A Common Notation System for Lambda Calculus and Combinatory Logic

Masahiko Sato Graduate School of Informatics, Kyoto University Joint work with Takafumi Sakurai and Helmut Schwichtenberg

> Logic and Philosophy of Mathematics Waseda Institute for Advanced Study July 15, 2017

Today's Key Phrases

Today's Key Phrases

Semantics of syntax

Today's Key Phrases

Semantics of syntax

What you see is (not) what you get

The syntax of Lambda Calculus and Combinatory Logic

$$\mathbb{X} ::= x, y, z, \cdots$$
 $M, N \in \Lambda ::= x \mid \lambda_x M \mid (M \ N)^0$
 $M, N \in \mathsf{CL} ::= x \mid \mathsf{I} \mid \mathsf{K} \mid \mathsf{S} \mid (M \ N)^0$

 $(M\ N)^0$ stands for the *application* of the function M to its argument N. It is often written simply MN or M(N), but we will always use the notation $(M\ N)^0$ for the application.

Lambda Calculus

$$M,N\in\Lambda ::= x\mid \lambda_x M\mid (M\ N)^0$$

 $\lambda_x M$ stands for the function obtained from M by abstracting x in M.

$$(\lambda_x M \ N)^0 \to [x := N]M$$

Example

$$(\lambda_x x \ M)^0
ightarrow [x := M] x = M \ ((\lambda_{xy} x \ M)^0 \ N)^0
ightarrow ([x := M] \lambda_y x \ N)^0 = (\lambda_y M \ N)^0 \
ightarrow [y := N] M = M$$

Combinatory Logic

$$M,N \in \mathsf{CL} \ ::= \ x \mid \mathsf{I} \mid \mathsf{K} \mid \mathsf{S} \mid (M \ N)^0$$

$$(\mathsf{I} \ M)^0 \to M$$

$$((\mathsf{K} \ M)^0 \ N)^0 \to M$$

$$((\mathsf{S} \ M)^0 \ N)^0 P \to ((M \ P)^0 \ (N \ P)^0)^0$$

These rules suggest the following identities.

$$egin{aligned} & ert = \lambda_x x \ & ert = \lambda_{xy} x \ & ert = \lambda_{xyz} ((x\ z)^0\ (y\ z)^0)^0 \end{aligned}$$

By this identification, every combinatory term becomes a lambda term. Moreover, the above rewriting rules all hold in the lambda calculus.

Combinatory Logic

What about the converse direction? We can translate every lambda term to a combinatory term as follow.

$$x^* = x$$
 $(\lambda_x M)^* = \lambda^*_x M^*$
 $((M N)^0)^* = (M^* N^*)^0$

We used λ^* above, which is defined by:

$$egin{aligned} \lambda^*_{\ x}x &:= & ert \ \lambda^*_{\ x}y &:= & (ert \ y)^0 \ ext{if} \ x
eq y \ \lambda^*_{\ x}(M\ N)^0 &:= & ((S\ \lambda^*_{\ x}M)^0\ (S\ \lambda^*_{\ x}N)^0)^0 \end{aligned}$$

Church's syntax and Quine-Bourbaki notation (1)

$$\lambda_x \lambda_y (\lambda_z (z \ x)^0 \ (x \ y)^0)^0$$

Church's syntax and Quine-Bourbaki notation (2)

Quine-Bourbaki notation and de Bruijn notation

Generalized de Bruijn notation (1)

Generalized de Bruijn notation (2)

Nameless binder and distributive law

$$\lambda(D E)^n = (\lambda D \lambda E)^{n+1}$$

Generalized Church's syntax (1)

Generalized Church's syntax (2)

Distributive Law: $\lambda_x(D E)^n = (\lambda_x D \lambda_x E)^{n+1}$.

α -reduction

$$\lambda_x x \to_{\alpha} \mid_0, \ \lambda_x \lambda_y x \to_{\alpha} \mid_1, \ \lambda_x \lambda_y \lambda_z x \to_{\alpha} \mid_2, \dots$$

$$\lambda_x|_k \to_\alpha \lambda|_k, \ \lambda_x \lambda|_k \to_\alpha \lambda \lambda|_k, \ \lambda_x \lambda \lambda|_k \to_\alpha \lambda \lambda \lambda|_k, \dots$$

lpha-reduction rules can compute lpha normal form.

To achieve this, we must extend Church's syntax!

Common extension of lambda calculus and combinatory logic

Definition (The datatypes \mathbb{M} , Λ and CL)

$$egin{aligned} M,N \in \mathbb{M} &::= x \mid \mathsf{I}_k \mid \lambda_x M \mid \lambda M \mid (M\ N)^i \ M,N \in \Lambda &::= x \mid \lambda_x M \mid (M\ N)^0 \ M,N \in \mathsf{CL} &::= x \mid \mathsf{I} \mid \mathsf{K} \mid \mathsf{S} \mid (M\ N)^0 \end{aligned}$$

Combinators I, K and S are definable in \mathbb{M} as abbreviations:

```
\begin{split} & \mathsf{I} := \mathsf{I}_0 \\ & \mathsf{K} := \mathsf{I}_1 \\ & \mathsf{S} := \left( \left( \mathsf{I}_2 \ \lambda \lambda \mathsf{I}_0 \right)^3 \left( \lambda \mathsf{I}_1 \ \lambda \lambda \mathsf{I}_0 \right)^3 \right)^3, \text{or, Atsushi Igarashi remarked,} \\ & \mathsf{S} := \left( \mathsf{I}_1 \ \lambda \lambda \mathsf{I}_0 \right)^3 \end{split}
```

Definition (One step α -reduction on \mathbb{M} and α -nf)

$$\frac{\overline{\lambda_{x}\lambda^{i}|_{k} \rightarrow_{1\alpha} \lambda^{i+1}|_{k}}}{\lambda_{x}\lambda^{i}x \rightarrow_{1\alpha}|_{i}} E_{2} \frac{x \neq y}{\overline{\lambda_{x}\lambda^{i}y \rightarrow_{1\alpha} \lambda^{i+1}y}} E_{3}$$

$$\frac{\overline{\lambda_{x}\lambda^{i}x \rightarrow_{1\alpha}|_{i}}}{\lambda_{*}(M N)^{i} \rightarrow_{1\alpha} (\lambda_{*}M \lambda_{*}N)^{i+1}} D \frac{M \rightarrow_{1\alpha} M'}{\overline{\lambda_{*}M \rightarrow_{1\alpha} \lambda_{*}M'}} C_{1}$$

$$\frac{M \rightarrow_{1\alpha} M'}{(M N)^{i} \rightarrow_{1\alpha} (M' N)^{i}} C_{2} \frac{N \rightarrow_{1\alpha} N'}{(M N)^{i} \rightarrow_{1\alpha} (M N')^{i}} C_{3}$$

Example

This example shows how the variable-binders λ_x and λ_y are eliminated by one step α -reductions.

$$egin{aligned} \lambda_x \lambda_y (y \; x)^0 &
ightarrow_{1lpha} \; \lambda_x (\lambda_y y \; \lambda_y x)^1 \ &
ightarrow_{1lpha} \; \lambda_x (ert \; \lambda_y x)^1 \ &
ightarrow_{1lpha} \; \lambda_x (ert \; \lambda x)^1 \ &
ightarrow_{1lpha} \; (\lambda_x ert \; \lambda_x \lambda x)^2 \ &
ightarrow_{1lpha} \; (\lambda ert \; \lambda_x \lambda x)^2 \ &
ightarrow_{1lpha} \; (\lambda ert \; \kappa)^2 \;\; \Box \end{aligned}$$

The datatype \mathbb{L}

Definition (The datatypes \mathbb{T} and \mathbb{L})

$$egin{aligned} t \in & \mathbb{T} & ::= \lambda^i |_k \mid \lambda^i x \ M, N \in & \mathbb{L} & ::= t \mid (M \mid N)^i \end{aligned}$$

Elements of \mathbb{T} are called *threads*.

Theorem

An \mathbb{M} -term M is an lpha-nf if and only if M is an \mathbb{L} -term.

Definition (Height (Ht) of L-terms)

$$\begin{aligned} \operatorname{Ht}(\lambda^i |_k) &:= i + k + 1 \\ \operatorname{Ht}(\lambda^i x) &:= i \\ \operatorname{Ht}((M\ N)^i) &:= \min\{i, \operatorname{Ht}(M), \operatorname{Ht}(N)\} \end{aligned}$$

α -reduction

Definition (lpha-reduction on $\mathbb M$ and lpha-equality)

$$\frac{M_0 \to_{1\alpha} M_1 \quad M_1 \to_{1\alpha} M_2 \quad \cdots \quad M_{n-1} \to_{1\alpha} M_n}{M_0 \to_{\alpha} M_n}$$

When we have $M_0 \to_{\alpha} M_n$ by this rule, we say that M_0 lpha-reduces to M_n in n steps.

$$\frac{M \to_{\alpha} P \quad N \to_{\alpha} P}{M =_{\alpha} N}$$

 $=_{\alpha}$ is a decidable equivalence relation

Theorem

Given any \mathbb{M} -term M, there uniquely exists an N such that $M \to_{\alpha} N$ and N is an α -nf.

Remark

- $(-)_{\alpha}: \mathbb{M} \to \mathbb{M}$ is idempotent, i.e., $(M_{\alpha})_{\alpha} = M_{\alpha}$ and image of $(-)_{\alpha}$ is \mathbb{L} .
- $oldsymbol{0}$ For any $M\in\mathbb{M}$, $M=_{lpha}M_{lpha}$.
- $lacksquare{0}$ For any $M\in\mathbb{M}$, $M=M_{lpha}$ iff $M\in\mathbb{L}$.
- $M =_{\alpha} N \text{ iff } M_{\alpha} = N_{\alpha}.$

Thus M_{α} is a natural representative of the equivalence class $\{N\in\mathbb{M}\mid N=_{\alpha}M\}$ containing M.

Instantiation

Definition (Instantiation of threads at level n)

If $t \in T^{n+1}$ and $u \in T^n$, then $\langle t | u \rangle^n$ can be computed by the following equations.

$$\langle \lambda^i |_k \lambda^j |_\ell \rangle^n := egin{cases} \lambda^{i-1} |_k & ext{if } n < i, \ \lambda^{j+k} |_\ell & ext{if } n = i \leq j, \ \lambda^j |_{\ell+k} & ext{if } n = i > j, \ \lambda^i |_{k-1} & ext{if } n > i. \end{cases}$$
 $\langle \lambda^i |_k \lambda^j x \rangle^n := egin{cases} \lambda^{i-1} |_k & ext{if } n < i, \ \lambda^{j+k} x & ext{if } n = i, \ \lambda^i |_{k-1} & ext{if } n > i. \end{cases}$
 $\langle \lambda^i x \ t \rangle^n := \lambda^{i-1} x$

Instantiation at level n

Define lift $\uparrow_n^k : \mathbb{L}^n \to \mathbb{L}^{n+k}$ by

$$\uparrow_n^k \lambda^j|_{\ell} := \begin{cases} \lambda^{j+k}|_{\ell} & \text{if } n \leq j, \\ \lambda^j|_{\ell+k} & \text{if } n > j. \end{cases}$$

$$\uparrow_n^k \lambda^j x := \lambda^{j+k} x$$

$$\uparrow_n^k (M \ N)^j := (\uparrow_n^k M \ \uparrow_n^k N)^{j+k}.$$

Definition (Instantiation at level n)

If $M\in\mathbb{L}^{n+1}$ and $P\in\mathbb{L}^n$, then $\langle M|P\rangle^n$ is defined by the following equations.

$$\begin{split} \langle \lambda^i |_k \; P \rangle^n &:= \begin{cases} \lambda^{i-1} |_k & \text{if } n < i, \\ \uparrow_n^k P & \text{if } n = i, \\ \lambda^i |_{k-1} & \text{if } n > i. \end{cases} \\ \langle \lambda^i x \; P \rangle^n &:= \lambda^{i-1} x. \end{split}$$

 $\langle (M\ N)^{i+1}\ P \rangle^n := (\langle M\ P \rangle^n\ \langle N\ P \rangle^n)^i.$

Acknowledgement

We thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.