
高生産性と信頼性における
アジャイル形式工学手法

(Agile Formal Engineering Method for High

Productivity and Reliability)

- Agile-SOFL –

劉少英（Shaoying Liu）

法政大学・情報科学部・コンピュータ科学科

Email: sliu@hosei.ac.jp

HP: http://cis.k.hosei.ac.jp/~sliu/

本研究はJSPS科研費 ２６２４０００８の助成を

受けたものです.

mailto:sliu@hosei.ac.jp
http://cis.k.hosei.ac.jp/~sliu/

Overview

1. Can We “Fall in Love” with Agile Approaches?

2. The SOFL Formal Engineering Method

3. Agile-SOFL: Agile Formal Engineering Method

4. Agile-SOFL Three-Step Specification and
Animation

5. Specification-Based Incremental Implementation

6. Testing-Based Formal Verification

7. Tool Support for Agile-SOFL

8. Conclusions and Future Research

9. Reference

1. Can We “Fall in Love” with

Agile Approaches?

My answer: Yes and No!

Yes: if your project is small and short

(<= 5000 LOC, <= 5 months).

No: if your project is large and long, especially

for a critical system.

Why?

Necessary activities for producing

highly reliable software systems:

Agile manifesto:

(1) Individuals and interactions over processes

and tools

(2) Working software over comprehensive

documentation

(3) Customer collaboration over contract

negotiation

(4) Responding to change over following a plan

Advantages and Disadvantages of

Agile Approaches

Advantages:

Working software can help strengthen the

communication between the developer and the end-

user.

No comprehensive documentation except code can

help reduce the time for documentation and the time

for configuration management.

Quick releases can be expected.

Disadvantages:

Frequent changes of code is inevitable (for

lacking sufficient understanding of the

requirements in the beginning), which can be

extremely difficult and time-consuming.

Understanding of code is required, which can

be extremely hard as well.

Frequent changes may create more bugs in

code and testing to uncover the bugs is time-

consuming.

2. The SOFL Formal Engineering

Method
Characteristics:

Integration of formal methods (FM) with conventional

software engineering technologies

Comprehensible formal specification-based software

construction and verification (inspection and testing),

more practical than FM

High automation in inspection and testing

Challenges:

Time consuming for formal specification construction

and evolution to keep consistency with the code.

Difficult in communication between stakeholders via

formal specifications.

The structure of a SOFL specification:

CDFDs + modules + classes

class S1;

const; type; var; inv;

method Init;

method P1;

method P2;

method P3;

end-class;

class S2;

const; type; var; inv;

method Init;

method Q1;

method Q2;

method Q3;

end-class;

module SYSTEM;

const; type; var; inv;

process Init;

process A1;

process A2;

end-module;

module A2-decom;

const; type; var; inv;

process Init;

process B1;

process B2;

process B3;

end-module;

A1 A2

B1

B2

B3

s

s

Questions?

(1) Whether the disadvantages of Agile

approaches can be overcome by

taking advantage of the SOFL

formal engineering method?

(2) If yes, how?

3. Agile-SOFL: Agile Formal

Engineering Method
Agile-SOFL is a FEM with effective techniques to achieve

the values given in the Agile manifesto.

Characteristics:

1. A three-step approach to building comprehensible hybrid

specification for analyzing requirements and defining what

to be done by the potential system.

2. Animation-based techniques for specification validation.

3. Testing-Based Formal Verification (TBFV) for program

verification.

4. Incremental implementation together with the application

of TBFV in small cycles

The Agile-SOFL Three-Step Specification

+

GUI-Based Specification Animation

Software

defects and

errors

Principle of Agile-SOFL

4. Agile-SOFL Three-Step

Specification
User’s requirements analysis

and system abstract design

Informal

specification

GUI design and

animation

(e.g., Power Point)

Hybrid

specification

An Agile-SOFL hybrid specification is a specification

written in SOFL that contains both semi-formal

specifications and formal specifications for operations.

Major Ideas of the GUI-Aided Approach

to Writing Hybrid Specifications

Function hierarchy

in Agile-SOFL

Informal

Specification

Preliminary GUI

Hierarchy
Final GUI

Hierarchy

Hybrid specification

Animation and evolution for completeness and detailed information

transformation
Improvement

Writing

Tasks for informal specification: Capturing desired

functions, necessary data resources, and

constraints on both functions and data resources.

Precision

Completeness

1. Functions

2. Data resources

3. Constraints

Starting point

Informal Specification
Informal specification for a simplified ATM software:

1.Functions

 1.1 Register a customer

 1.2 Withdraw from the bank account

 1.2.1 Check the card id and password

 1.2.2 Check the amount for withdrawal

 1.2.3 Update the account balance after withdrawal

 1.3 Deposit to the bank account

 1.4 Transfer from one bank account to another

 1.5 Inquire about the balance of the bank account

 1.6 Finish operations

2. Data resources

 2.1 Bank account (F1.2, F1.3, F1.4, F1.5)

 2.1.2 Account name

 2.1.2 Account number

 2.1.3 Account password

 2.1.4 Account balance

 2.1.5 Bank name

 2.1.6 Bank branch code

 2.2 Accounts file (F1.2, F1.3, F1.4, F1.5) /*containing a set of bank accounts*/

 2.3 Customer information(F1.1)

3. Constraints

 3.1 Each withdrawal from a bank account must not exceed 200,000 JPY.

 3.2 The account balance cannot be less than 0.

 3.3 The amount of each transfer cannot exceed 1,000,000 JPY.

 3.4 The amount of each deposit cannot exceed 500,000 JPY

Tasks for GUI design and animation:

(1)Select the functions from the informal

specification that need interactions with the

user of the system

(2)Design the GUI (e.g., with Power Point) for

each function to clearly show what input and

output are necessary

(3)Perform GUI animation (e.g., using Power

Point) to demonstrate what input can be used

to produce what output.

(4)Improve the expression of the corresponding

functions in the informal specification using

PRN (Production Rule Notation)

Precision

Completeness

1. Functions

2. Data resources

3. Constraints

Function 1 GUI;

Function 2 GUI;

…

Function n GUI

Starting point

The result of the GUI design and animation phase:

Example

1.1 Register ...

1.2 Withdraw ...

1.3 Deposit ...

1.2.1 Check the card ...

1.2.2 Check the amount ...

1.4 Transfer ...

1.5 Inquire ...

1.6 Finish ...

1.2.3 Update the account ...

Derived GUI hierarchy

from the ATM informal

specification:

Improved Final GUI

Tasks for hybrid specification:
(1) Group the related functions, data items, and constraints

given in the informal specification into SOFL modules.

(2) Define necessary types, constants, and declare external

variables using well-defined types to precisely represent all

of the data items in the informal specification.

(3) Define necessary invariants to precisely represent the

constraints given in the informal specification using the

SOFL formal notation.

(4) Form processes for each function given in the informal

specification and define their data flow dependence using

CDFD (condition data flow diagram).

(5) Write specification for each process occurring in the CDFD.

Each specification is given in pre- and post-conditions, which

can either be a restricted informal expression or a formal

expression.

The result of writing the hybrid specification:

Precision

Completeness

1. Functions

2. Data resources

3. Constraints

Module 1

Module 2

…

Module n

CDFD1

CDFD2

CDFDn

Starting point

Function 1 GUI;

Function 2 GUI;

…

Function n GUI

Example

Formal specification:

module SYSTEM_ATM;
 data items declarations;
 process Register
 process Withdraw
 process Deposit
 process Transfer
 process Inquire
 process Finish
end_module;

module Withdraw_Decom /
 SYSTEM_ATM;
 data items declarations;
 process Check_Card
 process Check_Amount
 process Update_Account
end_module;

Check_Card

Check_Amount

Update_Account

 account_file

Register

Withdraw

Deposit
Inquire

Transfer

Finish

account_file

No. 1

No. 2

Details of the specification (example):
module SYSTEM_ATM

type

Account = composed of

account_no: nat

password: nat

balance: real

end

var

account_file: set of Account;

inv

forall[x: account_file] | x.balance >= 0;

/*Account balance must be greater than or equal to zero. */

…

behav CDFD_No.1;

process Withdraw(amount: real, account1: Account)

e_msg: string | cash: real

ext wr account_file

pre account1 is a member of account_file

post if amount is less than the balance of account1

then supply cash with the same amount as amount, and

reduce the amount from the balance of the account.

else output an appropriate error message e_msg.

end_process;

/*Semi-formal specification*/

process Withdraw(amount: real, account1: Account)

e_msg: string | cash: real

ext wr account_file

pre account1 inset account_file

post if amount <= account1.balance

then

cash = amount and

let Newacc =

modify(account1, balance -> account1.balance – amount)

in

account_file = union(diff(~account_file, {account1}), {Newacc})

else

e_meg = "The amount is over the limit. Reenter your amount.")

comment

…

end_process;

/*Formal specification*/

end_module

5. Specification-Based Incremental

Implementation

We take the bottom-up approach to

automatically or manually (with tool support)

implement and test the system based on the

formal specification in an incremental fashion.

Choose a module

from the

formal specification

Generate a

Program

Test the program

Automatic or manual

implementation

Version release

6. Testing-Based Formal Verification

The goal:

Dynamically check whether the functions defined in the

specification are ``correctly” implemented by the program

Specification Program

using TBFV

Satisfy?

A program P correctly implements a

specification S iff

Spre(~σ) ⊢ Spost(~σ,P(~σ))

where ~σ is any initial state and P(~σ) is treated as a

mathematical function whose definition may not be

represented by a mathematical expression but can be

represented by an algorithm. Therefore, existing

formal proof techniques may not be applied for formal

Verification of P.

The theoretical foundation for TBFV

Goal of Automatic TBFV

Press a Button

x y z
case1 3 5 2

case3 9 3 35
case2 0 4 9

……

Method(int x, int y, int z){
int w;
if(x < y)
{

w = y/x;
while(w < z)
{
…

}
} else {
…

}
}

Automatic test data generation

……

Next

31

Steps of TBFV:

(1) Generate test data from the specification.

(2) Execute the program using the test data.

(3) Analyze test results to detect bugs based on

the test data, the result of execution, and

the specification.

General criteria for test data generation

and for test result analysis:

Definition 5.1 (FSF)

Let Spost ≡ G₁ ∧ D₁ ∨ G₂ ∧ D₂ ∨ ⋅⋅⋅∨ Gn ∧ Dn,

Gi: guard condition

Di: defining condition.

i = 1,…,n.

Then, a functional scenario form (FSF) of S is:

(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅∨

(Spre ∧ Gn ∧ Dn)

Criterion 5.1: Let the FSF of specification S

be:

(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅∨

(Spre ∧ Gn ∧ Dn)

Then, a test set T must be generated to meet

the following condition:

(∀Gi∃t∈T ⋅ Spre ∧ Gi(t)) ∧

(∃t∈T ⋅ ¬Spre)

where i = 1,…,n

A criterion for test result analysis:

Criterion 5.2: If the condition

∃t∈T ⋅ Spre(t) ∧ ¬ Spost(t, P(t))

holds, it indicates the existence of

bugs in program P.

A(x: int) y: int

pre x > 0

post x > 10 ∧ y = x + 1 ∨
x <= 10 ∧ y = x – 1

Functional scenarios:

(1) x > 0 ∧ x > 10 ∧ y = x + 1

(2) x > 0 ∧ x <= 10 ∧ y = x – 1

(3) x > 0 (optional)

Specification

x > 0

y = x * 1

x > 10

T

T

F

F

System.out.println

(“the precondition

is violated”)

Program

1 2 3

Test case generation

Test result analysis

y = x - 1

x y Apre Apost Apre ∧ ¬ Apost

15 15 true false true

5 4 true true false

7. Tool Support for Agile-SOFL

We have several prototype tools to support the

SOFL specification language and method.

Agile-SOFL specification construction tool

(SpecTool)

Tool for Specification-Based Testing

SpecTool for A-SOFL specification

38

A Tool for TBFV (SBTT)

New Tool for TBFV

10. Conclusions and

Future Work
10.1 Conclusions

Agile-SOFL is believed to be much more effective than
existing agile approaches for high productivity and reliability,
and helpful for system maintenance and extension.

Agile-SOFL is characterized by the three-step specification
approach, specification animation, specification-based
incremental implementation, and testing-based formal
verification (TBFV) based on SOFL.

Agile-SOFL supports the values emphasized in the Agile
Manifesto, such as individuals and interactions, working
software, customer collaboration, and responding to
changes.

10.2. Future Work

Build a more mature software engineering

environment for Agile-SOFL on the basis of

the existing prototype tools.

Develop dependable,

large-scale, and

complex computer

systems using Agile-

SOFL under the

support of its SEE

Evolve the SEE of Agile-

SOFL to a method-based

ISEE

Extend the method-based

ISEE to a method-domain-

based ISEE to support

domain specific applications.

SOFL_Tool.avi

Reference

“Formal Engineering for

Industrial Software

Development Using the

SOFL Method”,

by Shaoying Liu,

Springer-Verlag, 2004,

ISBN 3-540-20602-7

URL: http://cis.k.hosei.ac.jp/~sliu/

(for other publications)

http://cis.k.hosei.ac.jp/~sliu/

