自然冷媒による次世代冷凍空調サイクルの包括的研究				
題目	水平多連分岐管における R134a 気液二相分流特性 -熱負荷・冷凍機油が分配に与える影響-			
著者	勝田正文,四栗祐馬,鈴木悠介, 裵相哲			

1. 研究背景·目的

現在,車載用蒸発器では,小型化・高性能化が可能 である多パス型構造が広く用いられている.その中 でヘッダ型分配器は,構造がシンプルで低コスト・ 低圧損という利点があるが,各分岐管への二相冷媒 の不均等分配が課題となっている.しかしながら, 作動冷媒が気液二相である故に分配の予測は難しく, 実運転では分岐管への熱負荷や冷媒に混入する冷凍 機油の影響も加わるため,さらに複雑な現象となる. 最適な分配器の設計にはこれらの要素を考慮した冷 媒分配傾向の予測が必要であり,その手法確立が求 められている.以上を背景に,本研究では,熱負荷・ 冷凍機油混入が冷媒分流特性や圧力損失に与える影 響を実験的に把握することを目指した.

2. 研究方法

R134a を作動流体とし, 各枝管に分配された気液 流量の測定を行った.実験装置の概略を Fig.1 に示 す.

Fig.1 Schematic of Experimental Apparatus 実験条件を Table1 に示す.いずれの条件におい ても,ヘッダ管からの分岐方向は垂直上方となって いる。テストセクションの設計条件は,ヘッダ・枝 管ともに円管であり,ヘッダ内径 16.4[mm],枝管内 径 4.75[mm],5本の枝管はピッチ 18[mm]で,ヘッ ダ内径の 50%の深さまで挿入されている.熱負荷は 温水による一様加熱であり,その大きさは温水の温 度で調節する.冷凍機油は冷媒と相溶性のある SUNICE P56 を用いた.

Table1	Experimental	Condition

Working Flui	R-134a		
т 1 4	Pressure	kPaG	300
Inlet	Mass Flow Rate	kg/h	30
Condition	Quality		0.1~0.4
Heat Load		W	0~500
Oil Concentr	ation ζ	%	1~15

3. 研究成果

3.1 熱負荷による影響

各熱負荷における相対標準偏差を Fig.2 に, 圧力損 失をFig.3 に示す. 乾き度の上昇に伴い相対標準偏差 は増加した. 圧力損失は乾き度・熱負荷の上昇に従い 増加するが, 熱負荷 400~500[W]では乾き度上昇に 伴う圧損の増加率は小さくなった. これは, ドライアウト エリアの拡大により分岐管内を占める気相の割合が大 きくなったためであると考えられる.

Fig.2 o vs Quality
Fig.3 △P vs. Quality
また, Fig.4 に一眼レフカメラによる流動様相のスナッ
プショットを示す. (b)は(a)から 0.2 秒後の画像となって
いる. このように熱負荷 300~500[W]では分岐管から
ヘッダ管への気相の逆流を確認した. これによりエンド
付近で液相が乱れていることが分かる. 低乾き度域で
は全分岐管・高乾き度ではヘッダ後方で逆流が生じ,
一部の分岐管でのみ生じる場合 分配に影響を及ぼ
すと推測される.

(a) t=0sec
 (b)t=0.2sec
 Fig.4 Flow Pattern (*m*=30kg/h, *x*=0.1, Q=400W)
 3.2 冷凍機油による影響

各オイル濃度における相対標準偏差を Fig.5 に, 圧 力損失を Fig.6 に示す. 乾き度 0.2 において, 相対標 準偏差はオイル濃度の上昇に伴い増加する傾向があ り, 乾き度 0.4 では低オイル濃度では減少し 10%を超 えると再び増加するという傾向を確認した. 圧力損失 はオイル濃度の上昇にともない増加する傾向がある.

熱交換量は高乾き度・高オイル濃度ほど少なくな り,乾き度 0.4・ζ=15%では純粋冷媒時の約 50%ま で減少した.