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Proof theory originated with David Hilbert. He proposed what is
now called Hilbert’s program, namely to consider formalized proofs
as mathematical objects, to be studied in their own right. His main
goal was to formally prove consistency of interesting formal theories like
arithmetic, in the sense that there is no proof of 0=1. Such consistency
proofs cleary have to be carried out in a resticted setting, using only
what Hilbert called finitistic methods. Hilbert’s program in its origi-
nal form was refuted by Gödel’s well known incompleteness theorems.
Gentzen clarified the situation, by showing (i) that it takes transfinite
induction up to ε0 (the least fixed point of ωα) to prove consistency
of arithmetic, and (ii) that transfinite induction up to any α < ε0 is
provable in arithmetic. These results also have a computational aspect:
one can define a hierarchy of fast growing functions (Fα)α≤ε0 such that
each Fα for α < ε0 is definable in arithmetic, but Fε0 is not (which
follows from a majorization argument).

If arithmetic is extended into higher types (functionals etc) one
doesn’t need ordinals to define the Fα, but can define them in a per-
spicious way from simple iteration functionals by application alone.
Already this observation indicates that from a computational point
of view it is of interest to study higher type functionals. We discuss
a logical framework TCF (theory of computable functionals) suitable
for the extraction of computational content from proofs. TCF can
be seen as a variant of HAω (Heyting’s arithmetic in all finite types).
The main differences are (i) TCF has the Scott-Ershov partial conti-
nuous functionals as its intended model; (ii) the term part of TCF is
an extension T+ of Gödel’s system T with functions defined by possi-
bly non-terminating rules; (iii) (co)inductive predicates with their least
(and greatest) fixed point axioms are allowed.
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Following Kolmogorov we then view formulas as problems asking for
a solution, called “realizers” by Kleene and Kreisel. For this to make
sense we first have to define what a realizer for a (co)inductive predicate
I applied to some arguments ~r is. The natural choice here is to take a
witness of our knowledge that I holds for ~r. This is an object in the free
algebra build from constructors corresponding to I’s defining clauses;
for coinductive predicates this object can be infinite (a “stream”). We
then can define what the “type” of a formula is, i.e., the type of a
solution to the problem posed by the formula. The soundness theorem
states that from a proof M of a formula A of type ρ we can extract a
term et(M) in T+ of the same type ρ such that (provably in TCF) the
term et(M) is a realizer of A.

As a first example we consider a constructive proof of the fan theorem
for “coconvex” bars, based on recent work of Josef Berger and Gregor
Svindland. Using an appropriate concept of uniform coconvexity and
viewing paths as streams, we extract from the formalized proof a sim-
ple algorithm computing the upper bound. The second example deals
with real number computation based on Gray-code (a binary number
system where neighboring values differ in one digit only). Tsuiki has
introduced Gray code to the field of real number computation. He as-
signs to each number a unique 1⊥-sequence, i.e., an infinite sequence
of {−1, 1,⊥} containing at most one ⊥ (meaning undefinedness). In-
stead of Tsuiki’s indeterministic multihead Type-2 machine, we use
pre-Gray code, which is a representation of Gray-code as a sequence of
constructors, to avoid the difficulty due to ⊥ which prevents sequential
access to a stream. We extract algorithms working with Gray-coded
real numbers from proofs formalized in TCF.


