Nonlinear PDEs in Fluid Dynamics

Matthias Hieber

TU Darmstadt, Germany,

The field of Nonlinar PDEs in Fluid Dynamics has seen very many scientific activities in the last years, which are due to the facts that the underlying governing equations have a very complex structure and, on the other hand, that these equations form a building block for other disciplines in science.

These lectures will investigate current questions arising in the theory of the Navier-Stokes and geophysical flow equations, in deterministic and stochastic models of complex fluids and in moving or free boundary value problems. In particular, topics include

- modern theory of quasi- and semilinear parabolic equations
- properties of the Stokes operator and its variants
- well-posedness and regularity theory for the Navier-Stokes equations in critical spaces
- geophysical flows and coupled atmoshere-ocean models
- complex fluids as liquid crystals or viscoelastic fluids
- fluids coupled to poroelastic materials or to chemotaxis systems
- fluid structure interaction problems
- free boundary problems
- stability and asymptotic properties