
New Metrics & Models
for a Post-ISA Era

Margaret Martonosi
H. T. Adams ‘35 Professor
Dept. of Computer Science
Princeton University

Computer Architecture…

Application
Trends

Technology
Trends

Computer
Architecture
as mediator

This Talk’s
Fundamental

Questions

•What are important design goals for
today’s computer systems?
• How can formal interface specs and

models help to achieve them?
•What metrics do we use to assess

progress in reaching them?

Moore’s Law

1965

Moore’s Law

1965

6

Performance

Reliability
Power

Performance ?

1950’s 2025

Performance, Reliability,
power, security, fairness,
privacy, portability,
programmability, …

Early Challenges 1/3: Power

Source: Original ENIAC press release. Feb, 1946

The ENIAC consumes 150 kilowatts… The power
consumption may be broken up as follows; 80

kilowatts for heating the tubes 45 kilowatts for

generating d.c. voltages, 20 kilowatts for driving

the ventilator blower and 5 kilowatts for the

auxiliary card machines.

Early Challenges 2/3:
Hardware Reliability

Grace Murray
Hopper and the first
computer bug

Early Challenges 3/3:
Software Debugging…

9

“As soon as we started programming, we found to
our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when I
realized that a large part of my life from then on was
going to be spent in finding mistakes in my own
programs.”

Sir Maurice Wilkes
Early computer architect; 1967 Turing Award Winner

[Written in 1985, reflecting back on programming for the 1949 EDSAC]

10

Performance

Reliability
Power

Performance ?

1950’s 2025

Performance, Reliability,
power, security, fairness,
privacy, portability,
programmability, …

“Streetlight Effect”

Often our design goals are being
set by what we can measure or
model (easily)

Rather than by what we actually
want to achieve…

Why don’t we focus as much on
these broader goals?

Computer Architecture…

Application
Trends

Technology
Trends

Computer
Architecture
as mediator

Application Trends:
Sensory Swarm to Cloud Infrastructure

• Lots of data
• Highly-distributed
• Communication-intensive

• Diversity OF devices
• Diversity WITHIN devices

Which brings us here…
Heterogeneity “In the Large”:
• 4000+ distinct Android devices
• IoTs even more diverse
• Mobile/cloud adaptation and migration

Heterogeneity “In the Small”
• 6-10 ISAs on chip + Accelerators
• Memory, Data Heterogeneity
• Memory Consistency Models

Entering A
Post-ISA World

• ISAs still useful, but little/no relevance as
abstraction layer.
• Apple A8 and beyond: >50% of chip area

is accelerators that have no ISA.
• NVIDIA PTX vs. SASS: ISA hidden under

other layers.

• Challenge: Lack of durable hardware-
software interface.
• Opportunity: Now have the chance to

develop design practices around new
interface layers

Design Goals

Models & Interfaces

Metrics

Examples

• Power: Power-efficient Architecture & Models
• Correctness: Concurrency -> Memory Models
• Security: Formal Methods for Secure Design

Examples

• Power: Power-efficient Architecture & Models
• Correctness: Concurrency -> Memory Models
• Security: Formal Methods for Secure Design

Example 1: Power-Efficient Computing, Circa 1999
• Computer Architects didn’t measure, model, or

design for power.
• No existing early-stage (architecture-level) power

models.
• What power models existed were all late in the

design process (Design automation, VLSI Circuits)

• Idea: Power is important, so start by using other
measurements as a ”proxy” for power.

From idea to “new” metric

The Idea:
• Narrow bitwidth values are common ->

Perform narrower ops where possible

The Result:
• >50% reduction in integer ALU power
• Patent + Industry use

Bigger Picture:
• Spurred development of better

architecture-level power models.
(Wattch, ISCA 2000)
• Now: Power is key metric in arch and

systems design. [Brooks & Martonosi. HPCA 1999. 2018 Test-of-Time Award]
[Brooks, Tiwari & Martonosi. ISCA 2000. 2015 Test-of-Time Award]

Examples

• Power: Power-efficient Architecture & Models
• Correctness: Concurrency -> Memory Models
• Security: Formal Methods for Secure Design

Example 2: Correctness
Memory Model Verification
• Sequential Consistency [Lamport 1979]: execution is the same as if:

(R1) Memory ops of each processor appear in program order
(R2) Memory ops of all processors were executed in some global sequential
order

Thread 0
x=1
r1=y

Thread 1
y=1
r2=x

x=1
r1=y
y=1
r2=x

x=1
y=1
r1=y
r2=x

x=1
y=1
r2=x
r1=y

y=1
r2=x
x=1
r1=y

y=1
x=1
r2=x
r1=y

y=1
x=1
r1=y
r2=x

Program Legal Executions

TSO Memory Consistency Model

In a nutshell: MCMs are the spec of

what value will be returned when

your program does a load.

=> Important to specify and verify

Why is Memory Model Verification Important?

•What can go wrong?
• Incorrect software answers
• Unreliable operation
• Security exploits

•What can go wrong?
• Ill-specified High-level language

memory model
• Inadequate ISA specification
• Incorrect HLLàISA compilation
• Incorrect hardware implementation

Hardware
Implementation

Compiler

High-level Language
Memory Model

ISA
Memory Model

The Check Suite: An Ecosystem of Verification Tools

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro-47] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro-48] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro-50] [IEEE MICRO Top Picks Honorable Mention]

Our Approach

• Axiomatic specifications -> Happens-before graphs

• Check Happens-Before Graphs via Efficient SMT solvers

• Cyclic => A->B->C->A… Can’t happen

• Acyclic => Scenario is observable

A

C

B

Motivation ARM Read-Read Hazard:
A Tale of Many Interfaces

ARM Read-Read Hazard

• ARM ISA spec ambiguous regarding
same-address LdàLd ordering:
• Compiler’s job? Hardware job?

• C/C++ variables with atomic type
require same-addr. LdàLd ordering
• ARM issued errata1:
• Rewrite compilers to insert fences

(ordering instructions) with
performance penalties

• ARM ISA had the right ordering
instructions – just needed to use
them.

Original: Alglave 2001
Google Nexus 6: http://check.cs.princeton.edu/tutorial_extras/SnapVideo.mov

ARM Read-Read Hazard

Hardware
Implementation

ISA
Memory Model

High-Level Language
Memory Model

Compiler

C0 C1

ST [data]ß1 ST [data]ß2

LD [ptr]àr0

LD [r0]àr1

LD [data]àr2

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

“Compiler
Mappings”

Assembly Code

Run on specific CPU:
ARM Cortex A9

C11 Source Code

TriCheck: Linking HLLs->ISA->Microarchitecture

High-Level Languages (HLL)

Compiler

Architecture

Microarchitecture

OS

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

PipeCheck [Micro-47] [IEEE MICRO Top Picks]
CCICheck [Micro-48] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTL RTLCheck [Micro-50] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Formal specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C
B

Check: Formal, Axiomatic Models and Interfaces

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Microarchitecture Specification in
μSpec DSL

Microarchitectural happens-before (µhb) graphs

Exh
austiv

e co
nsid

erat
ion of

all p
ossi

ble ex
ecutio

ns

HLL <-> ISA <-> uArch: TriCheck Framework

HLL
Mem Model Sim

ISA
Mem Model

uArch
Mem Model

Obs. Not obs
Permit ok Over

strict
Forbid Bug ok

High-level Lang
Litmus tests

HLL->ISA
Compiler
Mappings

ISA-level
Litmus tests Observable/

Unobservable

Permitted/
Forbidden

Compare Outcomes

HLL <-> ISA <-> uArch: TriCheck Framework

HLL
Mem Model Sim

ISA
Mem Model

uArch
Mem Model

Obs. Not obs
Permit ok Over

strict
Forbid Bug ok

High-level Lang
Litmus tests

HLL->ISA
Compiler
Mappings

ISA-level
Litmus tests Observable/

Unobservable

Permitted/
Forbidden

Compare Outcomes

Iteratively
Refine
Design:
HLL, Compiler,
ISA, uArch

RISC-V Case Study
• Apply TriCheck to 7 legal RISC-V implementations:
• All abide by current RISC-V spec
• Vary in preserved program order and store atomicity

• Results:
• Impossible to compile C11 for RISC-V as specified.
• Insufficiently strong fence instructions, load-load

reordering, …
• Out of 1,701 tested C11 programs:
• RISC-V-Base-compliant design allows 144 buggy outcomes
• RISC-V-Base+A-compliant design allows 221 buggy

outcomes

Takeaway: Draft RISC-V
spec could not serve as a
legal C11 compiler target

Next Steps: RISC-V Memory
Model Working Group
formed to address these
issues. Will soon ratify a
new and formally specified
RISC-V memory model that
supports C11, Linux, etc.

The Check Suite: An Ecosystem of Tools
High-Level Languages (HLL)

Compiler

Architecture

Microarchitecture

OS

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

PipeCheck [Micro-47] [IEEE MICRO Top Picks]
CCICheck [Micro-48] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTL RTLCheck [Micro-50] [IEEE MICRO Top Picks Honorable Mention]

So far, tools have found bugs in:
• Widely-used Research

simulator
• Cache coherence paper
• In-design commercial

processors
• RISC-V ISA specification
• Compiler mapping proofs
• IBM XL C++ compiler (fixed in

v13.1.5)
• C++ 11 mem model

Key Takeaways
Need formal, well-specified interfaces
From well-specified interfaces-> Interaction models and analysis
From well-specified interfaces -> Reliability and performance metrics

Examples

• Power: Power-efficient Architecture & Models
• Corrrectness: Concurrency -> Memory Models
• Security: Formal Methods for Secure Design

Example 3: Security

Flush+Reload

Speculation

Well-known cache
side-channel attack

Widely-used
hardware feature

2 new attacks

January 2018:
Spectre & Meltdown

New exploit

Security and Reliability in IoT Systems
• IoT/mobile applications are heterogeneous, distributed

systems

• Edge->Cloud

• Run on diverse hardware

• Applications programmed by huge variety of people…
• from many companies…

• and not all well-versed in concurrency issues

• Blackbox Implementations

• Consumers see very little: How to know what to trust?

• Even designers of other submodules may not see enough to model,
measure, verify.

[EETimes, MedTechBlog, KOMO News,

Amazon, HAPILabs, Princeton, App State]

Q: How to analyze the reliability,
security, … of these systems?

Security Today

• Too much emphasis on one-off
exploit discoveries and fixes
• Too little emphasis on principled

discovery mechanisms and
corresponding defenses

Attack Discovery & Synthesis:
What We Would Like

Formal interface and specification of
given system implementation

1. Specify
system to study

E.g. Subtle event sequences during
program’s execution

2. Specify attack
pattern

Either output synthesized attacks. Or
determine that none are possible3. Synthesis

Attack Discovery & Synthesis:
Approach

Axiomatic specifications similar to
Check tools

1. Specify
system to study

Event sequences as graph snippets2. Specify attack
pattern

Relational Model Finding (RMF)
approaches3. Synthesis

• What we did: Developed a tool to
do this, based on the uHB graphs
from previous sections.

• Results: Automatically synthesized
Spectre and Meltdown, as well as
two new exploits.

• Ongoing: Applying similar
techniques to IoT systems

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO-51. October, 2018]

Example 3: Summary
• Formal specification interfaces and analysis can help improve security
• Move from anecdotal approaches to more comprehensive verification

• Full stack approach to security specification and verification
• Software specs name hardware security assumptions, to be checked automatically

Next Steps:
• Metrics: How to *quantify* results of a security

analysis like ours?
• From one axiomatic interface specification ->

Models of Security, Reliability and Performance?

From Interfaces to
Models to Metrics
• Axiomatically-specified interfaces can support formal

security/reliability verification well.
• How to extend these to metrics and statistical models?
• Across cases: Statistical likelihood analysis
• Example: Rate the likelihood of a particular instance

being observed, not just verifying whether it is
observable or not

From Interfaces to
Models to Metrics

• Axiomatically-specified interfaces can support
formal security/reliability verification well.

• How to extend these to metrics and statistical
models?

• Across cases: Statistical likelihood analysis
• Example: Rate the likelihood of a particular

instance being observed, not just verifying
whether it is observable or not

• Within one case: Weighted edges for latency,
power, reliability
• Example: “Observer model” to analyze

security side channels based on power or
thermal fluctuations instead of timing
variations.

Move past the “Streetlight Effect”
With novel approaches for interface
specification, modeling, and metrics.

To meet the performance, reliability,
security, fairness, power, … needs of
modern computer systems.

Summary

Me: http://www.princeton.edu/~mrm
Group Papers:
http://mrmgroup.cs.princeton.edu
Verification Tools:
http://check.cs.princeton.edu

Thanks to…

Caroline Trippel, Yatin Manerkar, Tae Jun Ham,
Themis Melissaris, Dan Lustig, Kelly Shaw.

Funding:

NSF, DARPA, JUMP Center on Applications Driving
Architectures
For more info:

http://www.princeton.edu/~mrm
http://mrmgroup.cs.princeton.edu/
http://check.cs.princeton.edu/

