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Summary and outline

In the first lecture we have discussed the origin of noise from
boundary perturbations.

It was an additive noise, or later on a state-dependent noise to
account for variability of mean flow.

Today we start investigation of transport noise

discussing its physical origin from large-small scale decomposition

and its consequences on turbulence theory.
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Simplified dynamics near the boundary

Let us oversimplify the fluid dynamics near the boundary:

∂tu +∇p = ν∆u − 1
ε
u +

1
ε ∑
k∈K

σk∂tW k

div u = 0

u|∂D = 0

This is Stokes model, strongly incorrect in itself for turbulent fluids, but
complemented by the creation of eddies/vortices (the term
1
ε ∑k∈K σk∂tW k ) and an extra-dissipation term of friction type (− 1εu) to
compensate the extra input of energy (in the average) due to the noise.
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Scaling limit of the previous model

∂tuε +∇pε = ν∆uε − 1
ε
uε +

1
ε ∑
k∈K

σk∂tW k

Recalling A = νP∆,

uε (t) = et(A−
1
ε )u0 +

1
ε ∑
k∈K

∫ t

0
e(t−s)(A−

1
ε )σkdW

k
s .

Alternatively, we may rewrite by integration by parts (Chapter 1).
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Let us introduce two notations:

W ε (t, x) =
∫ t

0
uε (s, x) ds

W (t, x) = ∑
k∈K

σk (x)W
k
t .

Then

W ε (t) =
1
ε ∑
k∈K

∫ t

0

∫ s

0
e(s−r )(A−

1
ε )σkdW

k
r ds

=
1
ε ∑
k∈K

∫ t

0

∫ t

r
e(s−r )(A−

1
ε )σkdsdW

k
r

=
1
ε ∑
k∈K

∫ t

0

(
A− 1

ε

)−1 [
e(t−r )(A−

1
ε ) − 1

]
σkdW

k
r
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Recall:

W ε (t, x) =
∫ t

0
uε (s, x) ds

W (t, x) = ∑
k∈K

σk (x)W
k
t

W ε (t) =
1
ε

(
A− 1

ε

)−1
∑
k∈K

∫ t

0
e(t−r )(A−

1
ε )σkdW

k
r

−1
ε

(
A− 1

ε

)−1
W (t) .

Yosida approximations in semigroup theory:

lim
λ→∞

λ (λ− A)−1 h = h for every h ∈ H.
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Summarizing: Stokes converges to white noise

∂tuε +∇pε = ν∆uε − 1
ε
uε +

1
ε ∑
k∈K

σk∂tW k

W ε (t, x) =
∫ t

0
uε (s, x) ds

W (t, x) = ∑
k∈K

σk (x)W
k
t .

Lemma

lim
ε→0

E
[
‖W ε (t)−W (t)‖2H

]
= 0.
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Temperature (as a passive scalar) in a turbulent fluid

θ (t, x) = temperature, κ > 0 heat diffusion constant

∂tθ + u · ∇θ = κ∆θ

u · ∇θ = transport due to the fluid motion. If

u = uε above

and we take the limit ε→ 0, and we apply the heuristics of Wong-Zakai
result, we find the model

∂tθ + ∑
k∈K

(σk · ∇θ) ◦ ∂tW k = κ∆θ

where the symbol ◦ stands for the Stratonovich operation.
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Eddy diffusion

∂tθ + ∑
k∈K

(σk · ∇θ) ◦ ∂tW k = κ∆θ

In Itô form:
∂tθ + ∑

k∈K
(σk · ∇θ) ∂tW k = (κ∆+ L) θ (1)

L suitable second order elliptic differential operator. Mean temperature
profile:

Θ (t, x) = E [θ (t, x)]

∂tΘ = (κ∆+ L)Θ.

Turbulent diffusion increases the original diffusion, the so called eddy
diffusion.
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A Wong-Zakai result

Key to the previous slide is the emergence of the additional operator L; we
feel we need to justify it, at least heuristically. Compare the equations

∂tθ
ε + uε · ∇θε = κ∆θε

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ

with
θε|t=0 = θ|t=0 = θ0 ∈ L∞ (D)

uε (t) =
1
ε ∑
k∈K

∫ t

0
e−

1
ε (t−s)σkdW

k
s .

Both have unique weak solutions θε and θ.
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A Wong-Zakai result

∂tθ
ε + uε · ∇θε = κ∆θε

∂tθ + ∑
k∈K

(σk · ∇θ) ∂tW k = (κ∆+ L) θ

Theorem
If σk ∈ D (A), φ ∈ C∞ (D), then, for every t ≥ 0,

lim
ε→0
〈θε (t) , φ〉 = 〈θ (t) , φ〉

in probability, with

(Lθ) (x) = ∑
k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)) .
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Idea of the proof. Technical a priori estimates

Several technical estimates on θε are needed. Example:

‖θε (t)‖2L2 + 2κ
∫ t

0
‖∇θε (s)‖2L2 ds = ‖θ0‖

2
L2

‖θε (t)‖∞ ≤ ‖θ0‖∞ .

These are independent of ε and even deterministic. Others are more
diffi cult, ε-dependent, and omitted here.
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Idea of the proof. Weak formulation and partition of the
interval

Let πε = (tε
i ) be a partition of [0,T ]. Apply it to the weak formulation:∫ t

0
〈uε (s) · ∇φ, θε (s)〉 ds = ∑

ti≤t

∫ ti+1

ti
〈uε (s) · ∇φ, θε (s)〉 ds.

Assume noise of dimension 1:

uε (t, x) = σ (x) ξε
t

where

W ε
t :=

∫ t

0
ξε (s) ds → Wt .

Franco Flandoli, Scuola Normale Superiore, April-May 2021, Waseda University, Tokyo, Japan ()Stochastic Partial Differential Equations in Fluid Mechanics Lecture 4: Transport noiseApril 27, 2021 13 / 36



Then∫ ti+1

ti
〈uε (s) · ∇φ, θε (s)〉 ds

=
∫ ti+1

ti
〈σ · ∇φ, θε (s)〉 ξε

sds

=
∫ ti+1

ti
〈σ · ∇φ, θε (ti )〉 ξε

sds +
∫ ti+1

ti
〈σ · ∇φ, (θε (s)− θε (ti ))〉 ξε

sds

= 〈σ · ∇φ, θε (ti )〉
(
W ε
ti+1 −W

ε
ti

)
+
∫ ti+1

ti
〈σ · ∇φ, (θε (s)− θε (ti ))〉 ξε

sds.

The sum over the partition of the first term converge to the Itô integral∫ t
0 〈σ · ∇φ, θ (s)〉 dWs .
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More diffi cult is to understand the limit of

∑
ti≤t

∫ ti+1

ti
〈σ · ∇φ, (θε (s)− θε (ti ))〉 ξε

sds.

Use

〈ψ, θε (s)− θε (ti )〉 −
∫ s

ti
〈σ · ∇ψ, θε (r)〉 ξε

rdr =
∫ s

ti
〈κ∆ψ, θε (r)〉 dr

with
ψ = σ · ∇φ.
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∑
ti≤t

∫ ti+1

ti
〈σ · ∇φ, (θε (s)− θε (ti ))〉 ξε

sds

= ∑
ti≤t

∫ ti+1

ti

∫ s

ti
〈σ · ∇ (σ · ∇φ) , θε (r)〉 ξε

r ξ
ε
sdrds

+ ∑
ti≤t

∫ ti+1

ti

(∫ s

ti
〈κ∆ (σ · ∇φ) , θε (r)〉 dr

)
ξε
sds.

We have

lim
ε→0 ∑

ti≤t

∫ ti+1

ti

(∫ s

ti
〈κ∆ (σ · ∇φ) , θε (r)〉 dr

)
ξε
sds = 0.
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It remains:

∑
ti≤t

∫ ti+1

ti

∫ s

ti
〈σ · ∇ (σ · ∇φ) , θε (r)〉 ξε

r ξ
ε
sdrds

which, as above,

= ∑
ti≤t
〈σ · ∇ (σ · ∇φ) , θε (ti )〉

∫ ti+1

ti

∫ s

ti
ξε
r ξ

ε
sdrds

+ remainder (which goes to zero).
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Let us go back to the multidimensional noise:

∑
k∈K

∑
ti≤t
〈σk · ∇ (σk ′ · ∇φ) , θε (ti )〉

∫ ti+1

ti

∫ s

ti
ξk ,εr ξk

′,ε
s drds.

The quadratic variation property

lim
ε→0 ∑

ti≤t

∫ ti+1

ti

∫ s

ti
ξk ,εr ξk

′,ε
s drds → 1

2
δk ,k ′t

implies

−→ δk ,k ′

2

∫ t

0
〈σk · ∇ (σk ′ · ∇φ) , θ (s)〉 ds.
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End of the proof

Summarizing, in the weak sense,

lim
ε→0

∫ t

0
uε (s) · ∇θε (s) ds

= ∑
k∈K

∫ t

0
σk · ∇θdW k

s +
1
2 ∑
k∈K

∫ t

0
(σk · ∇σk · ∇) θ (s) ds.

Thus the Wong-Zakai (or Stratonovich) corrector is

(Lθ) (x) = ∑
k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)) .
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Divergence form of the operator

(Lθ) (x) = ∑
k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)) .

Componentwise we can write

(Lθ) (x) = ∑
k∈K

d

∑
i ,j=1

σik (x) ∂i

(
σjk (x) ∂j θ (x)

)
.

Since ∑d
i=1 ∂iσ

i
k (x) = 0, we deduce also

(Lθ) (x) =
d

∑
i ,j=1

∂i


∑
k∈K

σik (x) σjk (x)︸ ︷︷ ︸


?

∂j θ (x)

 .
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Covariance (matrix-) function of the noise

Q (x , y) = E [W (t, x)⊗W (t, y)] x , y ∈ D

Q (x , y) = ∑
k∈K

σk (x)⊗ σk (y) .

Therefore we have found

(Lθ) (x) =
d

∑
i ,j=1

∂i (Qij (x , x) ∂j θ (x)) .

Ellipticity:
d

∑
i ,j=1

Qij (x , x) ξ i ξ j = E
[
|W (t, x) · ξ|2

]
≥ 0

for all ξ = (ξ1, ..., ξd ) ∈ Rd .
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Additional stochastic transport in the Navier-Stokes
equations

Stochastic transport of passive scalars (the topic described in the
previous section) is well known in the literature.

On the contrary, we now introduce an analogous idea for the internal
modeling of a fluid, which is less common and still debated.

In some cases however it leads to results observed in the real world,
hence it deserves to be investigated.
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Large and small scales

u (t, x) = u (t, x) + u′ (t, x)

u (t, x) containing most of the large scales

u′ (t, x) mostly related to the small scales.

A precise subdivision is impossibile, due to the multiscale nature of
the problem.
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Large and small scales by projections

Attempt of precise subdivision by means of projections:

1 given (en) c.o.s. of H, associated projections πn, define

u (t) = πnu (t)

2 given mollifiers θε (x) = ε−d θ
(
ε−1x

)
, define

u (t) = θε ∗ u (t) .

Drawback: diffi cult interlaced equations.
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Large and small scales by a simplified system

Consider the Navier-Stokes type system

∂tu +
(
u + u′

)
· ∇u +∇p = ν∆u + f

∂tu′ +
(
u + u′

)
· ∇u′ +∇p′ = ν∆u′ + f ′

div u = div u′ = 0, u|∂D = u′|∂D = 0
u (0) = u0, u′ (0) = u′0.

It is equivalent, by u = u + u′, p = p + p′, to the original equation

∂tu + u · ∇u +∇p = ν∆u + f
div u = 0, u|∂D = 0, u (0) = u0

when

f = f + f ′

u0 = u0 + u′0.
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Stochastic modeling

Small scales are quite concentrated in a region near the boundary, the
large scales are active everywhere.
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Stochastic modeling

Thus we replace

∂tu +
(
u + u′

)
· ∇u +∇p = ν∆u + f

∂tu′ +
(
u + u′

)
· ∇u′ +∇p′ = ν∆u′ + f ′

by the model

∂tu +
(
u + u′

)
· ∇u +∇p = ν∆u + f

∂tu′ +∇p′ = ν∆u′ − 1
ε
u′ +

1
ε ∑
k

σk∂tW k

where both equations are considered in the full domain D but the second
one is mostly active near the boundary thanks to the fact that the vector
fields σk have small support near the boundary.
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Closed model for large scales

Let us look only at the equation of large scales

∂tu + u · ∇u +∇p = ν∆u + f − u′ · ∇u.

If we take the limit ε→ 0 and argue as in the linear case of temperature
diffusion, we get the equation

∂tu + u · ∇u +∇p = (ν∆+ L) u + f − ∑
k∈K

(σk · ∇u) ∂tW k .

This is a closed model of large scales, influenced by turbulent small scales.
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Is it useful and realistic?

This diffi cult question is under investigation. Let us only mention one
positive fact. Consider the associated deterministic equation

∂tU + U · ∇U +∇P = (ν∆+ L)U + f
divU = 0, U |∂D = 0, u′ (0) = u0

This equation has, for suitalbe L, stronger dissipativity properties.
In d = 2 we can prove that u is close to U for suitable noise. This is
the observed phenomenon of eddy viscosity : turbulence improves the
viscous properties.
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The 3D Navier-Stokes equations with just transport

Preliminary: define the vorticity as

ω = curl u

ω
d=2
= ∂2u1 − ∂1u2.

It satisfies the equation

∂tω+ u · ∇ω︸ ︷︷ ︸
transport

= ν∆ω+ ω · ∇u︸ ︷︷ ︸
stretching

+ curl f .

∂tω+ u · ∇ω
d=2
= ν∆ω+ curl f
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The 2D case

Now, apply stochastic model reduction as above to the vorticity:

∂tω+ u · ∇ω
d=2
= ν∆ω− u′ · ∇ω+ curl f

↓

∂tω+ u · ∇ω
d=2
= ν∆ω− ∑

k∈K
σk · ∇ω ◦ ∂tW k + curl f .

This is an excellent equation, similar to the one of temperature diffusion
and transport. In particular, one can prove (suitable noise) that ω is close
to the deterministic solution of

∂tΩ+ U · ∇Ω d=2
= (ν∆+ L)Ω+ curl f .
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3D case with transport and stretching

∂tω+ u · ∇ω︸ ︷︷ ︸
transport

− ω · ∇u︸ ︷︷ ︸
stretching

= ν∆ω+ curl f .

↓

∂tω+ (u · ∇ω−ω · ∇u) d=3= ν∆ω+ curl f
− ∑
k∈K

(σk · ∇ω−ω · ∇σk ) ◦ ∂tW k

But the link with an equation of the form

∂tΩ+ U · ∇Ω d=3
= (ν∆+ L)Ω+Ω · ∇U + curl f

is not undestood until now.
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3D case with only transport

On the contrary, if we investigate the model, in 3D, with just transport
noise,

∂tω+ (u · ∇ω−ω · ∇u) d=3= ν∆ω+ curl f
− ∑
k∈K

P (σk · ∇ω) ◦ ∂tW k

it is possible to prove a rigorous link with

∂tΩ+ U · ∇Ω d=3
= (ν∆+ L)Ω+Ω · ∇U + curl f

Notice that we have introduced the projection P : L2 → H in this
equation: in general the term σk · ∇ω is not divergence free, while the
sum of all other terms is divergence free.
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3D case with only transport

One can prove (F.F. - Dejun Luo, PTRF 2021) that the solution ω of
the stochastic Navier-Stokes equations is close (in a suitable
topology) to the solution Ω of the deterministic Navier-Stokes
equations with increased dissipation.

This fact implies that well-posedness is improved by noise.

[In the deterministic case, the larger is the viscosity, the longer is the
time interval of existence and uniqueness of smooth solutions; this
interval becomes even infinite when the sizes of the initial
condition/forcing and the viscosity satisfy a certain relation. ]

This is the first known regularization by noise result for 3D
Navier-Stokes equations. It leaves open the very diffi cult question
whether the same result holds when the noise affect also the
stretching term.
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Summary

In this chapter we discusstransport noise. Transport-stretching type in
3D is less understood.

It introduces, by Wong-Zakai limit, an auxiliary elliptic operator.

In the case of heat transport it proves the property of eddy dissipation.

Similar ideas may be applied to the internal structure of the fluid, by
a large/small scale analysis and stochastic modeling of small scales.

In 2D it explains eddy viscosity: turbulence enhances the viscosity of
the fluid itself
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Summary

In 3D, just transport noise (no stretching noise): it improves the
theory of 3D Navier-Stokes equations, delaying the blow-up of smooth
solutions.

Deep research is needed to understand the case of
transport-stretching noise.

Heurisitc remark:

we started from additive perturbations motivated by the roughness of
boundaries
additive noise in the small scales lead to multiplicative transport noise
in the large scales
transport noise has a better regularizing power.

At the end it seems that it is the additive noise at small scales which
regularizes!
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