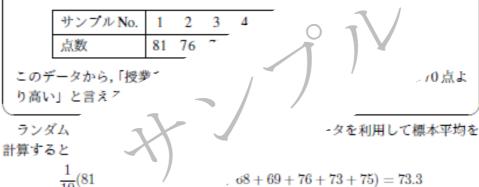
仮説検定の考え方

統計的推測の方法は、推定と検定という2つに大別することができます。検 定は、統計的仮説検定、または仮説検定ともよばれます。以下では、母平均の 仮説検定を例に、仮説検定の考え方を概説します。

母平均の仮説検定の例

例として、以下のような問題を考えます。

ある大学の統計学の試験の点数は、全受講生の平均が70点、標準偏差が5点でした。受講生のうち、授業を1度も欠席しなかった学生の点数の平均が、全体平均である70点より高いかどうか知りたいとします。こで、授業を1度も欠席しなかった学生のなかから10人をラングとで点数を調べたところ、次のようなデータが得られまして



であり、70より大 、10ました。しかし、この結果から即座に「授業を1度も欠席しなかっ、上生の点数の平均は70点より高い」と結論付けることは、あまりに性急です。なぜなら、この10人の標本から計算された平均値がたまたま70を上回っただけであり、サンプリングをやり直して別の10人の標本から平均を計算すると、70より小さな値となる可能性もあるからです。では、標本平均が何点以上であれば、「授業を1度も欠席しなかった学生の点数の平均は70点より高い」と結論付けることができるでしょうか。統計的仮説検定では、標本分布と確率の考え方を用いることで、このような問題に対して合理的な判断を行います。

統計的仮説検定の考え方

最初の例は、母平均に関する仮説検定の問題としてとらえることができます。 例における母集団は、授業を1度も欠席しなかった受講生全員の統計学の試験 の点数です。母平均の仮説検定では、母集団分布として正規分布を仮定します。 さらに、議論を簡単にするため、母分散の値は既知であるとし、ここでは、母 集団分布として $N(\mu, 5^2)$ を仮定します。この例を用いて、統計的仮説検定の考 え方について解説します。

仮説検定では、次のような2つの仮説を立て、そのいずれを支持すべきか標 本から検証していきます。

- 仮説1:母平均μの値は70である(μ=70)。
- 仮説2:母平均μの値は70より大きい(μ > 70)。

仮説 1 が否定され、仮説 2 が支持されれば、「授業を 1 B $^{+}$ た学生の点数の平均は70点より高い」と言えます。

仮説検定でまった。 のは、母かれた 10 個 ない の標本分布は $N(70,5^2/10)$ となります。 でした。図 1 の数を示しました。矢印は、標本データから計算された。

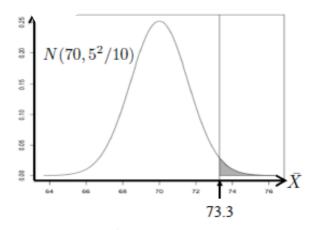


図 1: 標本平均の標本分布 N(70,5²/10)

¹本例は、母分散が既知の場合の母平均の仮説検定の例です。母分散の値が未知の場合の母平均の仮説検定については、別コンテンツ「母平均の仮説検定」で説明します。

この標本平均の標本分布 $N(70,5^2/10)$ において、73.3 以上の値が得られる確率(図1のグレーで塗りつぶした部分の面積)を計算します。Excel で=1-NORMSDI SI((73.3-70)/SQRI(2.5)) と入力することで、その確率は0.018 と求められます。このことから、もし、仮説 $1:\mu=70$ が正しいと仮定すると、n=10 の標本から計算する標本平均が73.3 以上になる確率は、1.8% であることがわかりました。仮説 1 が正しいという仮定の下では 1.8% という小さな確率で、非常に稀にしか起こり得ないことが、手元の標本データで実際に起こっているのですから、仮説 1 が誤っていると考える方が合理的でしょう。これが、統計的仮説検定の考え方です。

仮説検定の手順

母平均の仮説検定に限らず、統計的仮説と れます。 ① 帰無仮説 H₀ と対立化 ② 有意水準 α * ③ 標 ④ 設定 ④ 設定 ふする。 ③ 検定統 ・ れば H₀ を棄却、H₁ を採択し、有意と判定 する。

手順①から手胤 シまでを最初の例に当てはめて、用語の解説をしながら、母 分散が既知の場合の母平均の仮説検定の具体的な手順を以下に示します。

帰無仮説 H₀ と対立仮説 H₁ を設定する

既に見たように、統計的仮説検定でははじめに2つの仮説を設定します。最初の例では、仮説1: $\mu = 70$ 、仮説2: $\mu > 70$ としました。これら2つの仮説を一般的に表すと、仮説1: $\mu = \mu_0$ 、仮説2: $\mu > \mu_0$ となります。 μ_0 には、それぞれの問題に応じて任意の具体的な数値が入ります。

仮説検定では、仮説1のことを帰無仮説とよび H_0 で表し、仮説2のことを対立仮説とよび H_1 で表します。ここでは、

 $H_0: \mu = \mu_0, \ H_1: \mu > \mu_0$

です 2 。多くの場合、分析者が結論として示したい内容を対立仮説 H_1 とし、帰無仮説 H_0 は、それが否定されることで分析者の主張が支持されるような内容となります。そのため、仮説検定では、 H_0 が否定され H_1 が支持されるとき、分析者の主張が支持される結果となります。

② 有意水準 α を決める

例では、帰無仮説 H_0 が正しいという前提の下で標本平均の値が73.3 になる確率は 0.018 であり非常に稀にしか起こらない、ということを根拠に、 H_0 が誤っていると判断しました。仮説検定では、ある確率未満ならば非常に稀と見なすという、判断の基準となる確率をあらかじめ決めておきます。それが有意水準 α です。有意水準 α を決め、 H_0 が正しいと仮定したときに手元の標本データから計算された標本平均の値より大きな値が得られる確率が α 未満であれば、 H_0 が誤っていると判断することとします。 α の値としては、慣例でに 0.05 や 0.01 が用いられます。

③ 標本から検定統計量の値を計算する

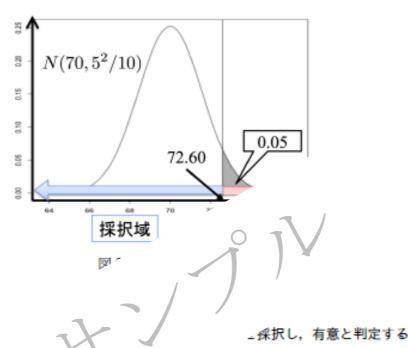
検定統計量とは、帰無仮説がデ す。例では、標本平均 X ** 検定統計量が従う確プ 値の得られやプ 本平均 Y まうになります。標 本平均 Y 。 帰無仮説 H_0 が正しいと っとが明らかです。先の例では、 っタから計算された標本平均の値である 73.3 以上 6 。

④ 設定した有意。をもとに棄却域を計算する

有意水準 α が決まると、帰無仮説 H_0 が正しいという仮定の下で、検定統計量がその値より大きい確率が α となるような値 A を求めることができます。仮説検定では、標本から計算された検定統計量の値が A の値より大きければ、 H_0 が誤っていると判断します。 H_0 を誤っているとして否定することを、帰無仮説 H_0 を棄却すると言います。一方、標本データから計算された検定統計量の値が A の値以下であれば、 H_0 を採択します。このことから、帰無仮説が正しいという仮定の下で検定統計量が従う分布において、A の値より大きい領域を棄却域、A の値以下の領域を採択域とよびます。

 $^{^2}$ 導きたい結論の内容によって、母平均の仮脱検定の対立仮脱を $\mu < \mu_0$ あるいは $\mu \neq \mu_0$ とすることもあります。このことについては、コンテンツ『両側検定と片側検定』で解脱します。

最初の例で $\alpha = 0.05$ と定めたとすると、 H_0 が正しいときに標本平均 X が 従う $N(70,5^2/10)$ において、 $\Pr(X>A) = 0.05$ となるような値 A は、Excel で=70+SQRT (2.5) *NORMSINV (0.95) と入力することで72.60 と求められます。したがって、図 2 に示したように、標本平均の標本分布 $N(70,5^2/10)$ において、X>72.60 の領域が棄却域、X<72.60 の領域が採択域となります。



⑤ 検定統計』

最後に、4 に、 4 に、

例では、A の値が72.60であり、標本から計算された標本平均の値は73.3でした。図2に示したように、X=73.3 は棄却域 X>72.60 に含まれています。つまり、帰無仮説 H_0 が正しいという仮定のもとで、標本平均 X の値が73.3 より大きくなる確率は 0.05 以下である(既に計算した通り、その確率は 0.018)、ということです。したがって、帰無仮説 $H_0: \mu=70$ を棄却し、対立仮説 $H_1: \mu>70$ を採択します。統計的仮説検定の結果は有意水準 5%で有意であり、「授業を 1 度も欠席しなかった学生の点数の平均は 70 点より高い」と結論付けることができます。

ここまでは、母分散が既知の場合の母平均の仮説検定を具体例として、統計 的仮説検定の手順を説明しましたが、他の検定においても、仮説検定の基本的 な考え方は同じであり、①から③までの手順は変わりません。検定の種類に応 じて異なるのは、検定統計量としてどのような統計量を用いるかという点と、用 いた統計量によってそれが従う分布が決まるので、どのような分布で棄却域を 求めるか、という2点です。なお、実際の分析においては、③と④の順番を逆 にして、棄却域と採択域の境界となる検定統計量の値をあらかじめ計算してお くことも多くあります。

練習問題 ある高校模試の点数は、平均が60点、標準偏差が10点であった。この模試を受験したある有名進学校の生徒のなかから20人をランダムに抽出して点数を調べたところ、以下の通りとなった。

サンプル No.	1	2	3	4	5	6	7	8	9	10
点数	84	71	77	62	61	52	64	62	73	55
サンプル No.	11	12	13	14	15	16	17	18	19	20
点数	60	57	52	64	72	63	70	53	7	67

この進学校の生徒の模試の点数の分布が $N(\mu, 10^2)$ μ は 60 より大きいと言えるか。有意水準 5%~

るとき

① 帰無仮説 H₀ と対立仮説 H-

H₀: μ = 60

H₁:

 ι Cいる通り、 $\alpha = 0.05$ とします。

③ 標本から検定

4 t 3

 $\frac{1}{20}(84+71+77+62+61) \qquad (64+62+73+55+60+57+52+64+72+63+70+53+78+67) = 64.85$

④ 設定した有意水準をもとに棄却域を計算する 帰無仮説 $H_0: \mu = 60$ が正しい仮定すると、標本平均の標本分布は $N(60, 10^2/20)$ となります。この分布において、 $\Pr(X > A) = 0.05$ となるような値 A は、63.68 と求められます。したがって、標本平均の標本分布 $N(60, 5^2/10)$ において、X > 63.68 の領域が棄却域、X < 63.68 の領域が採択域となります。

(3) 検定統計量の値が棄却域にあれば H₀ を棄却, ア標本から計算された標本平均の値は X = 6 パで, 棄却域に含まれています。帰無仮デ 均 X の値が 64.85 より大きくか を棄却し, 対立仮説 H, パ準 5%で有意であ パ点より有意に

正する なの で平 - 60 - 4年は有意 エ平均である60