we derived transfinite induction up to
ωn+1 for A(x) from transfinite induction up to ωn for A+(x),
and lev(A+(x)) = lev(A(x)) + 1.

I Hence to prove transfinite induction up to ωn, the induction
scheme in Z is used for formulas of level n.

I Next: iteration operators of higher (type-)level have a similar
relation to ordinals < ε0.

25 / 107

The fast growing functions (Fα)α<ε0 , are defined by

F0(x) := 2x ,

Fα+1(x) := F (x)
α (x) (F

(x)
α x-th iterate of Fα),

Fλ(x) := Fλx.

Here the fundamental sequence λ[x] for a limit number λ < ε0 and
x ∈ N is defined in a natural way:

I Any such limit number can be written uniquely in the form
λ = ωαn + . . .+ ωα0 with λ > αn ≥ . . . ≥ α0 > 0.

I Then let

λ[x] :=

{
ωαn + . . .+ ωα1 + ωα0−1 · x if α0 is a successor

ωαn + . . .+ ωα1 + ωα0[x] if α0 is a limit.

26 / 107

The extended Grzegorczyk hierarchy

Let Eα be the elementary closure of Fα, i.e., the least class of
functions containing Fα and the initial functions

U i
n := λx1,...,xnxi (for 1 ≤ i ≤ n),

C i
n := λx1,...,xn i (for n ≥ 0, i ≥ 0),

λx ,y (x + y)

λx ,y (x−· y)

closed against (simultaneous) substitution and bounded sums and
products.

There are many characterizations of Eα, for instance

Eα consists of all functions computable by a register
machine with time (i.e. number of computation steps)
bounded by a finite iteration of the function Fα.

27 / 107

Let
Eε0 :=

⋃
α<ε0

Eα “ε0-recursive functions”

Theorem (Ackermann 1940, Kreisel 1952)

Eε0 consists of the functions “provably recursive” in arithmetic.

One can define natural subsystems of arithmetic whose provably
recursive functions are exactly the ones in Eα.

28 / 107

Characterization of (Fα)α<ε0
by higher type iteration

I We extend the definition of the functions Fα into higher types.

I It is convenient here to introduce integer types ρn:

ρ0 := N,

ρn+1 := ρn → ρn.

If x0, . . . , xn+1 are of integer types ρ0, . . . , ρn+1, then we can form

I xn+1(xn) (of type ρn) and so on, finally

I xn+1(xn) . . . (x0), abbreviated xn+1(xn, . . . , x0).

Note that lev(ρn) = n.

29 / 107

We define F n+1
α of type ρn+1 for α < ε0:

F n+1
0 (xn, . . . , x0) :=

{
2x0 if n = 0

x
(x0)
n (xn−1, . . . , x0) otherwise.

F n+1
α+1(xn, . . . , x0) := (F n+1

α)(x0)(xn, . . . , x0),

F n+1
λ (xn, . . . , x0) := F n+1

λ[x0](xn, . . . , x0).

Here x
(y)
n (xn−1, . . . , x0) denotes I (y , xn, . . . , x0) with an iteration

functional I of type N→ ρn → ρn−1 → . . .→ ρ0 → ρ0 defined by

I (0, y , z) := z ,

I (x + 1, y , z) := y(I (x , y , z)).

30 / 107

Lemma

F n+1
α (F n

β) = F n
β+ωα

provided β + ωα = β # ωα, i.e., in the Cantor normal form of β
the last summand ωβ0 (if it exists) has an exponent β0 ≥ α.

Proof. By induction on α. Case α = 0.

F n+1
0 (F n

β , xn−1, . . . , x0) = (F n
β)(x0)(xn−1, . . . , x0)

= F n
β+1(xn−1, . . . , x0)

Case α successor.

F n+1
α (F n

β , xn−1, . . . , x0) = (F n+1
α−1)(x0)(F n

β , xn−1, . . . , x0)

= F n
β+ωα−1·x0

(xn−1, . . . , x0) by IH

:= F n
(β+ωα)[x0](xn−1, . . . , x0)

:= F n
β+ωα(xn−1, . . . , x0)

31 / 107

Recall the claim

F n+1
α (F n

β) = F n
β+ωα if β + ωα = β # ωα.

Case α limit.

F n+1
α (F n

β , xn−1, . . . , x0) = F n+1
α[x0](F n

β , xn−1, . . . , x0)

= F n
β+ωα[x0](xn−1, . . . , x0) by IH

= F n
(β+ωα)[x0](xn−1, . . . , x0)

= F n
β+ωα(xn−1, . . . , x0).

32 / 107

The strength of finite types

I (F n+1
α)α<ε0 and in particular (F 1

α)α<ε0 can be built from
iteration functionals (and F0(x) = 2x) by application alone.

I In the resulting representation of the functions (Fα)α<ε0 we
do not need the fundamental sequences λ[x].

I The application pattern for Fα corresponds to the Cantor
normal form of α.

33 / 107

Overview

I Initial cases of transfinite induction in arithmetic

I Partial continuous functionals

I Paths in trees

I Exact real arithmetic

I Linear two-sorted arithmetic

34 / 107

Computable functionals

General view: computations are finite.

Arguments not only numbers and functions, but also functionals of
any finite type.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

35 / 107

Information system A = (A,Con,`):

I A countable set of “tokens”,

I Con set of finite subsets of A,

I ` (“entails”) subset of Con× A.

such that

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,

U,V ∈ Con→ ∀a∈V (U ` a)→ V ` b → U ` b.

x ⊆ A is an ideal if

U ⊆ x → U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

36 / 107

Function spaces

Let A = (A,ConA,`A) and B = (B,ConB ,`B) be information
systems. Define A→ B := (C ,Con,`) where

I C := ConA × B,

I

{ (Ui , bi) | i ∈ I } ∈ Con :=

∀J⊆I (
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB),

I { (Ui , bi) | i ∈ I } ` (U, b) means { bi | U `A Ui } `B b.

A→ B is an information system.

Application of an ideal x in A→ B to an ideal y in A is defined by

x(y) := { b ∈ B | ∃U⊆y ((U, b) ∈ x) }.

37 / 107

(Free) algebras given by constructors:

N by 0N, SN→N

α× β by 〈., .〉α→β→α×β

α + β by (InLαβ)α→α+β, (InRαβ)β→α+β

L(α) by NilL(α),Consα→L(α)→L(α)

S(α) by SConsα→S(α)→S(α)

S(α) has no nullary constructor, hence no “total” objects.

38 / 107

Information systems Cρ = (Cρ,Conρ,`ρ)

Cρ→σ := Cρ → Cσ. At base types ι:

Tokens are type correct constructor expressions Ca∗1 . . . a
∗
n.

(Examples: 0, C∗0, C 0∗, C (C∗0)0.)

U = {a1, . . . , an} is consistent if

I all ai start with the same constructor,

I (proper) tokens at j-th argument positions are consistent.

(Example: {C∗0,C 0∗}.)

U ` a (entails) if

I all ai ∈ U and also a start with the same constructor,

I (proper) tokens at j-th argument positions of ai entail j-th
argument of a.

(Example: {C∗0,C 0∗} ` C 00).

39 / 107

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

{a} ` b iff there is a path from a (up) to b (down).

40 / 107

Definition

I A partial continuous functional of type ρ is an ideal in Cρ.

I A partial continuous functional is computable if it is a
(primitive) recursively enumerable set of tokens.

Ideals in Cρ: Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold (“continuity”).

I x ι is total iff x = { a | {b} ` a } for some token (i.e.,
constructor expression) b without ∗.

I x ι is cototal iff every token b(∗) ∈ x has a “one-step
extension” b(C~∗) ∈ x .

Examples:

{ 01m | m ≤ 3 } ∪ { 01n∗ | n < 3 } total,

{ 01m | m ≥ 0 } ∪ { 01m∗ | m ≥ 0 } cototal.

41 / 107

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms of T+ are built from (typed) variables and (typed)
constants (constructors C or defined constants D, see below) by
(type-correct) application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation
rules, consisting of finitely many equations

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where the arguments
on the left hand side must be “constructor patterns”, i.e., lists of
applicative terms built from constructors and distinct variables.

42 / 107

Examples

I +: N→ N→ N defined by

n + 0 = n

n + Sm = S(n + m)

I Y : (τ → τ)→ τ defined by

Yf = f (Yf)

I =N : N→ N→ B

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

43 / 107

Recursion operators

I Introduced by Hilbert (1925) and Gödel (1958).

I Used to construct maps from the algebra ι to τ , by recursion
on the structure of ι.

I Example: RτN of type N→ τ → (N→ τ → τ)→ τ .

I The first argument is the recursion argument, the second one
gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the
next value.

I For example, RN
Nnmλn,p(Sp) defines addition m + n by

recursion on n.

44 / 107

Examples

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ.

45 / 107

Corecursion operators

Recall

S(α) by SConsα→S(α)→S(α).

The corecursion operator coRτS(ρ) of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf :=

{
SCons(y , z) if f (x) ≡ 〈y , InL(z)〉,
SCons(y , coRx ′f) if f (x) ≡ 〈y , InR(x ′)〉.

46 / 107

How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]], where M is a term with free
variables among ~x .
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

47 / 107

Properties of the denotational semantics

I [[λ~xM]] is a partial continuous functional.

I The value is preserved under β, η-conversion and computation
rules.

I An adequacy theorem holds: whenever a closed term Mι has a
proper token in its denotation [[M]], then M (head) reduces to
a constructor term entailing this token.

48 / 107

I C := (|Cρ|)ρ Scott-Ershov model of partial continuous
functionals.

I “xρ computable” for xρ ∈ |Cρ| is defined.

I Goal: TCF, a theory of partial computable functionals.

TCF can be seen as a variant of both HAω and Martin-Löf type
theory. Differences:

I Partial functionals allowed.

I Formulas and types are kept separate (Aczel & Gambino
(2006): “logic enriched type theory”).

49 / 107

Predicates and formulas

P,Q ::= X | {~x | A } | µX (∀~xi ((Aiν)ν<ni → X~ri))i<k | νX (. . .)

A,B ::= P~r | A→ B | ∀xA

Example: Even := µX (X 0,∀n(Xn→ X (S(Sn)))).

Predicate variables X and (co)inductive predicates can be
computationally relevant (c.r.) or non-computational (n.c).
Example: TN (c.r.) and T nc

N (n.c.)

Clauses and least-fixed-point (induction) axiom for TN:

(T +
N)0 : 0 ∈ TN

(T +
N)1 : ∀n(n ∈ TN → Sn ∈ TN)

T−N : 0 ∈ X → ∀n(n ∈ TN → n ∈ X → Sn ∈ X)→ TN ⊆ X

and similar for the n.c. variant T nc
N .

50 / 107

Coinductive predicates: coTN (c.r.) and coT nc
N (n.c.)

Closure and greatest-fixed-point (coinduction) axioms for coTN:

coT−N : ∀n(n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′))

coT +
N : ∀n(n ∈ X → n ≡ 0 ∨ ∃n′((n′ ∈ coTN ∨ n′ ∈ X) ∧ n ≡ Sn′))→

X ⊆ coTN

and similar for the n.c. variant coT nc
N (with X nc, ∨nc for X , ∨).

51 / 107

Example of a proof by coinduction

I We show cototality of corecursion: coRxf ∈ coTS(ρ).

I Recall: the corecursion operator coRτS(ρ) of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf :=

{
SCons(y , z) if f (x) ≡ 〈y , InL(z)〉,
SCons(y , coRx ′f) if f (x) ≡ 〈y , InR(x ′)〉.

52 / 107

Lemma (Cototality of corecursion)

Let f : τ → ρ× (S(ρ) + τ) be of InR-form, i.e., f (x) has the form
〈y , InR(x ′)〉 for all x. Then coRxf ∈ coTS(ρ) for all x.

Proof.
By coinduction with competitor predicate

X := { z | ∃x(z ≡ coRxf) }.

Need to prove that X satisfies the clause defining coTS(ρ):

∀z(z ∈ X → ∃y∃z ′(z ′ ∈ X ∧ z ≡ SCons(y , z ′))).

Let z ≡ coRxf for some x . Since f is assumed to be of InR-form
we have y , x ′ such that f (x) ≡ 〈y , InR(x ′)〉. By the definition of
coRτS(ρ) obtain coRxf ≡ SCons(y , coRx ′f). Use coRx ′f ∈ X .

53 / 107

Existence ∃, conjunction ∧, disjunction ∨, ∨nc

These are nullary inductive predicates with parameters

∃+ : ∀x(x ∈ P → ∃x(x ∈ P))

∃− : ∃x(x ∈ P)→ ∀x(x ∈ P → C)→ C (x /∈ FV(C))

∧+ : A→ B → A ∧ B

∧− : A ∧ B → (A→ B → C)→ C

∨+
i : Ai → A0 ∨ A1

∨− : A ∨ B → (A→ C)→ (B → C)→ C

(∨nci)+ : Ai → A0 ∨nc A1

(∨nc)− : A ∨nc B → (A→ C)→ (B → C)→ C (C n.c.)

54 / 107

The Brouwer-Heyting-Kolmogorov interpretation

Also known as (modified) realizability.

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I Proposed to view a formula A as a computational problem, of
type τ(A), the type of a potential solution or “realizer” of A.

I Example: ∀n∈TN∃m∈TN(m > n∧m ∈ Prime) has type N→ N.

55 / 107

Type τ(C) of a c.r. predicate or formula C

τ(X) := ξ (ξ uniquely assigned to X)

τ({~x | A }) := τ(A)

τ(µX (∀~xi ((Aiν)ν<ni → X~ri))i<k︸ ︷︷ ︸
I

) := µξ((τ(Aiν)ν<ni)→ ξ)i<k︸ ︷︷ ︸
ιI

(similar for coI)

τ(P~r) := τ(P)

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.)

τ(∀xA) := τ(A)

56 / 107

Realizability extension C r of c.r. predicates or formulas C

We write z r C for C rz if C is a formula.

X r (uniquely assigned to X : (~ρ), of arity (τ(X), ~ρ))

{~x | A }r := { z ,~x | z r A }
I r, coI r (by examples)

z r P~r := P r(z ,~r)

z r (A→ B) :=

{
∀w (w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A)

57 / 107

Extracted term et(M) of a derivation MA with A c.r.

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA)

et((λuAMB)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxMA)∀xA) := et(M)

et((M∀xA(x)t)A(t)) := et(M)

et(I +
i) := Ci (i-th constructor of ι associated to I)

et(I−) := Rτι (recursor for ι)

et(coI−) := Dι (destructor of ι associated to coI)

et(coI +) := coRτι (corecursor for ι)

58 / 107

An n.c. part of M is a subderivation with an n.c. end formula. In
n.c. parts in we identify any I with I nc.

Theorem (Soundness)

Let M be a derivation of a formula A from assumptions u : C (c.r.)
and v : D (n.c.) Then we can find a derivation of{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions zu r C and D.

Proof.
By induction on M. Cases: →±, ∀± and c.r. axioms.

59 / 107

Overview

I Initial cases of transfinite induction in arithmetic

I Partial continuous functionals

I Paths in trees

I Exact real arithmetic

I Linear two-sorted arithmetic

60 / 107

Paths in trees

Paths x are functions of type N→ B.

I Consider formal proofs M and apply realizability to extract
their computational content.

I Switch between different formats of paths by relativising:

∀x(x ∈ TN→B → A) of type (N→ B)→ τ(A),

∀x(x ∈ coI → A) of type S(B)→ τ(A).

Why?

I Type level 1 rather than 2.

I Theory uses functions, but extracted terms use streams.

61 / 107

What is coI ?

Φ(X) := { x | ∀n∈TN(x(n) ∈ T nc
B) ∧ ∃p∈TN∃x ′∈X (x ≡ px ′) }.

Then

I := µXΦ(X) least fixed point
coI := νXΦ(X) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩ X) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪ X)→ X ⊆ coI coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property Φ(X) = X).

62 / 107

I View trees as sets of nodes u, v ,w of type L(B) (lists of
booleans), which are downward closed.

I Sets of nodes are given by (not necessarily total) functions b
of type L(B)→ B. To be or not to be in b is expressed by
saying that b(u) is defined with 1 or 0 as its value.

I A set b of nodes is a bar if every path s hits the bar, i.e.,
there is an n such that x̄(n) ∈ b.

For simplicity assume that bars b are upwards closed:

∀u,p(u ∈ b → pu ∈ b).

63 / 107

I Josef Berger and Gregor Svindland recently gave a
constructive proof of the fan theorem for “coconvex” bars.

I They call a set b ⊆ {0, 1}∗ coconvex if for every n and path x

x̄(n) ∈ b → ∃m
(
∀v≤x̄(m)(v ∈ b) ∨ ∀v≥x̄(m)(v ∈ b)

)
,

where v ≤ w means |v | = |w | and v is left of w . Equivalently

x̄(n) ∈ b → ∃p,m
(
(p = 0→ ∀v≤x̄(m)(v ∈ b)) ∧
(p = 1→ ∀v≥x̄(m)(v ∈ b))

)
.

Two “moduli” p and m, depending on x , n and b.

I Better “finally coconvex”, with coconvex in the sense that the
b-nodes at height n form the complement of a convex set.

64 / 107

65 / 107

Uniform coconvexity with modulus d (direction)

I Simplification: p only, depending on node u (i.e., p = d(u)).

I Special case of the B&S concept. Goal: better algorithm.

Definition
A set b ⊆ {0, 1}∗ is uniformly coconvex with modulus d if for all u
we have: if the innermost path from pu (where p := d(u)) hits b
in some node v ∈ b, then{

∀w (wpu ≤ v → wpu ∈ b) if p = 0,

∀w (wpu ≥ v → wpu ∈ b) if p = 1.

66 / 107

u

0u 1u

v∈bw0u

v∈b w1u

67 / 107

The escape path

I Nd(u) := d−(u)u extends u in the opposite direction to what
d says.

I Ud(n) is the nth node in the escape path

Ud(0) := Nil,

Ud(n + 1) := Nd(Ud(n)).

I Ad : N→ B is the escape path:

Ad(n) := d−(Ud(n)).

68 / 107

Definition (Distance)

Dbnu := ∀v (|v | = n→ vu ∈ b)

“u has distance n from the bar b”.

Lemma (BoundL, BoundR)

Let b be a uniformly coconvex bar with modulus d. Then for every
n there are bounds `n, rn for the b-distances of all nodes of the
same length n that are left / right of Udn

Proof. For n = 0 there are no such nodes.

69 / 107

Consider Ud(n + 1) = Ad(n)u of length n + 1. Assume Ad(n) = 0.
Then every node to the left of 0u is a successor node of one to the
left of u, and hence `n+1 = `n − 1. The nodes to the right of 0u
are 1u and then nodes which are all successor nodes of one to the
right of u. Since 1u is d(u)u, by assumption we have its b-distance
m. Let rn+1 = max(m, rn − 1).

`n

n

`n+1

u

0u 1u

m

rn

rn+1

70 / 107

C.r. premises of BoundL with their types:

∀u∈TL(B)
∀x∈coI∃n∈TN(Rev(x̄(n))u ∈ b)) of type L(B)→ S(B)→ N

d ∈ TL(B)→B of type L(B)→ B

n ∈ TN of type N

Conclusion of BoundL with its type:

∃m∈TN∀w∈TL(B)
(w < Ud(n)→ Dbmw) of type N

71 / 107

Extracted term for BoundL

[hit,d,n](Rec nat=>nat)n 0

([n0,n1][case (d(U d n0))

(True -> Pred n1 max hit(True::U d n0)cCoIConstFalse)

(False -> Pred n1)])

and for BoundR

[hit,d,n](Rec nat=>nat)n 0

([n0,n1][case (d(U d n0))

(True -> Pred n1)

(False -> Pred n1 max hit(False::U d n0)cCoIConstTrue)])

with hit of type L(B)→ S(B)→ N.

72 / 107

Theorem
Let b be a uniformly coconvex bar with modulus d. Then b is a
uniform bar, i.e.,

∃m∈TN∀u∈TL(B)
(|u| = m→ u ∈ b).

73 / 107

Let Ad be the escape path. Since b is a bar, the escape path Ad

hits b at some length n. Use lemma Bounds: the uniform bound is
n + max(`n, rn)

`n

n

∈ b

Udn

rn

74 / 107

Extracted term

[hit,d]

cBoundL hit d(hit Nil(cCoIA d))max

cBoundR hit d(hit Nil(cCoIA d))+

hit Nil(cCoIA d)

with hit of type L(B)→ S(B)→ N.

75 / 107

Overview

I Initial cases of transfinite induction in arithmetic

I Partial continuous functionals

I Paths in trees

I Exact real arithmetic

I Linear two-sorted arithmetic

76 / 107

Exact real numbers

can be given in different formats:

I Cauchy sequences (of rationals, with Cauchy modulus).

I Infinite sequences (“streams”) of signed digits {−1, 0, 1}, or

I {−1, 1,⊥} with at most one ⊥ (“undefined”): Gray code.

Want formally verified algorithms on reals given as streams.

I Consider formal proofs M and apply realizability to extract
their computational content.

I Switch between different formats of reals by relativising to
coinductive predicates. Here

∀x(x ∈ coI → A) rather than ∀x(x ∈ Real→ A).

Computational content of x ∈ coI is a stream representing x .

77 / 107

A real number can be represented as a Cauchy sequence (an)n of
rationals together with a Cauchy modulus M satisfying

|an − am| ≤
1

2p
for n,m ≥ M(p).

Arithmetical operations on real numbers x , y are defined by

cn L(p)

x + y an + bn max
(
M(p + 1),N(p + 1)

)
−x −an M(p)
|x | |an| M(p)
x · y an · bn max

(
M(p + 1 + py),N(p + 1 + px)

)
1
x for |x | ∈q R+

{
1
an

if an 6= 0

0 if an = 0
M(2(q + 1) + p)

where 2px is the upper bound of x provided by the Archimedian
property.

78 / 107

Representation of real numbers x ∈ [−1, 1]
Dyadic rationals: ∑

i<k

ai
2i+1

with ai ∈ {−1, 1}

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

1̄ 1

1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1

with 1̄ := −1. Adjacent dyadics can differ in many digits:

7

16
∼ 11̄11,

9

16
∼ 111̄1̄.

79 / 107

Cure: flip after 1. Binary reflected (or Gray-) code.

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

L R

L R R L

L R R L L R R L

L R R L L R R L L R R L L R R L

7

16
∼ RRRL,

9

16
∼ RLRL.

80 / 107

Problem with productivity:

1̄111 + 11̄1̄1̄ · · · = ? (or LRLL . . . + RRRL · · · = ?)

What is the first digit? Cure: delay.

I For binary code: add 0. Signed digit code∑
i<k

di

2i+1
with di ∈ {−1, 0, 1}.

Widely used for real number computation. There is a lot of
redundancy: 1̄1 and 01̄ both denote −1

4 .

I For Gray-code: add U (undefined), D (delay), FinL/R (finally
left / right). Pre-Gray code.

81 / 107

Pre-Gray code

0

1
2

1
4

3
4

3
8

5
8

7
16

9
16

U

D

R

R L
U

FinR

U
R

FinR
D

FinL

R
U

U
L

FinR FinL
D U

L

After computation in pre-Gray code, one can remove Fina by

U ◦ Fina 7→ a ◦ R, D ◦ Fina 7→ Fina ◦ L.

82 / 107

RRRLLL . . . RLRLLL . . . RUDDDD . . .

all denote 1
2 . Only keep the latter to denote 1

2 . Then, generally,

I U occurs in a context UDDDD . . . only, and

I U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.

83 / 107

Average for signed digit streams

Goal:

x , y ∈ coI︸ ︷︷ ︸
x ,y∈[−1,1]

→ x + y

2
∈ coI︸ ︷︷ ︸

x+y
2
∈[−1,1]

.

I Streams appear only implicit in our logical framework.

I Model streams as cototal objects in the (free) algebra S(D)
given by the constructor C : D→ S(D)→ S(D).

Intuitively, d0, d1, d2 . . . represents

∞∑
i=0

di

2i+1
with di ∈ D := {−1, 0, 1}.

84 / 107

Definition of coI

Φ(X) := { x | x ∈ [−1, 1] ∧ ∃d∈D∃x ′∈X (x =
x ′ + d

2
) }.

Then

I := µXΦ(X) least fixed point
coI := νXΦ(X) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩ X) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪ X)→ X ⊆ coI coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property Φ(X) = X).

85 / 107

Goal: compute the average of two stream-coded reals. Prove

x , y ∈ coI → x + y

2
∈ coI .

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P,Q of averages, Q with a “carry” i ∈ Z:

P := { x + y

2
| x , y ∈ coI },

Q := { x + y + i

4
| x , y ∈ coI , i ∈ D2 } (D2 := {−2,−1, 0, 1, 2}).

Suffices: Q satisfies the clause coinductively defining coI . Then by
the greatest-fixed-point axiom for coI we have Q ⊆ coI . Since also
P ⊆ Q we obtain P ⊆ coI , which is our claim.

86 / 107

Q satisfies the coI -clause:

i ∈ D2 → x , y ∈ coI → ∃j∈D2∃d∈D∃x ′,y ′∈coI (
x + y + i

4
=

x ′+y ′+j
4 + d

2
).

Proof. Write x = x ′+d
2 and y = y ′+e

2 (d , e ∈ D, x ′, y ′ ∈ coI).
Then

x + y + i

4
=

x ′ + y ′ + d + e + 2i

8
.

Since |d + e + 2i | ≤ 6 we can write d + e + 2i = j + 4k with
|j | ≤ 2 and |k| ≤ 1. Therefore

x + y + i

4
=

x ′ + y ′ + j + 4k

8
=

x ′+y ′+j
4 + k

2
.

87 / 107

Implicit algorithm.
q : D2 → S(D)→ S(D)→ D2 × D× S(D)× S(D) defined by

q(i ,Cd(u),Ce(v)) = (J(d + e + 2i),K (d + e + 2i), u, v)

with J,K : Z→ Z such that

i = J(i) + 4K (i), |J(i)| ≤ 2, |i | ≤ 6→ |K (i)| ≤ 1.

88 / 107

By coinduction we obtain Q ⊆ coI :

∃i∈D2∃x ,y∈coI (z =
x + y + i

4
)→ z ∈ coI .

This gives our claim

x , y ∈ coI → x + y

2
∈ coI .

Implicit algorithm. P ⊆ Q computes the first “carry” i ∈ D2 and
the tails of the inputs. Then f : D2 × S(D)× S(D)→ S(D) defined
corecursively by

f (i ,Cd(u),Ce(v)) = CK(k+l+2i)(f (J(k + l + 2i), u, v))

is called repeatedly and computes the average step by step.
(Here (d , k), (e, l) ∈ Dr).

89 / 107

[u,u0][let tuv

(IntToSdtwo(SdToInt clft(cCoIClosure u)+

SdToInt clft(cCoIClosure u0))pair

crht(cCoIClosure u)pair crht(cCoIClosure u0))

((CoRec sdtwo yprod str yprod str=>str)tuv

([tuv0][let tsuv

(IntToSdtwo

(J(SdToInt clft(cCoIClosure clft crht tuv0)+

SdToInt clft(cCoIClosure crht crht tuv0)+

SdtwoToInt clft tuv0*2))pair

IntToSd

(K(SdToInt clft(cCoIClosure clft crht tuv0)+

SdToInt clft(cCoIClosure crht crht tuv0)+

SdtwoToInt clft tuv0*2))pair

crht(cCoIClosure clft crht tuv0)pair

crht(cCoIClosure crht crht tuv0))

(clft crht tsuv pair

InR(clft tsuv pair crht crht tsuv))]))]

90 / 107

From the proof M of

x , y ∈ coI → x + y

2
∈ coI

extract a term et(M). The Soundness theorem gives a proof of

et(M) r ∀x ,y (x , y ∈ coI → x + y

2
∈ coI).

Brouwer-Heyting-Kolmogorov interpretation:

u r (x ∈ coI)→ v r (y ∈ coI)→ et(M)(u, v) r (
x + y

2
∈ coI)

This is a formal verification that et(M) computes the average
w.r.t. signed digit streams.

91 / 107

Average for pre-Gray code

Method essentially the same as for signed digit streams.

I Only need to insert a different computational content to the
predicates expressing how a real x is given.

I Instead of coI for signed digit streams we now need two such
predicates coG and coH, corresponding to the two “modes” in
pre-Gray code.

92 / 107

Method also works for multiplication and division:

x , y ∈ coI → x + y

2
∈ coI ,

x , y ∈ coI → x · y ∈ coI ,

x , y ∈ coI → 1

4
≤ y → x

y
∈ coI ,

both w.r.t. signed digit and Gray code.

93 / 107

Overview

I Initial cases of transfinite induction in arithmetic

I Partial continuous functionals

I Paths in trees

I Exact real arithmetic

I Linear two-sorted arithmetic

94 / 107

Feasible computation with higher types

Gödel’s T (1958): finitely typed λ-terms with structural recursion.

LT(;) (linear two-sorted λ-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones. LT(;)
generalizes Bellantoni & Cook (1992) to finite types.

LA(;) solves
Heyting Arithmetic

Gödel’s T
=

?

LT(;)

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (quicksort, treesort): they are not linear.

95 / 107

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and – using D
– a function E (n) representing 2n:

D(0) := 0,

D(S(n)) := S(S(D(n))),

E (0) := 1,

E (S(n)) := D(E (n)).

Problem: previous value E (n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

96 / 107

(ii) Double use of higher type values

Define F as the 2n-th iterate of D:

F (0,m) := D(m),

F (S(n),m) := F (n,F (n,m))
or

F (0) := D,

F (S(n)) := F (n) ◦ F (n).

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

97 / 107

(iii) Marked value types

Define I (n, f) as the n-th iterate f n of f . Thus I (n,D)(m) = 2nm.

I (0, f ,m) := m,

I (S(n), f ,m) := f (I (n, f ,m))
or

I (0, f) := id,

I (S(n), f) := f ◦ I (n, f).

Problem: since D : N ↪→ N, I ’s value type is (N ↪→ N)→ N ↪→ N.
Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(I will be admitted is our setting. This is not the case in Cook and
Kapron’s PVω, since PVω is closed under substitution.)

98 / 107

Linear two-sorted terms
Types with input arrow ↪→ and output arrow →:

ρ, σ ::= ι | ρ ↪→ σ | ρ→ σ with ι base type (B, N, ρ× σ, L(ρ)).

ρ is safe if it does not involve the input arrow ↪→.
Input variables x̄ρ and output variables xρ (typed).
Constants are (i) constructors, (ii) recursion operators

RτN : N ↪→ τ → (N ↪→ τ → τ) ↪→ τ

RτL(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ) ↪→ τ
(τ safe),

and (iii) cases operators (τ safe)

CτN : N→ τ → (N ↪→ τ)→ τ,

CτL(ρ) : L(ρ)→ τ → (ρ ↪→ L(ρ) ↪→ τ)→ τ,

Cτρ×σ : ρ× σ → (ρ ↪→ σ ↪→ τ)→ τ.

99 / 107

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms ρ ↪→ σ and ρ→ σ:

x̄ρ | xρ | C ρ (constant) |
(λx̄ρrσ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρrσ)ρ→σ | (rρ→σsρ)σ (higher type output vars in r , s distinct,

r does not start with Cτι) |
Cτι t~r (h.t. output vars in FV(t) not in ~r)

with as many ri as there are constructors of ι. s is an input term if

I all its free variables are input variables, or else

I s is of higher type and all its higher type free variables are
input variables.

100 / 107

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

I terminal nodes labelled by a variable or constant,

I abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

I application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

101 / 107

The treesort algorithm

TreeSort(l) = Flatten(MakeTree(l)),

MakeTree([]) = �,
MakeTree(a :: l) = Insert(a,MakeTree(l)),

Insert(a, �) = Ca(�, �),

Insert(a,Cb(u, v)) =

{
Cb(Insert(a, u), v) if a ≤ b

Cb(u, Insert(a, v)) if b < a,

Flatten(�) = [],

Flatten(Cb(u, v)) = Flatten(u) ∗ (b :: Flatten(v)).

Problem: two recursive calls in Flatten, not allowed in LT(;).
Cure: analysis of Flatten in the parse dag computation model.

102 / 107

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let l be a numeral of type L(N). Then #(l ∗ l ′) = O(|l |).

For #Flatten(u) use this size function for numerals u of type T:

|| � || := 0,

||Ca(u, v)|| := 2||u||+ ||v ||+ 3.

Lemma. Let u be a numeral of type T. Then

#Flatten(u) = O(||u||).

103 / 107

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

I RD-free: no recursion constant R, no Flatten.

I simple: no higher type input variables.

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most ||t||, can be computed from t in time O(||t||2).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(||t||2), and ||nf(t)|| ≤ ||t||.

104 / 107

(λx̄r(x̄))s with x̄ of base type

x̄ x̄

r

λx̄

s

7→

s

r

105 / 107

Lemma (RD-elimination)

Let t(~x) be a simple term of safe type. There is a polynomial Pt

such that: if ~r are safe type RD-free closed simple terms and the
free variables of t(~r) are output variables, then in time Pt(||~r ||)
one can compute an RD-free simple term rdf(t;~x ;~r) such that
t(~r)→∗ rdf(t;~x ;~r).

Proof.
By induction on ||t|| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||u||).

Theorem (Normalization)

Let t : N� . . .N� N (with �∈ {↪→,→}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

106 / 107

Conclusion

I LA(;) ∼ LT(;) via Curry-Howard correspondence.

I
Heyting Arithmetic

Gödel’s T
=

LA(;)

LT(;)
=

LA(;) + Flatten

LT(;) + Flatten

I LA(;) + Flatten ` ∀l ,n̄(|l | ≤ n̄→ ∃uS(l , u))

I Computational content of this proof: (LT(;) + Flatten)-term.
Can be extracted by realizability. ∼ treesort algorithm.

107 / 107

