

IoT/AIコース 修了制作

「スマートハンガー」を用いた衣類乾燥の最適化

SSE07-13 田村尚也

背景•課題

引っ越しの際、事前の内覧ができない物件で 日当たり等の情報がわからなかった。 多くの住宅の外側にIoTデバイスがあれば このような情報も得られそうだが・・・

→どのようにすれば設置を促進できるか?

手法・ツールの適用による解決

「スマートハンガー」

衣類乾燥時間検知・予測機能 を持つ「スマートハンガー」の 活用によるIoTデバイス導入 促進を立案。プロトタイプを 製作して機能を体験すること で、仮説検証を行う。

要求整理から仮説立案までの流れ

家事の道具をIoTデバイス化。それにより周辺環境の データを活用して『家事ストレス軽減』の価値を提供。

仮説立案

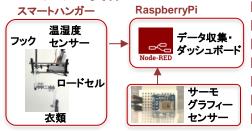
乾くまでの時間は? 電気代はいくら?

→ 部屋干し ▶ 除湿乾燥

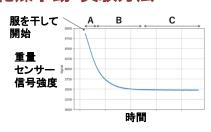
外干し

思ったより乾いていない。 電気代がかかる方法に頼りがち。

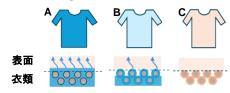
周辺環境から衣類乾燥の予測時間・コストを明らかにして 経験則に頼らず最適な衣類乾燥方法を選択可能にする。


プロトタイプ製作・実験方法

GQM+Strategies


検討内容の絞り込み

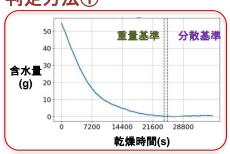
プロトタイプ製作


今回の製作期間では乾燥終了検知、乾燥時間予測能力を実現するための プロトタイプを製作。温湿度、衣類の重量と表面温度のデータを収集。

乾燥举動•実験方法

乾燥終了点の検討

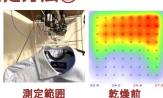
判定方法①重量移動平均値の分散 判定方法②表面温度


平均風速 除湿機

エアコン設定温度 22℃、26℃、30℃ < 0.3 m/s、 0.53 m/s、 0.92 m/s なし、連続運転

測定項目:Yシャツ重量、温湿度(ハンガー、室内) 測定回数:27回

実験結果▪評価


判定方法①

R2=0 91 各測定 合測定 で比較 乾燥時間 重量基準乾燥時間(s)

乾燥重量未知の衣類で判定可能。 ・周辺温湿度の変動が多い場合乖離あり。

判定方法②

乾燥後

終了点前後のサーモグラフィー (終了点付近10分除外)を 深層学習を用いて分類。 →正答率98.1%

乾燥時間・コスト予測

乾馃時间の里凹帰七アル		
説明変数	Adj. R ²	
温度、湿度	0.609	
温度、湿度、平均風速	0.703	

例: 宰温25℃・湿度85%時の予測

Mirating of Manager 1 and		
乾燥方法	乾燥時間(h)	コスト(円)
静置	4.7	0
送風	3.8	2
送風+除湿+エアコン(30°C)	2.4	32

今後の展望

- ・幅広い条件(周辺環境・衣類の種類等)でのデータの蓄積。
- ・コンパクトなハンガーの設計。
- -プロトタイプを用いたユーザー評価の実施。

スマートエスイー:スマートシステム&サービスおよびDX推進を担う人材の産学連携育成