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Summary (and outline)

In the previous lecture we have introduced transport noise

It is motivated in various ways:

random perturbation of the Lagrangian motion
variational principles and geometric mechanics
small-scale action on large scale dynamics.

We have seen that Stratonovich multiplication (namely Itô plus a
corrector) is the natural choice coming from smooth approximations
of the noise

and we have found the form of the corrector, a second order elliptic
operator.
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(Summary and) outline

Today we see a few elements of rigorous theory of existence and
uniqueness for equations with transport noise

Then we investigate the eddy dissipation scaling limit for the heat
equation

The analogous eddy viscosity scaling limit, for the 2D Navier-Stokes
equations, has been developed recently but we onlt address the
literature, in the notes.

And finally we discuss a few elements of the 3D theory, mostly open.
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Existence and uniqueness for the heat equation with
transport noise

Recall θ (t, x) = temperature, κ > 0 heat diffusion constant

∂tθ + u · ∇θ = κ∆θ

u · ∇θ = transport due to the fluid motion. When

u (t, x) = ∑
k∈K

σk (x) ∂tW k
t

the correct interpretation is the Stratonovich form

∂tθ + ∑
k∈K

(σk · ∇θ) ◦ ∂tW k = κ∆θ

which means Itô+correction:

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ
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Existence and uniqueness for the heat equation with
transport noise

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ

Recall L is the elliptic differential operator

(Lθ) (x) =
1
2 ∑
k∈K

σk (x) · ∇ (σk (x) · ∇θ (x))

which can be rewritten in the form

(Lθ) (x) =
1
2

d

∑
i ,j=1

∂i (Qij (x , x) ∂j θ (x))

where

Q (x , y) = E [W (t, x)⊗W (t, y)] = ∑
k∈K

σk (x)⊗ σk (y) x , y ∈ D.
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Existence and uniqueness for the heat equation with
transport noise

We know two very effi cient methods:

1 variational,
2 semigroups.
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Variational method

We limit ourselves to the ideas.

One has to introduce a sequence of well posed approximating
problems. We skip this step.

On these approximations, one has to prove estimates independent of
the approximating parameter.

We perform such step on the true equation, in the style of a priori
estimates: we assume to have a smooth solution and see which
estimates hold.

Such estimates provide the basis of application of the compactness
method. We skip the details of this step.
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Variational method, a priori estimates

If we use Stratonovich formulation (with heat source q in the notes)

∂tθ + ∑
k∈K

(σk · ∇θ) ◦ ∂tW k = κ∆θ

and we accept that the rules of calculus (being the limit of smooth noise)
are the classical ones, we get

d
dt
‖θ (t)‖2L2 = −2

〈
θ, ∑
k∈K

(σk · ∇θ) ◦ ∂tW k

〉
+ 2 〈θ, κ∆θ〉

= −2κ ‖∇θ (t)‖2L2

because (recall div σk = 0)

2
∫
D
〈θ, σk · ∇θ〉 =

∫
D

σk (x) · ∇θ2 (x) dx

= −
∫
D

div σk (x) θ2 (x) dx = 0.
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Variational method, a priori estimates

Therefore
d
dt
‖θ (t)‖2L2 + 2κ ‖∇θ (t)‖2L2 = 0

leading to the a.s. (deterministic!) estimate

‖θ (t)‖2L2 + 2κ
∫ t

0
‖∇θ (s)‖2L2 ds = ‖θ0‖

2
L2 .

This gives us the a priori estimates

sup
t∈[0,T ]

‖θ (t)‖2L2 ≤ C

∫ T

0
‖∇θ (s)‖2L2 ds ≤ C .
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Variational method, a priori estimates

If we use Itô formulation

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ

and we apply Itô formula, we get

d ‖θ (t)‖2L2 = −2 ∑
k∈K
〈θ, (σk · ∇θ)〉 dW k + 2 〈θ, (κ∆+ L) θ〉 dt

+ ∑
k∈K
‖σk · ∇θ‖2L2 dt

= −2κ ‖∇θ (t)‖2L2 − 2
1
2

∫
D

∑
ij
Q (x , x) ∂i θ∂j θdxdt

+ ∑
k∈K

∫
D

∑
ij

σik (x) ∂i θσjk (x) ∂j θdxdt

and get the same as above. At the level of energy estimates, the Itô term
and the corrector completely balance each other.
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Semigroup method

Consider the equation

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ.

Call: H = L2 (D), V = W 1,2
0 (D), D (A) = W 2,2 (D) ∩ V ,

A : D (A) ⊂ H → H
Aθ = (κ∆+ L) θ

etA, t ≥ 0, the analytic semigroup generated by A. Then

θ (t) = etAθ0 + ∑
k∈K

∫ t

0
e(t−s)A (σk · ∇θ (s)) dW k

s .

These equations are not trivial because there is ∇θ on the right-hand-side
and thus iteration (for a fixed point theorem) requires that also the
left-hand-side accepts a gradient.
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Semigroup method. Notion of solution

Definition
A stochastic process

θ ∈ CF ([0,T ] ;H) ∩ L2F (0,T ;V )

is a mild solution if the following identity holds

θ (t) = etAθ0 − ∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dW k

s

for every t ∈ [0,T ], P-a.s.

One can give a definition of weak solution and prove equivalence.

Franco Flandoli, Scuola Normale Superiore, April-May 2021, Waseda University, Tokyo, Japan ()Stochastic Partial Differential Equations in Fluid Mechanics Lecture 5: Transport noise (continuation)May 5, 2021 12 / 44



Semigroup method. Main result

Consider the equation (here let us add the source q)

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ + q

θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds − ∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dW k

s

Theorem
For every θ0 ∈ H and q ∈ L2 (0,T ;H), there exists one and only one
(weak or mild) solution.
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Semigroup method. General equation

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k =
d

∑
i ,j=1

∂j (aij (x) ∂i θ) + q

where ai ,j is strongly elliptic and suffi ciently regular so that the operator
Aθ = ∑d

i ,j=1 ∂j (ai ,j (x) ∂i θ) generates an analytic semigroup. The notions
of solutions are the same.

Theorem
Assume the exists η < 1 such that

1
2 ∑
k∈K

(σk (x) · ξ)2 ≤ η
d

∑
i ,j=1

aij (x) ξ i ξ j

for all ξ = (ξ1, ..., ξd ) ∈ Rd . Then, for every θ0 ∈ H and
q ∈ L2 (0,T ;H), there exists one and only one (weak or mild) solution.
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Super-parabolicity and Stratonovich

The super-parabolicity condition

1
2 ∑
k∈K

(σk (x) · ξ)2 ≤ η
d

∑
i ,j=1

aij (x) ξ i ξ j η < 1

is always true when

aij (x) = κδij +
1
2
Qij (x , x)

Qij (x , x) = ∑
k∈K

σik (x) σjk (x) .

Zakai equation of filtering requires super-parabolicity.

Stratonovich is always well posed.
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Proof of well posedness: auxiliary variables

θ (t) = etAθ0 − ∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dW k

s

vh (t) = σh · ∇etAθ0 − ∑
k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dW k

s

for h ∈ K . Equivalence by:

vk (t) : = σk · ∇θ (t)

v (t) : = (vk (t))k∈K

θ (t) = etAθ0 +
∫ t

0
σh · ∇e(t−s)Aq (s) ds − ∑

k∈K

∫ t

0
e(t−s)Avk (s) dW

k
s
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Proof of well posedness: auxiliary variables

Consider the space XT of vectors (vk (·))k∈K such that vk ∈ L2F (0,T ;H)

‖v‖2T := ∑
h∈K

E

∫ T

0
‖vh (t)‖2H dt.

It is a Hilbert space and ‖v‖T is the induced norm. Consider

vh (t) = σh · ∇etAθ0 − ∑
k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dW k

s

for h ∈ K .
Theorem
There exists a unique solution (vk (·))k∈K ∈ XT .
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Proof of well posedness: auxiliary variables

Choose a number ε > 0 so small that η (1+ ε) < 1. Consider the map Γ
defined on XT as

(Γv)h (t) := wh (t) + ∑
k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dW k

s

h ∈ K , where wh (t) := σh · ∇etAθ0. We have

‖Γv‖2T ≤
(
1+

4
ε

)
∑
h∈K

∫ T

0
E
[
‖wh (t)‖2L2

]
dt

+ (1+ ε) ∑
h∈K

∫ T

0
E

∥∥∥∥∥∑
k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dW k

s

∥∥∥∥∥
2

L2

 dt.
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Proof of well posedness: auxiliary variables

(1+ ε) ∑
h∈K

∫ T

0
E

∥∥∥∥∥∑
k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dW k

s

∥∥∥∥∥
2

L2

 dt
= (1+ ε) ∑

h∈K

∫ T

0

∫ T

s
E

[
∑
h∈K

∥∥∥σh · ∇e(t−s)Avk (s)
∥∥∥2
L2

]
dtds

≤ −2η (1+ ε) ∑
k∈K

∫ T

0

∫ T

s

〈
Ae(t−s)Avk (s) , e(

t−s)Avk (s)
〉
dtds

≤ η (1+ ε) ‖v‖2T (−2
∫ T

s

〈
Ae(t−s)Ah, e(t−s)Ah

〉
dt ≤ ‖h‖2H )

∥∥Γv ′ − Γv ′′
∥∥2
T ≤ η (1+ ε)

∥∥v ′ − v ′′∥∥2T .
Since η (1+ ε) < 1, Γ is a contraction (independently of T ).
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Equation for the average

Defined
Θ (t, x) := E [θ (t, x)] .

and assumed θ0, q deterministic,

Theorem
Θ (t, x) is a (weak or mild) solution of the deterministic equation

∂tΘ = (κ∆+ L)Θ+ q
Θ|t=0 = θ0.
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When the random temperature is close to its mean

We ask here: when θ is close to Θ? Main assumption: define εQ ,κ ≥ 0 as
the smallest number such that∫ ∫

v (x)T Q (x , y) v (y) dxdy

≤ εQ ,κ

∫ (
κ |v (x)|2 + 1

2
v (x)T Q (x , x) v (x)

)
dx

for all v ∈ L2
(
D,Rd

)
.

We shall need
εQ ,κ small.

Below we shall interpret this assumption. Notice it is given only in terms
of Q and κ.
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When the random temperature is close to its mean

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ + q

∂tΘ = (κ∆+ L)Θ+ q

with the same θ0. Call C∞ (T , θ0, q) > 0 a constant such that

sup
s∈[0,T ]

E ‖θ (s)‖2∞ ≤ C∞ (T , θ0, q) .

Theorem
For every φ ∈ L2 (D),

E
[
〈θ (t)−Θ (t) , φ〉2

]
≤ εQ ,κ ‖φ‖2L2 C∞ (T , θ0, q) .
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Proof

θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds − ∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dW k

s .

Here etAθ0 +
∫ t
0 e

(t−s)Aq (s) ds is precisely Θ (t), hence

θ (t)−Θ (t) = − ∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dW k

s .

〈θ (t)−Θ (t) , φ〉 = ∑
k∈K

∫ t

0

〈
θ (s) , σk · ∇θe(t−s)Aφ

〉
dW k

s .

Then (here we take advantage of the cancellations of Itô integrals)

E
[
〈θ (t)−Θ (t) , φ〉2

]
= ∑

k∈K
E

∫ t

0

〈
θ (s) , σk · ∇e(t−s)Aφ

〉2
ds.
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Proof

Write φt ,s := e(t−s)Aφ. Then

∑
k∈K

〈
θ (s) , σk · ∇φt ,s

〉2
= ∑

k∈K

∫ ∫
θ (s, x) θ (s, y) σk (x) · ∇φt ,s (x) σk (y) · ∇φt ,s (y) dxdy

=
∫ ∫

θ (s, y)∇φt ,s (y)
T Q (x , y)∇φt ,s (x) θ (s, x) dxdy

≤ −εQ ,κ ‖θ (s)‖2∞
〈
Ae(t−s)Aφ, e(t−s)Aφ

〉
.
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Proof

Therefore

E
[
〈θ (t)−Θ (t) , φ〉2

]
≤ εQ ,κC∞ (T , θ0, q)

∫ t

0

〈
(−A) e(t−s)Aφ, e(t−s)Aφ

〉
ds

= εQ ,κC∞ (T , θ0, q)
∫ t

0

d
ds

∥∥∥e(t−s)Aφ
∥∥∥2
L2
ds

≤ εQ ,κC∞ (T , θ0, q) ‖φ‖2L2 .
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Relevance of the result. An example

Infinite channel
D = R× [−1, 1]

θ (x1,±1) = σk (x1,±1) = 0 for every x1 ∈ R, k ∈ K .
The theoretical results are similar to those above. In addition, let us
consider the stationary deterministic profile for a given q = q (x), element
of H: we have to solve

AΘst + q = 0

Θst = −A−1q.
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Relevance of the result. An example

In practice, assume that in a region x ∈ [−L, L]× [−1, 1] the function
q (x) is equal to a constant q, and both the stationary solution Θst (x)
and Q (x , x) depend only on the vertical direction y ∈ [−1, 1] and they
are symmetric with respect to y = 0. The equation

div
((

κI +
1
2
Q (x , x)

)
∇Θst (x)

)
= −q (x)

becomes
∂y ((κ +Q22 (y)) ∂yΘst (y)) = −q.
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Relevance of the result. An example

The solution of the previous equation is

Θst (y) = −
∫ y

−1

qs
κ +Q22 (s)

ds.
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Concerning the assumption

Recall
E
[
〈θ (t)−Θ (t) , φ〉2

]
≤ εQ ,κ ‖φ‖2L2 C∞ (T , θ0, q)

where εQ ,κ is given by∫ ∫
v (x)T Q (x , y) v (y) dxdy

≤ εQ ,κ

∫ (
κ |v (x)|2 + 1

2
v (x)T Q (x , x) v (x)

)
dx .

The question is:
When is εQ ,κ very small?
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The assumption for domains without boundary

When D "has no boundary" (torus or full space), we may take
Q (x , y) of very special form (e.g. Kraichnan noise, including
Kolmogorov 41).

In this case it is easy to make examples where∫ ∫
v (x)T Q (x , y) v (y) dxdy is very small ( ∼ operator norm)

∫ 1
2
v (x)T Q (x , x) v (x) dx is very large ( ∼ operator trace).

Hence the following holds with small εQ ,κ (we do not need the term∫
κ |v (x)|2 dx)∫ ∫

v (x)T Q (x , y) v (y) dxdy ≤ εQ ,κ

∫ 1
2
v (x)T Q (x , x) v (x) dx .
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The assumption for domains with boundary

When D has a boundary (our case), Q degenerates at the boudary
(σk |∂D = 0).
Then the term

∫
1
2v (x)

T Q (x , x) v (x) dx does not help so much.

We have examples which satisfy∫ ∫
v (x)T Q (x , y) v (y) dxdy ≤ εQ ,κ

∫
κ |v (x)|2 dx

with very small εQ ,κ.
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The 3D case. Passive magnetic field

The equations for a magnetic field M in a fluid u are

∂tM + u · ∇M = η∆M +M · ∇u.

Similarly to the scalar case, we model u by a white noise, with the
Stratonovich interpretation:

dM + ∑
k∈K

σk · ∇M ◦ dW k
t = η∆Mdt + ∑

k∈K
M · ∇σk ◦ dW k

t .

The equation can be written as

dM = (η∆+ L)Mdt + Itô terms

for a suitable second order differential operator L. And M := E [M ]
satisfies

∂tM = (η∆+ L)M.
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The 3D case. Passive magnetic field

Thus, as above, the question arises whether E
[〈
M (t)−M (t) , φ

〉2]
is small.

There exists the following conjecture:
F. Krause, K.-H. Rädler, Mean Field Magnetohydrodynamics, 1980,
page 12: "homogeneous isotropic mirror symmetric turbulence only
influences the decay rate of the mean magnetic fields, which is
enhanced in almost all cases of physical interest."

Unfortunately, this problem remains open. Let us explain why.
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The 3D case. Passive magnetic field. The corrector

Define
BkM = M · ∇σk − σk · ∇M

Then the corrector is
1
2 ∑
k∈K

BkBkM.

We have

BkBkM = (BkM) · ∇σk − σk · ∇ (BkM)
= (M · ∇σk − σk · ∇M) · ∇σk − σk · ∇ (M · ∇σk − σk · ∇M)

= (M · ∇σk ) · ∇σk − (σk · ∇M) · ∇σk

−σk · ∇ (M · ∇σk ) + σk · ∇ (σk · ∇M) .

Franco Flandoli, Scuola Normale Superiore, April-May 2021, Waseda University, Tokyo, Japan ()Stochastic Partial Differential Equations in Fluid Mechanics Lecture 5: Transport noise (continuation)May 5, 2021 34 / 44



The 3D case. Passive magnetic field. The corrector

Lemma

1
2 ∑
k∈K

BkBkM = LscalarM −∑
i ,j

(
∑
k∈K

σik∂jσk

)
∂iMj

+
1
2 ∑

j

(
∑
i

∑
k∈K

(
∂jσ

i
k∂iσk − σik∂i∂jσk

))
Mj .

Lemma
Assume the noise is space-homogeneous, Q (x , y) = Q (x − y). Then

1
2 ∑

j

(
∑
i

∑
k∈K

(
∂jσ

i
k∂iσk − σik∂i∂jσk

))
Mj = 0.
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The 3D case. Passive magnetic field. The corrector

Lemma
If the noise is space-homogeneous, then

1
2 ∑
k∈K

BkBkM = LscalarM −∑
j

∂jQ (0) · ∇Mj

where ∂jQ (0) is the matrix with entries (∂jQα,i ) (0). In the particular case
when

Q (−x) = Q (x)
(mirror symmetry) then ∂jQ (0) = 0 and thus

1
2 ∑
k∈K

BkBkM = LscalarM.
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The 3D case. Passive magnetic field

Thus we see that the Itô-Stratonovich corrector is similar to the scalar
case, at least under suitable assumptions.

The problem is that we need estimates on M, in order to prove that
〈M (t) , φ〉 −

〈
M (t) , φ

〉
is small.

These estimates, at present, are not available. The diffi culty is due to
the term

M · ∇σk .

Let us see for instance what happens to energy estimates.
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The 3D case. Passive magnetic field

dM + ∑
k∈K

σk · ∇M ◦ dW k
t = η∆Mdt + ∑

k∈K
M · ∇σk ◦ dW k

t

d ‖M (t)‖2L2 + 2 ∑
k∈K
〈σk · ∇M,M〉 ◦ dW k

t

= −2η ‖∇M (t)‖2L2 dt + 2 ∑
k∈K
〈M · ∇σk ,M〉 ◦ dW k

t

〈σk · ∇M,M〉 = 0
but

〈M · ∇σk ,M〉 6= 0.
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The 3D case. Passive magnetic field. Only transport

If we consider the reduced model

dM + ∑
k∈K

σk · ∇M ◦ dW k
t = η∆Mdt

we can prove bounds on M and deduce that

〈M (t) , φ〉 −
〈
M (t) , φ

〉
is small in mean square.
The physical meaning of this assumption, or some extensions, are under
investigation.
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The 3D case. Navier-Stokes equations. Only transport
noise

Consider, on the 3D torus, the vorticity equation with noise only in the
transport component:

∂tω+ u · ∇ω+ P
(
u′ ◦ ∇ω

)
= ∆ω+ω · ∇u.

with noise u′ of the form

u′ (t, x) = ∑
k

σk (x) ∂tW k
t

Notice the projection in P (u′ ◦ ∇ω), necessary for compatibility, but
source of great technical diffi culties (the Itô-Stratonovich corrector is
a nonlocal differential operator).

Call ω the unique local solution, for ω0 ∈ H (the space L2 with usual
conditions).
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The 3D case. Navier-Stokes equations. Only transport
noise

Theorem
Given T ,R0, ε > 0 there exists (σk )k∈K with the following property: for
every initial condition ω0 ∈ H with ‖ω0‖H ≤ R0, the 3D Navier-Stokes
equations with transport noise (and viscosity = 1) has a global unique
solution on [0,T ], up to probability ε.
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Summary

In this chapter we discuss transport noise. Transport-stretching type
in 3D is less understood.

It introduces, by Wong-Zakai limit, an auxiliary elliptic operator.

In the case of heat transport it proves the property of eddy dissipation.

Similar ideas may be applied to the internal structure of the fluid, by
a large/small scale analysis and stochastic modeling of small scales.

In 2D it explains eddy viscosity: turbulence enhances the viscosity of
the fluid itself
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Summary

In 3D, just transport noise (no stretching noise): it improves the
theory of 3D Navier-Stokes equations, delaying the blow-up of smooth
solutions.

Deep research is needed to understand the case of
transport-stretching noise.

Heurisitc remark:

we started from additive perturbations motivated by the roughness of
boundaries
additive noise in the small scales lead to multiplicative transport noise
in the large scales
transport noise has a better regularizing power.

At the end it seems that it is the additive noise at small scales which
regularizes!
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Thank you!
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