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Today’s Key Phrases

Semantics of syntax

What you see is (not) what you get



The syntax of Lambda Calculus and Combinatory Logic

X = x,y,z,---
M,N € A = x| \;M | (M N)°
M,N €CL == z|||K|S| (M N)°

(M N)° stands for the application of the function M to its
argument IN. It is often written simply M N or M (IN), but we
will always use the notation (M N)0 for the application.



Lambda Calculus

M,N €A == x| A.M | (M N)°

Az M stands for the function obtained from M by abstracting
in M.

(AeM N)° — [z := N|M

Example

Aoz M)° — [x:= Mz =M
(Azyz M)° N)° = ([z := M]A,z N)° = (\,M N)°
— [y = N]M =M



Combinatory Logic

M,Ne€CL ==z |I|K|S| (M N)°

(I M)° - M
(KM N = M
((s M)° N)°P — (M P)° (N P)°)°
These rules suggest the following identities.
| = Az
K= AgyT
S = Aayz((z 2)° (y 2)°)°
By this identification, every combinatory term becomes a lambda

term. Moreover, the above rewriting rules all hold in the lambda
calculus.



Combinatory Logic

What about the converse direction? We can translate every
lambda term to a combinatory term as follow.

==

()\mM)* = N, M*
(M N)°)" = (M* N*)°

We used A\* above, which is defined by:

*
ANpx = |

Ny = (Ky)ifz #y
N (M N)? := ((S A*2M)° (S A*2N)°)°



Church’s syntax and Quine-Bourbaki notation (1)

Az Ay (Az(z a:)O (x y)O)O

Az A
| |
Ay Ae——
| |
(G] ©
/\ /\
Az (6] A ©




Church’s syntax and Quine-Bourbaki notation (2)

Ay(Az(z 2)° (2 9)")°




Quine-Bourbaki notation and de Bruijn notation

A A

| |

A — A

| |

o (@
/\ /\
A (@) A o
| ]/\[ | N
(] (] 1 0

N




Generalized de Bruijn notation (1)

A1
|
A2
\
@0

A2 A2 A2 A2

Az A3 1 0

0 2



Generalized de Bruijn notation (2)

A1 A1 @2
| | N
Ao @l @3 @2
| T VANEVAN
@9 @2 @!? A1 A1 A1 A
T 0 NN .
@l @Y A2 A2 A2 A2 A2 A2 A2 Ao
N0 /N | | | I
A3 Az 1 0 A3 Az 1 0 A3 A3 1 0

0 2 0 2 0o 2



Nameless binder and distributive law

XD E)” = (AD AE)"1!



Generalized Church’s syntax (1)

g o <"
~< © Y
< < 8
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Generalized Church’s syntax (2)

]
8 09 _
~ < < 8
@ 8_ &S _ n_
3AA < < 8
@ 8_ &S _ N _
< < < R
<L —>
Ll
2~
8 ~ \A‘Tw
< ©
D N
< — <8
N
@Ay
I\
< — < N
N
(=)
©)
8
8 ) Q
<—X 0

Az(D E)" = (AxD A E)" .

Distributive Law:



a-reduction

Az @2 @2
Ay @3 @2 @3 @2
| YA NERVAN VANEVAN
@V Az Az Az Az A g A
N [ | |
Az @? Ay Ay Ay Ay A lo
| /\ R |
@? T Yy Az A T Y lo
/\ |
z x z T

Ao o 10y AeAy® —ra 11, AeAgAad —>g l2, - - -

Azl = a Ay Azl = o ANk, AzANE —o AXMg, ..

a-reduction rules can compute o normal form.
To achieve this, we must extend Church’s syntax!



Common extension of lambda calculus and combinatory logic

Definition (The datatypes M, A and CL)

M,N €M u= x|l | \eM | AM | (M N)*
M,N € A = x| \;M | (M N)°
M,N €CL == z ||| K|S| (M N)°

Combinators |, K and S are definable in M as abbreviations:
| := |0
K:= |1
S := ((I2 Alo)® (Alx AXlo))?, or, Atsushi Igarashi remarked,
S := (I3 AXl)?



Definition (One step a-reduction on M and a-nf)

: : E
A il —r1g NTLL T

T Fy
)\m)\zy —la )\i+1y
i i D M —1a M’
A(M N)* =16 (AM A N)“T! MM —510 A M’

M —1la M’ N —1a N’

: e : .
(M N)* —14 (M’ N)* (M N)* —14 (M N')

=

)\mAz$ —1a |1'

Gy




Example
This example shows how the variable-binders A, and A, are

eliminated by one step a-reductions.
AzAy(y ) —1a Az(Ayy )‘yw)l
10 Azl Ayz)!
—1a Azl Az)?
—1a Azl AzAz)?
—1a (Al ApAz)?
—1a (AIK)?2 O



The datatype L

Definition (The datatypes T and L)

t €T = Ny | Az

M,N €L == t| (M N)"
Elements of T are called threads.

Theorem
An M-term M is an a-nf if and only if M is an IL-term.

Definition (Height (Ht) of L-terms)
Ht(AUg) ;=i + k+ 1

Ht(Afx) := 14
Ht((M N)%) := min{i, Ht(M), Ht(IN)}



a-reduction

Definition (a-reduction on M and a-equality)

Moy —1a My My —1a M2 -+ My,_1 —1a My,
MO —a Mn

When we have My —, M, by this rule, we say that Mj
a-reduces to M, in n steps.

M —», P N —,P
M=, N

=« Is a decidable equivalence relation

Theorem
Given any M-term M, there uniquely exists an IN such that
M —, N and N is an a-nf.



Remark
Q@ (—), : M — Mis idempotent, i.e., (Ma), = Mg and
image of (—),, is L.
Q@ Forany M e M, M =, M,.
Q@ Forany M e M, M = M, iff M € L.
O M =, N iff M, = N,.

Thus M, is a natural representative of the equivalence class
{N € M| N =4 M} containing M.



Instantiation

Definition (Instantiation of threads at level n)

If t € T"T! and w € T™, then (t u)™ can be computed by the
following equations.

A1 ifn < 4,
Mtk ifn=1i<j,
Mlorr ifn=1>j,
(Alg—1 ifn >

(Al M1p)™ :=

A1 ifn < 4,
(Al Max)™ := { Xtk ifn =4,
Nlg—1 ifn >4
Nz t)™ := X 1g




Instantiation at level n
Define lift 1% :L" — Lnt* by
; Ntk ifn<j
I
Mgy ifn>j.
RN = Nty
k i ( 4k k i+k
Tn(MN)J'_(T'n,MTnN)] *
Definition (Instantiation at level n)

If M € L™ and P € L™, then (M P)™ is defined by the
following equations.

XNiml ifn < 4,
(Nl PY" := ¢ P ifn =,
Nilp_q  if > 4.
Az P)™ := X7l
(M N)*tt Py":= ((M P)™ (N P)")".
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