第5世代移動通信システム（5G）で世の中が変わる

平成30年6月1日
総務省 移動通信課
杉野 勲
無線局の爆発的な増加

1950年代は公共分野におけるVHF帯等の低い周波数帯の利用が中心。
1985年の電気通信業務の民間開放をきっかけに移動通信分野における利用が爆発的に普及・発展。
現在、携帯電話・PHS・BWAの契約数は、1億6,792万※（平成29年3月末）であり、日本の人口1億2,682万人（平成29年1月1日）を上回る。

平成29年（2017年）3月末

約2億1,735万局

移動局 約2億1,472万局
固定局 約10.1万局
放送局 約1.6万局
その他 約252万局

約381万局

移動局 約107万局
固定局 約3.8万局
放送局 約2.4万局
その他 約268万局

5,118局

移動局 4,195局
固定局 552局
放送局 80局
その他 291局

昭和25年（1950年）
地方公共団体等
海上通信
防災通信
消防署等

昭和60年（1985年）
衛星通信
固定マイクロ回線

携帯電話・携帯インターネット
無線LAN

※グループ内取引調整後の数値
移動通信システムの進化（第1世代〜第5世代）

移動通信システムは、1980年代に第1世代が登場した後、2000年に第3世代、2010年に第4世代につながるLTE方式が導入されるなど、10年毎に進化。最大通信速度は30年間で約10,000倍に高速化。

最大通信速度は30年間で約10,000倍
携帯電話の契約数は2016年12月末現在で1億6,071万契約。そのうちLTEの契約は、全体の約60.7％（9,756万契約）を占め、契約数は直近1年で約1.2倍に拡大。

<table>
<thead>
<tr>
<th>2017年3月末現在 契約数（人口普及率）</th>
</tr>
</thead>
<tbody>
<tr>
<td>携帯電話及びBWA合計（グループ内取引調整後）：</td>
</tr>
<tr>
<td>携帯電話及びBWA合計（単純合算）：</td>
</tr>
<tr>
<td>携帯電話：</td>
</tr>
<tr>
<td>第3世代携帯電話（3G）：</td>
</tr>
<tr>
<td>3.9-4世代携帯電話（LTE）：</td>
</tr>
<tr>
<td>BWA：</td>
</tr>
</tbody>
</table>

※日本人住民の人口総数 約1億2,791万人
（住民基本台帳に基づく人口、人口動態及び世帯数（平成29年1月1日現在）による）

※総務省報道発表資料「電気通信サービスの契約数及びシェアに関する四半期データの公表」等を基に作成
月間平均トラヒック

1年で約1.4倍増加

1加入者あたり平均トラヒック

1年で約1.2倍増加
IHS Technologyの推定によれば、2015年時点でIoTデバイスの数は約154億個であり、2020年までには約2倍の304億個まで増大すると予測。
膨大な機器がネットワークに接続されることにより、データトラフィックの量は飛躍的に増大。Ciscoによれば、特にモバイルデバイスからのトラフィックが大きく伸びると見込まれている。

IoTによる価値創造

IoT時代における価値創造の源泉は「情報（データ）」
データを如何に活用出来るか、活用出来る環境を整えられるかがポイント

【IoT・ビッグデータがもたらす新たな付加価値領域のイメージ】

モノ
あらゆるモノがインターネットに繋がる

データ収集
大量・多種類・多頻度（リアルタイム）でデータを収集・分析

データ分析・価値創造
データ分析により価値を創造

利益
経済的価値の享受

500億台（2020年予測）

40ZB （2020年予測）

コスト削減
業務効率化によるコスト削減
人件費
外部委託費
エネルギーコスト等
機器・設備等の予防保全による保守費用等の削減
リスク縮小化による対象コスト等の削減

売上拡大
マーケティング戦略の高度化による売上拡大
既存製品・サービス
新製品・サービス
新規事業による新たな売上獲得

ZB（ゼタバイト）＝1000EB（エクサバイト）＝100万PB（ペタバイト）＝10億TB（テラバイト）＝1兆GB（ギガバイト）
IoT時代の無線通信システム（LPWA、5G）

- IoT（Internet of Things）社会の本格的な到来に向け、従来よりも低消費電力、広いカバーエリア、低コストを可能とするLPWA（Low Power Wide Area）が実現。
- 免許不要のLoRa、SIGFOX、Wi-SUNや、携帯電話ネットワークを用いるeMTC（enhanced Machine Type Communication）、NB-IoT（Narrow Band IoT）などが実用化。
 → ユーザやネットワークのニーズに応じて最適な通信技術を選択する時代に

<table>
<thead>
<tr>
<th>携帯電話システムベース</th>
<th>免許不要の無線通信システム（例）</th>
</tr>
</thead>
<tbody>
<tr>
<td>システム</td>
<td>eMTC (4G)</td>
</tr>
<tr>
<td>推進団体</td>
<td>3GPP</td>
</tr>
<tr>
<td>使用周波数</td>
<td>携帯電話の帯域</td>
</tr>
<tr>
<td>通信速度</td>
<td>300kbps 〜1Mbps</td>
</tr>
<tr>
<td>カバレッジ拡張</td>
<td>数km〜十数km</td>
</tr>
</tbody>
</table>
5Gとは何か

5Gとは、4Gを発展させた「超高速」だけでなく、「多数接続」、「超低遅延」といった新たな機能を持つ次世代の移動通信システム

・「多数接続」 家電、クルマなど、身の回りのあらゆる機器（モノ）がつながる
・「超低遅延」 遠隔地にいてもロボット等の操作をスムーズに行うことができる

5Gは、IoT時代のICT基盤

超高速
現在の移動通信システムより100倍速いブロードバンドサービスを提供

⇒ 2時間の映画を3秒でダウンロード

超低遅延
利用者が遅延（タイムラグ）を意識することなく、リアルタイムに遠隔地のロボット等を操作・制御

⇒ ロボット等の精緻な操作をリアルタイム通信で実現

多数同時接続
スマホ、PCをはじめ、身の回りのあらゆる機器がネットに接続

⇒ 自宅部屋内の約100個の端末・センサーがネットに接続
（現行技術では、スマホ、PCなど数個）
5Gの基本コンセプト ①

✓ 5Gは、有無線が一体となって、超高速、多数接続、超低遅延といった様々な要求条件に対応することが可能な優れた柔軟性を持つ
✓ あらゆる利用シナリオでユーザが満足できるエンド・ツー・エンドの品質を提供
✓ 全ての要求条件に対応するネットワークを整備する必要はなく、ユースケース、利用シナリオ等に応じて、超高速、多数接続などの必要な機能、品質等を提供

あらゆる要望に柔軟に対応（超柔軟性）
4Gまで：最大限のスループットを確保し、高速・大容量通信の提供を目指したシステム。通信速度、遅延時間、カバレッジなどに限界があり、全てのユースケースへの対応は困難
5G以降：有無線が一体となり、通信速度、接続数、遅延時間など、あらゆるユーザの要望やアプリケーションの要求条件に対応可能な優れた柔軟性を持つ

〜4G：ベストエフォート

5G：それぞれのコンセプトに適した品質を提供

拡張モバイルブロードバンド
enhanced Mobile BroadBand

大規模マシンタイプ通信
massive Machine Type Communication

超高信頼・低遅延通信
Ultra Reliable and Low Latency Communication

モバイルブロードバンドの高度化
（eMBB: Enhanced mobile broadband）

大量のマシーンタイプ通信
（mMTC：Massive Machine Type Communications）

超高信頼・低遅延通信
（URLLC：Ultra reliable and low latency communications）

出典：ITU-R IMTビジョン勧告（M.2083）（2015年9月）
5Gの基本コンセプト ②

✓ 5Gは、様々な周波数帯、様々な無線技術から構成されるヘテロジニアス・ネットワークとなる
✓ 新たなビジネス創出に向けて、業界を超えたエコシステムの構築が必要

ヘテロジニアス・ネットワーク
● 周波数帯：800MHz、2GHzなど既存の周波数帯に加え、6GHz以下の周波数帯やミリ波などの6GHz以上の周波数帯など、これまでよりも高い周波数帯など様々な周波数帯を活用
● 無線技術：NR、LTE、WiFiなど様々な無線技術で構成

図：ヘテロジニアス・ネットワークの構成イメージ

B2B2Xモデル
✓ 通信事業者等が、バーティカル産業のサービス提供者などと連携し、B2B2Xモデルでサービスを提供
✓ バーティカル産業、ビジネスモデルなどによって、様々なB2B2Xモデル形態が想定
✓ 2020年の5G実現に向けて、バーティカル産業との連携を念頭に、B2B2Xモデルを意識した実証を行うことが重要

図：B2B2Xモデルの構成イメージ
例えば、次のような5Gへの移行シナリオが想定される。
【2020年】通信需要の高いエリアを対象に、5G用の新しい周波数帯を用いた「超高速」サービスが提供。新たな無線技術（NR）に対応した基地局は、LTE基地局と連携するNSA（Non-Standalone）構成で運用。
【202X年】ネットワークスライシング等に対応した5Gコアネットワークが導入されるとともに、SA（Standalone）構成のNR基地局の運用が開始され、既存周波数帯域へのNR導入が進展。超高速、多数同時接続、高信頼・低遅延などの要求条件に対応した5Gサービスの提供が開始。

現在【LTEの面展開】
- 4Gコアネットワーク（EPC）
- LTE基地局

2020年【5G導入当初】
- 4Gコアネットワーク（EPC）
- 5Gコアネットワーク
- LTE基地局
- NR基地局
- NSA

202X年【5G普及期】
- 5Gコアネットワーク
- NR基地局
- LTE基地局
- SA

LTE、LTE-Advancedをベースとしたネットワーク構成であり、3GPPでの検討状況を踏まえ、上りCAの導入や256QAM導入などの高度化
800MHz、2GHzなどの周波数帯を用いて、スマートフォン向けサービスを念頭に、高いスループットを実現する面的なサービスエリアを展開
NB-IoTやeMTCなどのワイドエリア、省電力を特徴としたIoT技術を先行導入

- コストを抑えつつ、円滑な5G導入を実現するため、NR基地局とLTE基地局が連携したNSA構成のシステムが導入
- 需要の高いエリア等を中心に、5G用周波数帯を用いた「超高速」サービスが提供され、eMTC/NB-IoT等によるIoTサービスが普及
- 高い周波数帯の活用が進展するとともに、Massive MIMOなどの新たな技術の導入が加速
- 「超高速」、「多数同時接続」、「低遅延」の全ての要求条件に対応したサービスが提供
- ネットワークスライシング等に対応した5Gコアネットワークが導入され、モバイル・エッジ・コンピューティング（MEC）の導入も進展
- SA構成のNR基地局の導入が開始（NSA構成の基地局も併存）。既存周波数帯にNR導入が進展
- 広く普及しているLTEについては、継続的にサービスを提供
- WRC-19で特定された周波数帯域も活用
5Gの国際標準化動向

2020年の5G実現に向けて、ITU（国際電気通信連合）や3GPP※等において、標準化活動が本格化

（ITU） 2015年9月、5Gの主要な能力やコンセプトをまとめた「IMTビジョン勧告（M. 2083）」を策定。今後、5G（IMT-2020）無線インタフェースの提案受付けを行い、2020年に勧告化予定。
WRC-19議題1.13の候補周波数帯（24.25-86GHzの11バンド）については、周波数共用検討等を行った上で、2019年のWRC-19においてIMT用周波数を特定予定。

（3GPP）リリース14：5Gの基本調査を実施（要求条件、展開シナリオ、要素技術等）
リリース15：超高速/超低遅延に対応した5Gの最初の仕様を策定
リリース16：全ての技術性能要件に対応した5Gの仕様を策定

※ 3GPP(3rd Generation Partnership Project)：3G、4G等の移動通信システムの仕様を検討し、標準化することを目的とした日米欧中韓の標準化団体によるプロジェクト。1998年設立。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>世界無線通信会議（WRC-15）</td>
<td>5Gワークショップ</td>
<td>5G無線インターフェース勧告の策定</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

リリース13（〜2016.3）
- 4Gの高度化
- IoT技術の拡張（eMTC、NB-IoT）

リリース14（〜2017.3）
- 5G技術性能要件

リリース15（〜2018.6）
- 超高速（eMBB）/超低遅延（URLLC）が対象。
- 2017年12月までに、LTEと連携するNSAの仕様を策定。2018年6月までに、SAの仕様を策定

リリース16（〜2019.12）
- 全ての技術性能要件に対応した5Gの仕様を策定

※NSA: Non-Standalone
SA: Standalone

5Gでの利用を想定したミリ波等の周波数がIMT用に特定される予定

- NSA策定
- SA策定

- 4Gの高度化
- IoT技術の拡張（eMTC、NB-IoT）
- 5Gの基本調査（要求条件等）
- IoT技術の高度化（feMTC、eNB-IoT）
IMT-2020無線インタフェースの技術性能要件・評価方法

要求条件

<table>
<thead>
<tr>
<th>評価環境</th>
<th>露天ホットスポット（超高速/eMBB）</th>
<th>人口密集都市（超高速/eMBB）</th>
<th>郊外（超高速/eMBB）</th>
<th>都市部広域（多数接続/mMTC）</th>
<th>都市部広域（超低遅延/URLLC）</th>
<th>評価方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>最高伝送速度</td>
<td>下り:20Gbit/s, 上り:10Gbit/s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Analytical</td>
</tr>
<tr>
<td>2</td>
<td>最高周波数効率</td>
<td>下り:30bit/s/Hz, 上り:15bit/s/Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Analytical</td>
</tr>
<tr>
<td>3</td>
<td>ユーザ体感伝送速度</td>
<td>下り:0.3bit/s/Hz, 上り:0.21bit/s/Hz</td>
<td>下り:100Mbit/s, 上り:50Mbit/s</td>
<td>-</td>
<td>-</td>
<td>Analytical for single band and single user Simulation for multi-layer</td>
</tr>
<tr>
<td>4</td>
<td>5%ユーザ周波数利用効率</td>
<td>下り:0.225bit/s/Hz, 上り:0.15bit/s/Hz</td>
<td>下り:0.12bit/s/Hz, 上り:0.045bit/s/Hz</td>
<td>-</td>
<td>-</td>
<td>Simulation</td>
</tr>
<tr>
<td>6</td>
<td>エリア当たりの通信容量</td>
<td>10Mbit/s/m²</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Analytical</td>
</tr>
<tr>
<td>7</td>
<td>遅延(U-Plane)</td>
<td>4ms</td>
<td>-</td>
<td>-</td>
<td>1ms</td>
<td>Analytical</td>
</tr>
<tr>
<td>8</td>
<td>遅延(C-Plane)</td>
<td>20ms</td>
<td>-</td>
<td>-</td>
<td>20ms</td>
<td>Analytical</td>
</tr>
<tr>
<td>9</td>
<td>端末接続密度</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,000,000台/km²</td>
<td>Simulation</td>
</tr>
<tr>
<td>10</td>
<td>エネルギー効率</td>
<td>稼動時の効率データ伝送（平均周波数効率）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inspection</td>
</tr>
<tr>
<td>11</td>
<td>信頼性</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>伝送成功確率 1-10⁻⁵ (L2 PDUサイズ32byte)</td>
<td>Simulation</td>
</tr>
<tr>
<td>12</td>
<td>移動性能</td>
<td>1.5bit/s/Hz (10km/h)</td>
<td>1.12bit/s/Hz (30km/h)</td>
<td>0.8bit/s/Hz (120km/h)</td>
<td>0.45bit/s/Hz (500km/h)</td>
<td>Simulation</td>
</tr>
<tr>
<td>13</td>
<td>移動時中断時間</td>
<td>0ms</td>
<td>-</td>
<td>-</td>
<td>0ms</td>
<td>Analytical</td>
</tr>
</tbody>
</table>

携帯電話用の周波数確保に向けた考え方

○ 2020年の5G実現に向けて、
 ✓ 3.7GHz帯、4.5GHz帯、28GHz帯の2018年度末頃までの周波数割当てを目指し、2018年夏頃までに技術的条件を策定する
 ✓ 他の無線システムとの共用に留意しつつ、28GHz帯で最大2GHz幅、3.7GHz帯及び4.5GHz帯で最大500MHz幅を確保することを目指す

○ 周波数逼迫対策のため、
 ✓ 1.7GHz帯：公共業務用無線局の再編を進めるとともに、終了促進措置の活用も検討し、2017年度末頃までの周波数割当てを目指す
 ✓ 3.4GHz帯：終了促進措置を活用し、2017年度末頃までの周波数割当てを目指す

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>携帯電話用の周波数確保に向けた考え方</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6-4.2GHz</td>
<td>- ITU、3GPP等における国際的な検討状況や研究開発動向等を踏まえた上で、2018年度末頃までの周波数割当てを目指し、2018年夏頃までに技術的条件を策定する</td>
</tr>
<tr>
<td>4.4-4.9GHz</td>
<td>- 他の無線システムとの共用に留意しつつ、3.7GHz帯及び4.5GHz帯で最大500MHz幅を確保することを目指す</td>
</tr>
<tr>
<td>27.5-29.5GHz</td>
<td>- ITU、3GPP等における国際的な検討状況や研究開発動向等を踏まえた上で、2018年度末頃までの周波数割当てを目指し、2018年夏頃までに技術的条件を策定する</td>
</tr>
<tr>
<td></td>
<td>- 他の無線システムとの共用に留意しつつ、28GHz帯で最大2GHz幅を確保することを目指す</td>
</tr>
<tr>
<td>WRC-19議題1.13の候補周波数</td>
<td>- WRC-19候補周波数帯について、諸外国の状況を踏まえより多くの周波数帯が特定・割当されるよう対処する</td>
</tr>
<tr>
<td></td>
<td>- 特に、各国・地域で検討が進んでいる43.5GHz以下の帯域について、積極的に共用検討等を行う</td>
</tr>
<tr>
<td></td>
<td>- 24.5-27.5GHz、27.5-29.5GHzと一体的な利用が期待できるとともに、欧州等と連携できる可能性、37.0-40GHz等国等と連携できる可能性、40.5-43.5GHz:欧州と連携できる可能性</td>
</tr>
<tr>
<td>1.7GHz帯</td>
<td>- 周波数逼迫対策のため、公共業務用無線局（固定）の再編を進めるとともに、終了促進措置の活用も検討し、2017年度末頃までの周波数割当てを目指す</td>
</tr>
<tr>
<td>2.3GHz帯</td>
<td>- 移動通信システム向けの周波数割当てを可能とするため、公共業務用無線局（固定・移動）との周波数共用や再編について引き続き検討を推進する</td>
</tr>
<tr>
<td>2.6GHz帯</td>
<td>- 次期衛星移動通信システム等の検討開始に向けて、移動通信システムとの周波数共用の可能性について技術的な観点から検討を推進する</td>
</tr>
<tr>
<td>3.4-3.48GHz</td>
<td>- 周波数逼迫対策のため、終了促進措置を活用し、2017年度末頃までの周波数割当てを目指す</td>
</tr>
<tr>
<td></td>
<td>※一部帯域は、欧州、米国等と連携できる可能性</td>
</tr>
<tr>
<td></td>
<td>※一部帯域は、中、韓と連携できる可能性</td>
</tr>
<tr>
<td></td>
<td>※一部帯域は、中国と連携できる可能性</td>
</tr>
<tr>
<td></td>
<td>※一部帯域は、米、韓と連携できる可能性</td>
</tr>
</tbody>
</table>

※技術的条件は策定済み

※1.7GHz帯における他の無線システムの共用検討は後述

○ 2020年の5G実現に向けて、
 ✓ 3.7GHz帯、4.5GHz帯、28GHz帯の2018年度末頃までの周波数割当てを目指し、2018年夏頃までに技術的条件を策定する
 ✓ 他の無線システムとの共用に留意しつつ、28GHz帯で最大2GHz幅、3.7GHz帯及び4.5GHz帯で最大500MHz幅を確保することを目指す

○ 周波数逼迫対策のため、
 ✓ 1.7GHz帯：公共業務用無線局の再編を進めるとともに、終了促進措置の活用も検討し、2017年度末頃までの周波数割当てを目指す
 ✓ 3.4GHz帯：終了促進措置を活用し、2017年度末頃までの周波数割当てを目指す
5G候補周波数帯

6GHz以下

今後携帯電話に利用するため既存無線局を他の周波数帯に移行中

他無線局（衛星、放送等）が使用している帯域

移動通信への新たな割当てを検討中

24GHz以上

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>20 - 30 GHz</th>
<th>30 - 40 GHz</th>
<th>40 - 50 GHz</th>
<th>50 - 60 GHz</th>
<th>60 - 70 GHz</th>
<th>70 - 80 GHz</th>
<th>80 - 90 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>帯幅</td>
<td>29.5</td>
<td>40.5</td>
<td>43.5</td>
<td>47.0</td>
<td>50.2</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>周波数</td>
<td>24.25</td>
<td>27.5</td>
<td>31.833.437</td>
<td>42.5</td>
<td>45.547.250.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WRC-19における5G候補周波数帯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28 GHz 帯
1. 3.4-4.9GHz周辺の使用状況

2. 24.25-29.5GHz周辺の使用状況

3. 29.5-86GHz周辺の使用状況

※我が国の電波の使用状況（平成28年12月）より作成