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1 Introduction n.1: stochastic heat transport

Let us oversimplify the fluid dynamics near the boundary. The following view is highly
phenomenological and should be subject to much deeper research.

We assume that the fluid, in a region near the boundary, may be approximately de-
scribed by the equations

∂tu+∇p = ν∆u− 1

ε
u+

1

ε

∑
k∈K

σk∂tW
k

div u = 0

u|∂D = 0

This is Stokes model, strongly incorrect in itself for turbulent fluids, but complemented by
the creation of eddies/vortices (the term 1

ε

∑
k∈K σk∂tW

k) and an extra-dissipation term
of friction type (−1εu) to compensate the extra input of energy (in the average) due to
the noise. We have intentionally parametrized the problem by ε > 0, in the very precise
way written above, because we want to explore here a special scaling limit. The abstract
semigroup formulation of this problem, with A given by the operator νP∆ as in the previous
chapters, is

u (t) = et(A−
1
ε )u0 +

1

ε

∑
k∈K

∫ t

0
e(t−s)(A−

1
ε )σkdW

k
s .

In Chapter 1, in order to avoid Itô integrals and cover rough noise sources of very different
type, we have integrated by parts and used the following formulation:

u (t) = et(A−
1
ε )u0 +

1

ε

∑
k∈K

σkW
k
t +

1

ε

∑
k∈K

∫ t

0
e(t−s)(A−

1
ε )
(
A− 1

ε

)
σkW

k
s ds.

When W k
s are independent Brownian motions, both formulations are meaningful and they

are equivalent. In the next lines we shall apply a Fubini type theorem to the stochastic
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integral: one way to justify it rigorously is precisely to use the last formulation which
involves only Lebesgue integrals.

Let us introduce two notations:

W ε (t, x) : =

∫ t

0
u (s, x) ds

W (t, x) =
∑
k∈K

σk (x)W k
t .

Then

W ε (t) =
1

ε

∑
k∈K

∫ t

0

∫ s

0
e(s−r)(A−

1
ε )σkdW

k
r ds

=
1

ε

∑
k∈K

∫ t

0

∫ t

r
e(s−r)(A−

1
ε )σkdsdW

k
r

=
1

ε

∑
k∈K

∫ t

0

(
A− 1

ε

)−1 [
e(t−r)(A−

1
ε ) − 1

]
σkdW

k
r

=
1

ε

(
A− 1

ε

)−1∑
k∈K

∫ t

0
e(t−r)(A−

1
ε )σkdW

k
r −

1

ε

(
A− 1

ε

)−1
W (t) .

Now we use the fact (well known in the framework of Yosida approximations of semigroup
theory) that

lim
λ→∞

λ (λ−A)−1 h = h

for all h ∈ H; being A−1 compact in our example, we can easily verify this property using
the spectral decomposition. With minor additional arguments that we leave as exercise, it
follows:

Lemma 1
lim
ε→0

E
[
‖W ε (t)−W (t)‖2H

]
= 0.

The result is also uniform in time, with supremum inside the expected value. The mes-
sage of this lemma is that u converges in distribution to a white noise, the time derivative
of the space-dependent Brownian motion W .

Why is this an interesting regime? Let us investigate this issue in the case of the
evolution of an auxiliary quantity: heat. Assume the fluid has a variable temperature and
is not strongly influenced by temperature, hence we do not change its equation of motion.
But temperature, next indicated by θ (t, x), evolves according to the diffusion-transport
equation

∂tθ = κ∆θ + u · ∇θ

2



where κ > 0, typically small, is the heat diffusion constant and u · ∇θ is the transport due
to the fluid motion. If we take the limit ε → 0 in the model of fluid above and we apply
the heuristics of Wong-Zakai result, we find the model

∂tθ = κ∆θ +
∑
k∈K

(σk · ∇θ) ◦ ∂tW k

where the symbol ◦ stands for the Stratonovich operation. Below we explain why the
correct Itô interpretation of this equation is

∂tθ = (κ∆ + L) θ +
∑
k∈K

(σk · ∇θ) ∂tW k (1)

where the stochastic term is now understood in the classical Itô sense and L is a suitable
linear operator, precisely a second order elliptic differential operator, that we shall discover.
The result of this modeling step is that we end-up with model (1) for the heat diffusion
under a turbulent velocity field. Taking (heuristically at this stage) expectation of each
term and introducing the mean temperature profile

Θ (t, x) = E [θ (t, x)]

we get
∂tΘ = (κ∆ + L) Θ.

If the noise has suitable properties, the elliptic operator L strongly increases the dissipation
of the term κ∆. Moreover we shall prove that the random field θ (t, x) is close to its average
Θ (t, x) under suitable assumptions. This will lead to the statement that turbulent diffusion
increases the original diffusion, a fact that is observed in experiments. This model has the
power to explain a well known experimental phenomenon, the so called eddy diffusion.

2 Introduction n.2: additional stochastic transport in the
Navier-Stokes equations

Stochastic transport of passive scalars (the topic described in the previous section) is well
known in the literature. On the contrary, this section introduces an analogous idea for the
internal modeling of a fluid, which is less common and still debated. In some cases however
it leads to results observed in the real world, hence it deserves to be investigated.

Fluids, in their complex regimes that we loosely name turbulent, show the activation of
several scales: we observe large scale motions and small scale ones at the same time, with
several intermediate scales; very small vortices, larger and larger ones, up to motion at the
scale of the full domain. Oversimplifying this multiscale picture, let us think we want to
split the fluid velocity in two components

u (t, x) = u (t, x) + u′ (t, x)
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the first one containing most of the large scales, the second one mostly related to the small
scales. A precise subdivision is impossibile, due to the multiscale nature of the problem.

An attempt to perform a precise subdivision is by means of projections. Let us mention
two of them. One is by Fourier projections and was used already above as a technical tool
for the rigorous investigation. If (en) is a complete orthonormal system of H as described
in Chapter 2 and πn are the associated finite dimensional projections, we may define

u (t) = πnu (t)

and thus u′ (t) = (I − πn)u (t). The second approach is to take a smooth, possibly compact
support, probability density θ, introduce the mollifiers θε (x) = ε−dθ

(
ε−1x

)
(where d is the

space dimension) and define
u (t) = θε ∗ u (t)

with suitable corrections in bounded domains to cope with the problem that θε (· − x0)
may not have the support in D.

With these definitions we guarantee a priori that u (t) is made only of "large scale
structures". However, the equations for u (t) and u′ (t) are interlaced in a quite complex
manner. An alternative approach is to consider the Navier-Stokes type system

∂tu+
(
u+ u′

)
· ∇u+∇p = ν∆u+ f

∂tu
′ +
(
u+ u′

)
· ∇u′ +∇p′ = ν∆u′ + f ′

div u = div u′ = 0, u|∂D = u′|∂D = 0

u (0) = u0, u′ (0) = u′0.

This system is equivalent to the original equation

∂tu+ u · ∇u+∇p = ν∆u+ f

div u = 0, u|∂D = 0, u (0) = u0

when

f = f + f ′

u0 = u0 + u′0.

Indeed, if (u, p;u′, p′) is a solution of the system, then u = u+ u′, p = p+ p′ is a solution
of the equations; viceversa, if (u, p) is a solution of the equations and (u, p) is a solution of

∂tu+ u · ∇u+∇p = ν∆u+ f

then u′ = u− u, p′ = p− p is a solution of

∂tu
′ +
(
u+ u′

)
· ∇u′ +∇p′ = ν∆u′ + f ′.
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In the system we impose the small-large scale subdivision only on data: on the initial
condition and on the forcing term. At least for a short time, this subdivision is expected
to be maintained, approximately. How much it is maintained for longer times is a very
diffi cult issue; certainly u, for longer times is corrupted by small scales and u′ by large
scales; the open problem is how much.

Now let us come to stochastic modeling: looking at real situations with a boundary
and the vortices produced near it, we suspect that the small scales are quite concentrated
in a region near the boundary, the large scales are active everywhere.

Thus we replace the system above with the model

∂tu+
(
u+ u′

)
· ∇u+∇p = ν∆u+ f

∂tu
′ +∇p′ = ν∆u′ − 1

ε
u′ +

1

ε

∑
k

σk∂tW
k

div u = div u′ = 0, u|∂D = u′|∂D = 0

u (0) = u0, u′ (0) = u′0

where both equations are considered in the full domain D but the second one is mostly
active near the boundary thanks to the fact that the vector fields σk have small support
near the boundary.

Let us look only at the equation of large scales

∂tu+ u · ∇u+∇p = ν∆u+ f − u′ · ∇u.

If we take the limit ε→ 0 and argue as in the linear case of temperature diffusion, we get
the equation

∂tu+ u · ∇u+∇p = (ν∆ + L)u+ f −
∑
k∈K

(σk · ∇u) ∂tW
k.

This is a closed model of large scales, influenced by turbulent small scales.
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Is it useful and realistic? This diffi cult question is under investigation. Let us only
mention one positive fact. Consider the associated deterministic equation

∂tU + U · ∇U +∇P = (ν∆ + L)U + f

divU = 0, U |∂D = 0, u′ (0) = u0

(if u0 and f are deterministic, otherwise take their expectations). This equation has,
for suitalbe L, stronger dissipativity properties that the original one with just ν∆. If
we can prove that u is close to U , then we get that the large scale motion u reveals a
stronger dissipativity, due to the presence of turbulent small scales. This is the observed
phenomenon of eddy viscosity : turbulence improves the viscous properties. Mathematically,
we can prove that u is close to U only in d = 2; in d = 3 there are essential obstructions.
But at least for d = 2 we see that this model leads to realistic results.

3 The 3D Navier-Stokes equations with just transport

Preliminary to the concept described in this section, it is the concept of vorticity, mentioned
several times in these lectures but never used explicitly, also because a rigorous use of
vorticity in bounded domains lead to troubles.

Vorticity is defined as
ω = curlu

and in d = 2 it is a vector perpendicular to the plane of motion, hence it can be described
by a scalar given by

ω
d=2
= ∂2u1 − ∂1u2.

From the Navier-Stokes equations, using some vector identities, we find the equation

∂tω + u · ∇ω = ν∆ω + ω · ∇u+ curl f

which has the advantage that the pressure is disappeared; but the term ω ·∇u, called vortex
stretching term, provokes several troubles (it is responsible for the increase of intensity of
the vorticity, which otherwise, for curl f = 0, would be just transported by u · ∇ω and
diffused by ν∆ω).

In d = 2 one can see that ω · ∇u = 0 (indeed u lives in the plane of motion, hence also
∇u, but ω is perpendicular to such plane) and therefore the equation simplifies into the
diffusion-transport equation

∂tω + u · ∇ω d=2
= ν∆ω + curl f

which is very useful in domains "without" boundary (the torus, the full space; when there
is a boundary, the big problem is that the boundary conditions for ω are not a given datum
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but part of the solution). It leads to additional invariants and apriori estimates of great
success.

Now, consider the topic discussed above of separating large and small scales and model
the small scales bu a noise. We may perform this argument at the level of vorticity, instead
of velocity. They are not equivalent, and which one is better for the Physics is still debated.
Let us discuss here the application of such idea at the vorticity level.

In 2D, the procedure above leads to the stochastic equation (let us write it here in
Stratonovich form for simplicity of notations)

∂tω + u · ∇ω d=2
= ν∆ω −

∑
k∈K

σk · ∇ω ◦ ∂tW k + curl f.

This is an excellent equation, similar to the one of temperature diffusion and transport.
In particular, one can discuss when ω is close to the deterministic solution of an equation
with increased dissipation of the form

∂tΩ + U · ∇Ω
d=2
= (ν∆ + L) Ω + curl f.

But let us discuss the 3D case. In this case we should find

∂tω + (u · ∇ω − ω · ∇u)
d=3
= ν∆ω + curl f

−
∑
k∈K

(σk · ∇ω − ω · ∇σk) ◦ ∂tW k

Indeed, in the original vorticity equation there are two quadratic terms

u · ∇ω − ω · ∇u

and in both of them we have to replace u by (u+ u′), and then u′ by noise. The previ-
ous stochastic equation has been investigated, at the level of local-in-time existence and
uniqueness, but the link with an equation of the form

∂tΩ + U · ∇Ω
d=3
= (ν∆ + L) Ω + Ω · ∇U + curl f (2)

is not undestood until now. Maybe there are fluid regimes where there is a link, but this
is still an open problem.

On the contrary, if we investigate the model, in 3D, with just transport noise,

∂tω + (u · ∇ω − ω · ∇u)
d=3
= ν∆ω + curl f

−
∑
k∈K

P (σk · ∇ω) ◦ ∂tW k

it is possible to prove a rigorous link with (2). Notice that we have introduced the projection
P : L2 → H in this equation: in general the term σk · ∇ω is not divergence free, while the
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sum of all other terms is divergence free, hence without the projection there would be no
solution in general. Moreover, notice that the previous model has been investigated only
on the 3D torus, to avoid the problem of the boundary conditions for the vorticity.

One can prove that the solution ω of the stochastic Navier-Stokes equations is close (in
a suitable topology) to the solution Ω of the deterministic Navier-Stokes equations (2) with
increased dissipation. This fact has a very important consequence: that well-posedness is
improved by noise. In the deterministic case, the larger is the viscosity, the longer is the
time interval of existence and uniqueness of smooth solutions; this interval becomes even
infinite when the sizes of the initial condition and the viscosity (and the forcing term if
it is not zero) satisfy a certain relation. Since the noise has the effect to introduce an
extra-dissipation, it has the effect to increase the length of the time interval of existence
and uniqueness of smooth solutions of the stochastic equation, length that again becomes
infinite under certain conditions.

This is the first known regularization by noise result for 3D Navier-Stokes equations; it
has been proved by Dejun Luo and F.F. in a recent work. It leaves open the very diffi cult
question whether the same result holds when the noise affect also the stretching term.

4 The Wong-Zakai (Stratonovich) corrector

In this section we consider the heat transport equation

∂tθ
ε = κ∆θε + uε · ∇θε

where uε is an approximation, in the senso of distributions in time, of the white noise∑
k∈K σk∂tW

k. We want to show the convergence to Stratonovich noise. There are rigorous
results in the literature on this issue, but we limit ourselves to an heuristic description, for
shortness.

Certainly if uε is smooth, we can say that θε is smooth. Hence the we could perform
the following computations in a very classical way. However, somewhere in the argument
it is necessary to have good estimates on θε, uniform in ε. These estimates hold only at
low level or regularity. For this reason we develop the next computations in a weak sense,
close to a rigorous proof, in spite of the fact that we do not give the details. Concerning
which uniform-in-ε estimates hold, at least two of them: energy estimates and maximum
principle hold

‖θε (t)‖2L2 + 2κ

∫ t

0
‖∇θε (s)‖2L2 ds = ‖θ0‖2L2

‖θε (t)‖∞ ≤ ‖θ0‖∞ .

In the weak formulation of the equation, let us consider the diffi cult term and split it on a
partition of the time interval:
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∫ t

0
〈uε (s) · ∇φ, θε (s)〉 ds =

∑
i

∫ ti+1

ti

〈uε (s) · ∇φ, θε (s)〉 ds.

Just for notational convenience (at the end we go back to the general case) assume uε (t)
is made of a single term

uε (t, x) = σ (x) ξε (t)

where

W ε (t) :=

∫ t

0
ξε (s) ds→Wt.

Then∫ ti+1

ti

〈uε (s) · ∇φ, θε (s)〉 ds

=

∫ ti+1

ti

〈σ · ∇φ, θε (s)〉 ξε (s) ds

=

∫ ti+1

ti

〈σ · ∇φ, θε (ti)〉 ξε (s) ds+

∫ ti+1

ti

〈σ · ∇φ, (θε (s)− θε (ti))〉 ξε (s) ds

= 〈σ · ∇φ, θε (ti)〉 (W ε (ti+1)−W ε (ti)) +

∫ ti+1

ti

〈σ · ∇φ, (θε (s)− θε (ti))〉 ξε (s) ds.

If the form of the approximations ξε is not bad (and those described above with the Stokes
problem are good), one can show that

∑
i

〈σ · ∇φ, θε (ti)〉 (W ε (ti+1)−W ε (ti))→
∫ t

0
〈σ · ∇φ, θ〉 dW

the limit object understood as an Itô integral. We have thus to understand the limit of∑
i

∫ ti+1

ti

〈σ · ∇φ, (θε (s)− θε (ti))〉 ξε (s) ds.

Notice first a potential mistake: one could think that, being θε (s) − θε (ti) small for s ∈
[ti, ti+1], this sum will converge to zero. But ξε (s), being related (in the limit) to the
derivative of BM, is large, and the product (θε (s)− θε (ti)) ξ

ε (s) could have a non-zero
compensation. Indeed, it has: roughly speaking (θε (s)− θε (ti)) behaves like

√
ti+1 − ti

and ξε (s) diverges like 1√
ti+1−ti .

The way to capture the precise asymptotics is using again equation (??):

〈ψ, θε (s)− θε (ti)〉 −
∫ s

ti

〈σ · ∇ψ, θε (r)〉 ξε (r) dr =

∫ s

ti

〈κ∆ψ, θε (r)〉 dr.
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We have now to deal with the two terms∑
i

∫ ti+1

ti

∫ s

ti

〈σ · ∇ (σ · ∇φ) , θε (r)〉 ξε (r) ξε (s) drds

and ∑
i

∫ ti+1

ti

(∫ s

ti

〈κ∆ (σ · ∇φ) , θε (r)〉 dr
)
ξε (s) ds.

Assuming suffi cient smoothness of σ and θε,∣∣∣∣∫ s

ti

〈κ∆ (σ · ∇φ) , θε (r)〉 dr
∣∣∣∣ ≤ C (ti+1 − ti) .

Since
∫ ti+1
ti

ξε (s) ds = W ε (ti+1) −W ε (ti), with some work that we do not illustrate now,
one can show that the last term goes to zero. The diffi cult term is∑

i

∫ ti+1

ti

∫ s

ti

〈σ · ∇ (σ · ∇φ) , θε (r)〉 ξε (r) ξε (s) drds

We start to see an auxiliary second order differential operator (σ · ∇σ · ∇) arising here.
One has to play again the same trick above: rewrite the previous expression as∑

i

∫ ti+1

ti

∫ s

ti

〈σ · ∇ (σ · ∇φ) , θε (ti)〉 ξε (r) ξε (s) drds

=
∑
i

〈σ · ∇ (σ · ∇φ) , θε (ti)〉
∫ ti+1

ti

∫ s

ti

ξε (r) ξε (s) drds

plus the remainder. This time, one can show that the remainder is infinitesimal, since rougly
speaking it contains the product of three terms, all roughly speaking of order

√
ti+1 − ti:

θε (r)− θε (ti) , W ε (ti+1)−W ε (ti) , W ε (ti+1)−W ε (ti) .

Finally, we have to understand the limit of∑
i

〈σ · ∇ (σ · ∇φ) , θε (ti)〉
∫ ti+1

ti

∫ s

ti

ξε (r) ξε (s) drds.

For reasonable approximations of white noise one has, as a limit in probability,∑
i

∫ ti+1

ti

∫ s

t̃i

ξε (r) ξε (s) drds→ 1

2
t.
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The factor 12 comes from the fact that we integrate over a triangle. For instance, if W ε (t)

is the piecewise linear interpolation of W (t) on the grid (ti), so that ξε (t) = W (ti+1)−W (ti)
ti+1−ti

when t ∈ (ti, ti+1), then ∑
i

∫ ti+1

ti

∫ s

ti

ξε (r) ξε (s) drds

=
∑
i

(
W (ti+1)−W (ti)

ti+1 − ti

)2 (ti+1 − ti)2

2

=
1

2

∑
i

(W (ti+1)−W (ti))
2 → 1

2
t

by the famous theorem on the quadratic variation. Then one can prove that∑
i

(σ · ∇σ · ∇) θε (ti)

∫ ti+1

ti

∫ s

ti

ξε (r) ξε (s) drds→ 1

2

∫ t

0
(σ · ∇σ · ∇) θ (s) ds.

The result, under suitable assumptions, extends to uε of the form

uε (t, x) =
∑
k∈K

σk (x) ξεk (t)

also in the case of a countable sum, and give rise to the result that∫ t

0
uε (s) · ∇θε (s) ds→

∑
k∈K

∫ t

0
σk · ∇θdW k

s +
1

2

∑
k∈K

∫ t

0
(σk · ∇σk · ∇) θ (s) ds.

The fact that the limit sum reduces to a single index k is due to the fact that∑
i

∫ ti+1

ti

∫ s

ti

ξεk (r) ξεk′ (s) drds→ 0

when k 6= k′; for instance, in the case of piecewise linear interpolation of W (t) on the grid
(ti), we have ∑

i

∫ ti+1

ti

∫ s

ti

ξεk (r) ξεk′ (s) drds

=
∑
i

Wk (ti+1)−Wk (ti)

ti+1 − ti
Wk′ (ti+1)−Wk′ (ti)

ti+1 − ti
(ti+1 − ti)2

2

=
1

2

∑
i

(Wk (ti+1)−Wk (ti)) (Wk′ (ti+1)−Wk′ (ti))→ 0.
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4.0.1 Divergence form of the operator

We have discovered that the additional term Lθ appearing in equation (1) has the form

(Lθ) (x) =
∑
k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)) .

Componentwise we can write

(Lθ) (x) =
∑
k∈K

d∑
i,j=1

σik (x) ∂i

(
σjk (x) ∂jθ (x)

)
.

Since
∑d

i=1 ∂iσ
i
k (x) = 0, we deduce also

(Lθ) (x) =
∑
k∈K

d∑
i,j=1

∂i

(
σik (x)σjk (x) ∂jθ (x)

)
.

Let us now introduce for the first time (but this doesn’t mean it is a secondary concept)
the covariance function of the noise, covariance with respect to the space variable. it is
defined as

Q (x, y) = E [W (t, x)⊗W (t, y)] x, y ∈ D

and it is easily found to be

Q (x, y) =
∑
k∈K

σk (x)⊗ σk (y) .

Therefore we have found

(Lθ) (x) =
d∑

i,j=1

∂i (Qij (x, x) ∂jθ (x)) .

This is an elliptic operator in divergence form. Ellipticity comes from the property

d∑
i,j=1

Qij (x, x) ξiξj = E
[
|W (t, x) · ξ|2

]
≥ 0

for all ξ = (ξ1, ..., ξd) ∈ Rd.
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5 Summary

In this chapter we have discussed a second class of noise: the one of transport type. There
is a third class, variant of the second one, namely noise of transport-stretching type in 3D,
which is only mentioned but should receive due attention.

Noise of transport type in the equations for auxiliary quantities, like heat, have been
investigated by several authors. Here we have introduced them as a Wong-Zakai limit to
emphasize the presence of a correcting term, essential to preserve the Physics and to get
useful informations. In the case of heat transport our investigation culminates in the proof
of a property of eddy dissipation.

But similar ideas may be applied to the internal structure of the fluid itself when we
introduce the subdivision in large and small scales. Here the noise is used to summarize
the dynamics of small scales and affects the closed equation for the large scales. This is the
motivation for considering stochastic Navier-Stokes equations with transport type noise
(and, as mentioned above, also with transport-stretching noise in 3D). The 2D case starts
to be well understood and, in particular, similarly to the case of heat transfer, one can
prove a result of eddy viscosity: turbulence enhances the viscosity of the fluid itself. This
fact, clearly observed in real situations, is perhpas the main confirmation that the heuristic
discussion made here about stochastic modeling of small scales and consequent transport
noise in the large ones may have a deep physical meaning, in spite of poor justifycation at
the level of continuum mechanics that we can provide at present.

Moving these ideas to the 3D case but with the limitation of a transport type noise,
we may show that noise improves the theory of 3D Navier-Stokes equations. This was a
long standing project in the case of additive noise, frustrated however by several technical
diffi culties. The case of transport noise reveald to be more promising. However, for future
research, the understanding of case of transport-stretching noise must be considered the
most important open problem.

Let us also add the following very heurisitc remark. In these lectures we started from
additive perturbations motivated by the roughness of boundaries. Additive noise, as just
mentioned, have not been shown to improve so much the theory of 3D Navier-Stokes
equations. But additive noise in the small scales, as shown in the present chapter, may
lead to a multiplicative transport noise in the large scales. And transport noise has a better
regularizing power. At the end it seems, then, that it is the additive noise at small scales
which regularizes! Presumably the long-standing conjecture that additive noise regularizes
could be correct but the path to reveal its power is very complex. Until now the efforts to
prove that additive noise regularizes were based on the similarity with the finite dimensional
case, where additive noise is so succeessful. But this is probably a too abstract viewpoint
for the Navier-Stokes equations. The deep reason of regularization stands inside the links
between scales, a fact proper of fluid dynamics and not of general evolution equations.
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