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1 Introduction

Until now, although motivated by certain random input, we dealt with the Stochastic
Navier-Stokes equations as if they were deterministic: given a single noise realization, we
solve the equation.

This is possible in relatively few cases. The case treated above had the special feature
that the random input was independent of the solution. But in real situations, as in the
figure (discussed in a section below)

the noise may vary depending on the solution.
Mathematically speaking, in the previous chapter the noise entered the equation as

an additive force; this was the key property which allowed us to study the linear Stokes
problem first, independently of the solution of the nonlinear one. There are other cases
(different from the additive case) which can be treated by similar ideas, but few.

If we have an equation of the form

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) + σ (u) ∂tW

div u = 0
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where the distributional derivative ∂tW is multiplied by a function of the solution, we are
in trouble. The problem is not just the fact that the Stokes problem

∂tz +∇q = ν∆z + σ (u) ∂tW

div z = 0

depends on u: this problem in principle could be solved by an iteration. The problem is
that we cannot apply the trick of integration by parts in the mild formula for z:

z (t) = etAz0 +

∫ t

0
e(t−s)Aσ (u (s)) ∂sW (s) ds

= etAz0 +
[
e(t−s)Aσ (u (s))W (s)

]s=t
s=0
−
∫ t

0

d

ds

(
e(t−s)Aσ (u (s))

)
W (s) ds

= etAz0 + σ (u (t))W (t)− etAσ (u (0))W (0)

+

∫ t

0
Ae(t−s)Aσ (u (s))W (s) ds+

∫ t

0
e(t−s)A d

ds
σ (u (s))W (s) ds

and
d

ds
σ (u (s)) = 〈Dσ (u (s)) , ∂su (s)〉

brings again into play the term ∂sW (s).
One way to escape this problem is using the theory of rough paths, which however

is quite elaborated for our purposes. The most classical way is, when W is related to
Brownian motions, to use stochastic calculus. The purpose of this chapter is illustrating
the technique to study the Stochastic Navier-Stokes equations by stochastic calculus.

Remark 1 The reader certainly noticed that we have introduced, in parallel to σ (u) ∂tW ,
also a term F (u). This is not for generality, which clearly is not our purpose in these
notes. The reason is deep: if we introduce a term σ (u) ∂tW , we also need to introduce a
compensator F (u), otherwise the Physics is wrong. This is Wong-Zakai principle: we shall
describe it in two particular cases, in this and the next chapters.

1.1 Filtered probability space

Let (Ω,F ,P) be a probability space. A filtration indexed by t ≥ 0 is a family (Ft)t≥0

of σ-algebras such that Ft1 ⊂ Ft2 ⊂ F for every t1 ≤ t2. We call
(

Ω,F , (Ft)t≥0 ,P
)
a

filtered probability space, and we abbreviate (Ω,F ,Ft,P). A stochastic process (Xt)t≥0

on (Ω,F ,Ft,P), taking values in a measurable space, is adapted if Xt is Ft-measurable
for every t ≥ 0. It is progressively measurable if the map (s, ω) 7→ Xs (ω) is measurable
on ([0, t]× Ω,B (0, t)⊗Ft) for every t ≥ 0 (B (0, t) being the Borel σ-algebra on [0, t]).
When the target space is metric with the Borel σ-algebra, and the process is continuous,
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the concepts of adapted and progressively measurable are equivalent. When we deal with
processes such that, with respect to the time variable, are equivalence classes (with respect
to zero sets for the Lebesgue measure on the time interval), like L2 (0, T ;V ), we cannot
use the concept of adapted process since Xt (given t) is not well defined. In this case we
always use the concept of progressively measurable: for every t, the restriction on [0, t] is
a well defined equivalence class and the definition applies to it.

Denote by L2
Ft (Ω, H) the space of random variables (in fact equivalence classes) X :

Ω → H that are Ft-measurable and square integrable. We denote by CF ([0, T ] ;H) the
space of continuous adapted processes (Xt)t∈[0,T ] with values in H such that

E

[
sup
t∈[0,T ]

‖Xt‖2H

]
<∞

and by L2
F (0, T ;V ) the space of progressively measurable processes (Xt)t∈[0,T ] with values

in V such that

E
[∫ T

0
‖Xt‖2V dt

]
<∞.

Of course we may use similar notations also with different spaces in place of H and V ; this
is just the most common case in the sequel.

A (real valued) Brownian motion on (Ω,F ,Ft,P) is a continuous adapted process
(Wt)t≥0 such that P (Wt = 0) = 1, Wt − Ws is independent of Fs for every t ≥ s ≥ 0,
and Wt − Ws is a centered Gaussian random variable with variance t − s (we write
Wt −Ws ∼ N (0, t− s)). With probability one, paths are not only continuous but also
locally Hölder continuous with any Hölder exponent α < 1

2 .
The noise used in Chapter 1 had the form

W (t, x) :=
∑
k∈K

√
λkσk (x)W k

t (1)

where K is a finite set, σk ∈ D (A),
(
W k
t

)
t≥0

are independent Brownian motions on some
filtered probability space (Ω,F ,Ft,P). With probability one, the path t 7→ W (t, ·) is of
class C ([0, T ] ;D (A)) (also Cα ([0, T ] ;D (A)) for every α < 1

2).
In the previous chapter we have denoted by τk the average intertimes between creation

of new eddies. Here we use the quantity

λk =
1

τk

which has the meaning of rate of eddy production. The reason is that, below, we modify
the model with state-dependent rates and the notational analogy will be easier.
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2 Additive noise under the view of stochastic calculus

Let us elaborate the result of Chapter 1 under the view of stochastic calculus. Consider
the Itô type equation, in d = 2,

du+ (u · ∇u+∇p) dt = ν∆udt+
∑
k∈K

√
λkσkdW

k
t (2)

div u = 0

with

u|∂D = 0

u(0) = u0.

Definition 2 Given a filtered probability space (Ω,F ,Ft,P) and the noise W (t, x) as in
(1), given u0 : Ω → H, F0-measurable, we say that a process u is a solution of equation
(2), if its paths are of class

u ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

with probability one, it is adapted as a process in H, progressively measurable in V , and

〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉+

∫ t

0
〈u (s) , Aφ〉 ds+

∑
k∈K

√
λk 〈σk, φ〉W k

t

for every φ ∈ D (A).

Theorem 3 There exists a unique solution.

Proof. Given two solutions, with probability one their paths are two solutions in the sense
of the theorem of the previous Chapter, hence they coincide. Path by path the existence
of u (ω) is given by that theorem; since W is measurable, also u is measurable. But the
measurability result can be applied on any subinterval [0, t], the process u being always the
same (namely the restriction to [0, t] of the process on [0, T ]), hence we have progressive
measurability, which gives also adaptedness in H due to continuity.

We want now to apply Itô formula to compute

d ‖u (t)‖2L2 .

Let us recall, for comparison, that when Xt is a process in Rd satisfying the equation

dXi
t = bitdt+

∑
k∈K

σikt dW
k
t
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and f is a function of class C2
(
Rd
)
, then

df (Xt) =

d∑
i=1

∂if (Xt) dX
i
t +

1

2

d∑
i,j=1

∑
k∈K

∂i∂jf (Xt)σ
ik
t σ

jk
t dt

where we have to replace dXi
t by the equation. Rigorously, all these identities have to be

interpreted in integral form and the stochastic processes Xi
t , b

i
t, σ

ik
t are assumed progres-

sively measurable. In order to apply these facts we need a progressively measurable process
(and this is provided by the previous theorem) and a finite dimensional reduction.

Theorem 4 If E ‖u0‖2L2 <∞ then

u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

and

E
[
‖u (t)‖2L2

]
+ 2ν

∫ t

0
E ‖∇u (s)‖2L2 ds = E

[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2

E

[
sup
t∈[0,T ]

‖u (t)‖2L2

]
≤ E

[
‖u0‖2L2

]
+ T

∑
k∈K

√
λk ‖σk‖2L2 + C

∑
k∈K

λkE
∫ T

0
〈u (s) , σk〉2 ds.

Proof. Taken a complete orthonormal system in H, (ei), made of eigenvectors of A, with
eigenvalues (−λi), called Hn the finite dimensional space generated by e1, .., en and πn the
projection onto Hn, called un (t) = πnu (t), called finally

bn (u (s)) :=

n∑
i=1

b (u (s) , u (s) , ei) ei

we have (from the weak formulation applied to each ei)

un (t) +

∫ t

0
bn (u (s)) ds = πnu0 +

∫ t

0
Aun (s) ds+ πnW (t) .

Taken the function fn (x) =
∑n

i=1 〈x, ei〉
2, which has the properties ∂ifn (x) = 2 〈x, ei〉,

∂i∂jfn (x) = 2δij , using the fact that, with σikt =
√
λk 〈σk, ei〉, one has

∑∞
i=1

(
σikt
)2

=

λk ‖σk‖2L2 , the classical Itô formula gives us

d ‖un (t)‖2L2 = 2 〈un (t) , dun (t)〉+
∑
k∈K

λk ‖πnσk‖2L2 dt

= −2ν ‖∇un (t)‖2L2 dt+
∑
k∈K

λk ‖πnσk‖2L2 dt

+2
∑
k∈K

√
λk 〈un (t) , πnσk〉 dW k

t + b (u (s) , u (s) , un (s)) dt
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where we have used

〈un (s) , bn (u (s))〉 = b (u (s) , u (s) , un (s)) .

This identity has to be interpreted in integral form. Using the convergence properties of
πn and the regularity of u, it is not diffi cult to pass to the limit and obtain

‖u (t)‖2L2 + 2ν

∫ t

0
‖∇u (s)‖2L2 ds = ‖u0‖2L2 + t

∑
k∈K

λk ‖σk‖2L2 (3)

+2
∑
k∈K

√
λk

∫ t

0
〈u (s) , σk〉 dW k

s

where the last term is an Itô-integral. In order to take expected values we have to use a
localization argument that we explain here forever, namely we omit the repetition below
when it is used several times. For sake of simplicity of notations assume that u is a solution
defined for all t ≥ 0 (we can do this, T is arbitrary).For every R > 0, let τR be the stopping
time defined as

τR = inf {t > 0 : ‖u (t)‖L2 > R}

or equal to +∞ if the set is empty. Compute the previous identity at time t∧ τR (it helps
the fact that the process u is continuous in H):

‖u (t ∧ τR)‖2L2 + 2ν

∫ t

0
1s≤τR ‖∇u (s)‖2L2 ds = ‖u0‖2L2 + (t ∧ τR)

∑
k∈K

λk ‖σk‖2L2

+2
∑
k∈K

√
λk

∫ t

0
1s≤τR 〈u (s) , σk〉 dW k

s .

Now E
∫ T

0 1s≤τR 〈u (s) , σk〉2 ds < ∞ hence the Itô integrals of this identity are true mar-
tingales; their expected values are thus equal to zero. Moreover, the other terms on the
right-hand-side have finite expected value, hence the same is true for the sum of the two
terms on the left-hand-side, and then also individually for each of them, being non-negative.
We get

E
[
‖u (t ∧ τR)‖2L2

]
+ 2νE

∫ t

0
1s≤τR ‖∇u (s)‖2L2 ds

= E
[
‖u0‖2L2

]
+ E [t ∧ τR]

∑
k∈K

λk ‖σk‖2L2 .

Since limR→∞ τR = +∞, and u is continuous in H, we deduce as R→∞

E
[
‖u (t)‖2L2

]
+ 2νE

∫ t

0
‖∇u (s)‖2L2 ds = E

[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2 .
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From this result, which is already part of the thesis, we deduce u ∈ L2
F (0, T ;V ). In

order to prove u ∈ CF ([0, T ] ;H) we restart from (3) where now, as a consequence of the
estimates just proved, we know that the Itô integrals are square integrable martingales.
Let us simplify (3) into

‖u (t)‖2L2 ≤ ‖u0‖2L2 + t
∑
k∈K

λk ‖σk‖2L2 + 2
∑
k∈K

√
λk

∫ t

0
〈u (s) , σk〉 dW k

s .

By Doob’s inequality,

E

[
sup
t∈[0,T ]

‖u (t)‖2L2

]
≤ E

[
‖u0‖2L2

]
+ T

∑
k∈K

λk ‖σk‖2L2

+C
∑
k∈K

λkE
∫ T

0
〈u (s) , σk〉2 ds

and the right-hand-side is bounded as in the statement of the theorem. Hence in particular
u ∈ CF ([0, T ] ;H).

2.1 Consequences

The message we get from this theorem is manifold.

• The solution has integrability properties in ω reflecting analogous properties assumed
on the data.

• In the modeling of emergence of vortices developed in the previous section we have
made a mistake: creating vortices from nothing we introduce energy into the system.
Therefore we have to include an extra dissipation mechanism. There is a loss of
energy due to the impact of the flow with the obstacle (which, let us remember,
is not included into the boundary conditions); part of this energy is given back in
the form of emerging vortices. We do not have a suffi ciently good solution to this
mistake, which then we leave as an open problem. A possible proposal is adding a
friction term −λ (x)u

du+ (u · ∇u+∇p) dt = (ν∆u− λ (x)u) dt+
∑
k∈K

√
λkσkdW

k
t

with a friction coeffi cient possibly depending on x and localized near the boundary:
in this way the Physical idea is that energy of large scales is subtracted near the
boundary; and re-injected through the vortices σk. The energy balance is now

E
[
‖u (t)‖2L2

]
+ 2ν

∫ t

0
E ‖∇u (s)‖2L2 ds+ 2E

∫ t

0

∫
D
λ (x) |u (s, x)|2 dxds

= E
[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2 .
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But we should be able to choose λ (x) in such a way that

2E
∫ t

0

∫
D
λ (x) |u (s, x)|2 dxds ∼ t

∑
k∈K

λk ‖σk‖2L2 .

We do not know how to reach this target.

• Assume u (t) is a statistically stationary solution; this implies that E ‖u (t)‖2L2 =
E ‖u0‖2L2 and E ‖∇u (s)‖2L2 is independent s, which then we denote by E ‖∇u‖

2
L2 .

Then, stressing the dependence of u on ν,

ε := νE ‖∇uν‖2L2 ds =
1

2

∑
k∈K

λk ‖σk‖2L2 .

The dissipation ε of energy due to viscosity remains constant in the inviscid limit
ε→ 0 (it is a statement of K41 theory), if the energy injection is constant.

• We may use a small variant of the previous result to study state-dependent noise by
iterations, see below.

2.2 Example of state-dependent noise

In Chapter 1 we have introduced a noise modeling the emergence of vortices at a boundary
due to instability. However, when the fluid is at rest, certainly no vortex is created;
similarly, we do not expect frequent creations if the velocity of the flow is very small. The
rate of creation of vortices hence should depend on some feature of the flow itself. This
doesn’t mean that the model of the previous Chapter is useless: it is reasonable when the
mean flow is roughly constant, and the rates τk should be taken appropriately with respect
to the constant mean flow value.

When the state u (t, ·) affects the rate of creation, we may introduce (corresponding to
each k) an instantaneous rate λk (u (t)) depending on an average intensity of u (t, ·), e.g.

λk (u (t)) = χ2

(
1

|B (xk, r)|

∫
B(xk,r)

|u (t, y)| dy
)

where χ2 is a nondecreasing non-negative function, equal to zero in zero and r > 0 is a
length scale relevant to the problem. Then we introduce the cumulative rate

Λk (t) =

∫ t

0
λk (u (s)) ds

and finally we modify the Poisson process Nk
t by this rate, namely we consider the process

Nk
Λk(t).
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The case previously considered was simply

λk (u (t)) = λk, Λk (t) = λk, Nk
λkt
.

The jump times of the noise in the equation will be the jump times of this processes, which
are delayed or accelerated depending on the average intensity of u (t):

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk∂tN
k
Λk(t) (4)

or
∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +

∑
k∈K

1√
2
σk∂t

(
Nk,1

Λk(t) −N
k,2
Λk(t)

)
(5)

depending whether we assume that both vortices σk (x) and −σk (x) appear and are equally
likely.

This is already a very interesting model which could deserve investigation. Otherwise,
in the case of (5), we may rescale the noise as∑

k∈K

1

n
√

2
σk (x)

(
Nk,1
n2Λk(t)

−Nk,2
n2Λk(t)

)
. (6)

Notice that, in order to increase the rate at time t, we have to use the instantaneous
rate n2λk (t), whence the expression n2Λk (t) (instead of Λk

(
n2t
)
which has a completely

different and wrong meaning).
Recalling the convergence of rescaled Poisson processes to Brownian motion discussed

in Chapter 1, it can be proved that the limit process of (6), in law, is∑
k∈K

σk (x)Bk
Λk(t)

where Bk
t are independent Brownian motions. Then, by a deep theorem on martingales,

there exists (possibly on a larger probability space) independent Brownian motions W k
t

such that, in law

Bk
Λk(t) =

∫ t

0

√
λk (u (s))dW k

s

(jointly in k). This result in undoubtedly advanced and not trivial even at the heuristic
level but notice at least the analogy with the coeffi cients

√
λk in the case of constant rate:

when λk (u (s)) = λk, Λk (t) = λk, the previous identity reads

Bk
λkt

=

∫ t

0

√
λkdW

k
s =

√
λkW

k
t

and it is well known that λ−1/2
k Bk

λkt
is a new Brownian motion.
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The final equation is

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk
√
λk (u)∂tW

k
t .

We write it in the form

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk (u) ∂tW
k
t (7)

by introducing the maps σk : H → H given by

σk (u) (x) = σk (x)
√
λk (u).

2.3 The Wong-Zakai corrector

Equations (4)-(5) are mathematically correct (whether they are physically relevant, it
should be investigated more deeply). On the contrary, equation (7) requires a special
choice of F (u) to be the right one:

F (u) =
1

2

∑
k∈K

Dσk (u)σk (u) .

Here byDσk (u) we mean the Frechét Jacobian of σk (u), which is a linear bounded operator
fromH toH, under suitable assumptions, andDσk (u)σk (u) is the application of the linear
map Dσk (u) to the element σk (u) of H. We do not know whether a full proof of this fact
has been given and under which assumptions. We assume this is the correct result by
heuristic extension of a known argument for finite dimensional equations. Let us explain
it in the simple case of a one-dimensional equation.

Consider the one dimensional equation, with σ (x) ≥ ν > 0,

dXε
t

dt
= σ (Xε

t )
dW ε

t

dt

where W ε
t is an approximation of a Brownian motion Wt. It is an equation with separated

variables. Then
dXε

t
dt

σ (Xε
t )

=
dW ε

t

dt∫ T

0

dXε
t

dt

σ (Xε
t )
dt =

∫ T

0

dW ε
t

dt
dt

Φ (Xε
T )− Φ (x0) = W ε

T , Φ′ (x) =
1

σ (x)

Xε
t = Φ−1 (Φ (x0) +W ε

t )
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Hence Xε
· converges weakly to X· given by

Xt = Φ−1 (Φ (x0) +Wt) .

From Ito formula, since

DΦ−1 (x) =
1

Φ′ (Φ−1 (x))
= σ

(
Φ−1 (x)

)
D2Φ−1 (x) = D

[
σ
(
Φ−1 (x)

)]
= σ′

(
Φ−1 (x)

)
DΦ−1 (x)

= σ′
(
Φ−1 (x)

)
σ
(
Φ−1 (x)

)
dXt = σ

(
Φ−1 (Φ (x0) +Wt)

)
dWt +

1

2
σ′
(
Φ−1 (Φ (x0) +Wt)

)
σ
(
Φ−1 (Φ (x0) +Wt)

)
dt

= σ (Xt) dWt +
1

2
σ′ (Xt)σ (Xt) dt.

We have found the corrector above.
Our conclusion, supported by the previous heuristic evidences, is that the right sto-

chastic equations is

∂tu+ u · ∇u+∇p = ν∆u+ f +
1

2

∑
k∈K

Dσk (u)σk (u) +
∑
k∈K

σk (u) ∂tW
k
t .

Remark 5 There is a notion of stochastic integral, different from the Itô one, called
Stratonovich integral and denoted by

∫ t
0 σk (u (s)) ◦ dW k

s , such that∫ t

0
σk (u (s)) ◦ dW k

s =

∫ t

0
σk (u (s)) dW k

s +
1

2

∫ t

0
Dσk (u (s))σk (u (s)) ds

when u solves equation above. Therefore, with such notion, the equation has the form

∂tu+ u · ∇u+∇p = ν∆u+ f +
∑
k∈K

σk (u) ◦ ∂tW k
t .

3 2D Stochastic Navier-Stokes equations

Consider now the equations

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk (u) ∂tW
k
t (8)

div u = 0
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with

u|∂D = 0

u (0) = u0.

Assume

F ∈ Lip (H,H)

σk ∈ Lip (H,H) ∩ C (H,D (A)) , bounded in H, k ∈ K.

With some additional elements of stochastic analysis (Itô formula for ‖u (t)‖p
L2
and Burkholder-

Davis-Gundy inequality) one can drop the assumption that σk are bounded, so it is made
here only for simplicity of exposition. The assumption C (H,D (A)) is also made just for
simplicity, but it is clear from the estimates below that it is absolutely unessential.

Definition 6 Given u0 ∈ L2
F0 (Ω, H) and f ∈ L2

F (0, T ;V ′), we say that

u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution of equation (8) if

〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉+

∫ t

0
〈u (s) , Aφ〉 ds+

∫ t

0
〈f (s) , φ〉 ds

+

∫ t

0
〈F (u (s)) , φ〉 ds+

∑
k∈K

∫ t

0
〈σk (u (s)) , φ〉 dW k

s

for every φ ∈ D (A).

Theorem 7 For every u0 ∈ L2
F0 (Ω, H) and f ∈ L2

F (0, T ;V ′), there exists a unique weak
solution of equation (8). It satisfies

E
[
‖u (t)‖2L2

]
+ 2νE

∫ t

0
‖∇u (s)‖2L2 ds

= E
[
‖u0‖2L2

]
+ 2E

∫ t

0
〈u (s) , f (s) + F (u (s))〉 ds

+
∑
k∈K

E
∫ t

0
‖σk (u (s))‖2L2 ds.
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3.1 Proof of uniqueness

Let u(i) be two solutions. Then w = u(1) − u(2) satisfies

〈w (t) , φ〉 −
∫ t

0

(
b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

))
(s) ds

=

∫ t

0
〈w (s) , Aφ〉 ds+

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ
〉
ds

+
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ
〉
dW k

s

and since

b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

)
− b (w, φ,w)

= b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

)
we get

〈w (t) , φ〉 −
∫ t

0
(b (w (s) , φ, w (s))) ds

=

∫ t

0
〈w (s) , Aφ〉 ds+

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ
〉
ds

+
∑
k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ
〉
dW k

s

−
∫ t

0

(
b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

))
(s) ds.

We need the Itô formula to continue; it can be proved similarly to Theorem 4. It gives us

‖w (t)‖2H + 2ν

∫ t

0
‖∇w (s)‖2H ds = 2

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, w (s)

〉
ds

−2

∫ t

0

(
b
(
u(2), w, w

)
+ b

(
w,w, u(2)

))
(s) ds

+
∑
k∈K

∫ t

0

∥∥∥σk (u(1) (s)
)
− σk

(
u(2) (s)

)∥∥∥2

L2
ds

+Mt

where

Mt :=
∑
k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
dW k

s .
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Therefore, if LF and Lk are the Lipschitz constants of F and σk respectively, using estimates
of Chapter 1 we get

‖w (t)‖2H + ν

∫ t

0
‖∇w (s)‖2H ds ≤

(
2LF +

∑
k∈K

L2
k

)∫ t

0
‖w (s)‖2H ds

+C

∫ t

0
‖w (s)‖2H

(
1 +

∥∥∥u(2) (s)
∥∥∥2

L4

)
ds

+Mt.

We need now a very interesting trick that we have learned from Bjorn Schmalfuss: intro-
duced

ρt = exp

(
−C

∫ t

0

(
1 +

∥∥∥u(2) (s)
∥∥∥2

L4

)
ds

)
we have, from Itô formula again,

‖w (t)‖2H ρt + ν

∫ t

0
‖∇w (s)‖2H ρsds ≤

(
2LF +

∑
k∈K

L2
k

)∫ t

0
‖w (s)‖2H ρsds+ M̃t

where

M̃t :=
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
ρsdW

k
s .

Omitting the necessary localization argument entirely similar to the one used in Theorem
4, we get

E
[
‖w (t)‖2H ρt

]
+ νE

∫ t

0
‖∇w (s)‖2H ρsds

≤
(

2LF +
∑
k∈K

L2
k

)∫ t

0
E
[
‖w (s)‖2H ρs

]
ds

which leads to E
[
‖w (t)‖2H ρt

]
= 0 by Gronwall lemma. But, thanks to the regularity of

u(2), P (ρt > 0) = 1. Hence P (w (t) = 0) = 1. Since this is true for all t, the processes u(1)

and u(2) are modifications; but they are continuous, hence they are indistinguishable.

4 Proof of existence

(to be continued)
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5 Summary

The main open problem outlined in this Chapter is the continuation of the one posed in
the previous chapter, namely the link between a real irregular boundary and stochastic
models of fluids; here the problem is enriched of the dependence on the flow intensity, a
very realistic feature, which poses a new technical issue, namely the presence of the Wong-
Zakai corrector in the limit equation. We have also seen that noise introduces energy, in
the average, hence the model should be corrected by an energy loss.

The main techniques illustrated in this Chapter are the use of Itô formula and an
interesting idea for uniqueness, until now (then comment on existence).
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