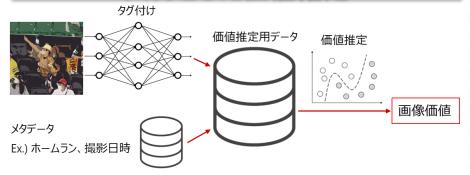


スタジアムフォトサービスにおける 購入画像レコメンド機能の開発

キヤノン株式会社

杉本 喬

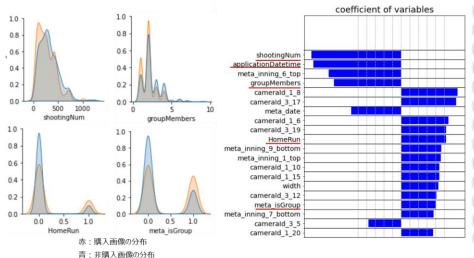

sugimoto.takashi550@mail.canon

開発における問題点

大量の画像の中から購入する 画像を選択するのが手間

本サービスを利用するユーザーには 1,000 枚前後の大量の試合観戦中の自身の撮影 画像が提供され、購入したい画像を見つけ づらく、購入率の低下の一因となっている。

撮影画像とそのメタデータを 入力とした価値推定

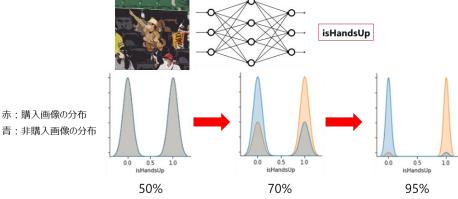


メタデータのみでの学習

手法	正解率[%]
ロジスティック回帰	67.7
線形 SVM	68.3
非線形 SVM	67.8
決定木	74.9

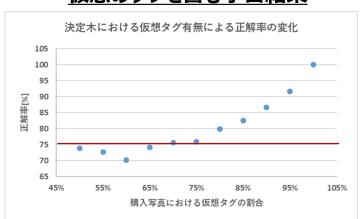
6 通りの前処理済データに対 して、4 通りの学習手法を適用 → 74.9% の正解率

ロジスティック回帰における回帰回数から、購入 に寄与する属性を抽出


手法・ツールの適用による解決

複数の機械学習手法を組み合わせ た購入画像レコメンド機能の開発

POC によって得られた撮影画像やそのメ タデータ、購入されたかどうかの実績に基 づいて、画像データのタグ付けと数値デー タからの価値推定モデルを開発する。


人体の姿勢状態を変数として学習

今回は【手を挙げている】状態を isHandsUpと仮想タグ付け

- ① タグ付けを学習できたと仮定して、そのタグが購入画 像の何%を占めているかを変化
- ② その後、メタデータと仮想のタグを合わせて価値推定 の学習を行い、正解率が向上するかどうかを確認

仮想のタグを含む学習結果

購入画像に対して 70% 以上の寄与を持つタグを付けら れれば正解率が向上可能

→ 高精度のタグ付けモデルの開発やレコメンドによる 購買率向上の実証が課題

スマートエスイー スマートシステム&サービス技術の産学連携イノベーティブ人材育成

赤:購入画像の分布