2019年度 基幹・創造・先進理工学部

No	7	/	1 1
INO.			

学士・3年編入学試験電気理論 (問題)

以下の全ての設問に対して、答えだけではなく、ある程度の説明を書くこと。最終の回答として現れる物理量には SI 単位系の単位を付すこと。必要であれば、真空の誘電率と透磁率を & と μ とし、それ以外の物理量が必要ならば各自で定めること。

- [1] 太さの無視できる無限に長い直線状の導線 A と、辺の長さが a、bで巻数が n 巻の長方形導線コイル B が、図 1に示す配置で真空中の同一平面内に置かれている。
- (1) 導線 A に電流 I を図 1 の向きに流す。このとき、直線状導線より距離 r の点における磁界の強さ H を求めよ。また、コイル B の長方形の内部における H の向きを述べよ。
 - (2) コイルBに鎖交する磁束(数) Yを求めよ。
 - (3) $A \ge B$ の相互インダクタンス M を求めよ。
- (4) 電流 I が $I = I_0 \sin \omega t$ (I_0 : 定数、 ω : 角周波数、t: 時間)で変化するとき、B に誘起される起電力を求めよ。

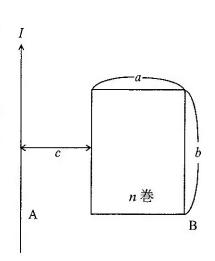


図 1

- [2] 図2に示す、端子電圧 V_0 の直流電源、抵抗 R、キャパシタ(コンデンサ)C およびスイッチ SW_1 と SW_2 よりなる回路がある。 SW_2 を開いた状態で SW_1 を閉じてから十分に長い時間が経過した後、 SW_2 を閉じると同時に SW_1 を開いた。この時を t=0 とする。
- (1) $t \ge +0$ で流れる電流を i(t)としたとき、成り立つ方程式を書け。
- (2) 上の方程式を解き、i(t)を求めよ。
- (3) R に掛かる電圧 $V_{R}(t)$ を求めよ。
- (4) Cに掛かる電圧 $V_{C}(t)$ を求めよ。
- (5) 横軸をtとしたグラフに $V_{R}(t)$ と $V_{C}(t)$ の概形を図示せよ。

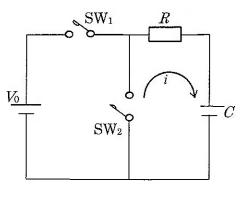


図 2

受験番号	万	千	百	+	
氏 名					

2019年度 基幹・創造・先進理工学部

学士·3年編入学試験 電 気 理 論 (解答用紙)

採	点	欄	
	採	<u>採 尽</u>	探 点 懶

V.	T .	14.	רדי		~~~
※裏	ren (/)	41	1	1	TI!
101		12. /	1 1	1	