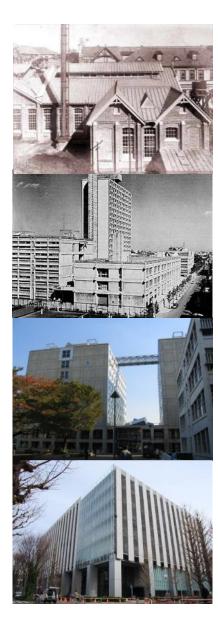
Waseda University School of Advanced Science and Engineering

Toru ASAHI, Dean



History of Science and Engineering Research

1882	Tokyo Vocational School founded		
1902	Renamed to Waseda University		
1908	The Department of Science and Engineering was established and the departments of Mechanical		
	Engineering and Electrical Engineering were established.		
1920	The University was reorganized as a new university under the new university ordinance, and the		
	Department of Science and Engineering was renamed the Faculty of Science and Engineering.		
	Graduate School of Science and Engineering was established.		
1949	The new Waseda University is founded under the new system. The First and Second Schools of		
	Science and Engineering were established.		
1953	Doctoral program established in the graduate school.		
1967	Moved to the new Okubo Campus (Nishi-Waseda Campus)		
1968	Abolished the Second Faculty of Science and Engineering. First School of Science and Engineering		
	was renamed the School of Science and Engineering.		
1979	Environmental Safety Center established.		
1988	Changed the name of the Casting Research Laboratory to Kagami Memorial Research Institute for		
	Materials Science and Technology.		
1993	Research Institute of Science and Engineering is renamed the Research Center for Science and		
	Engineering.		
2004	Center for English Education in Science and Engineering was established.		
2007	Reorganized into 3 schools of science and engineering.		
2008	100th anniversary of the founding of the School of Science and Engineering. Center for Advanced		
	Biomedical Sciences was established.		
2009	Okubo Campus is renamed Nishi-Waseda Campus		
2010	Five majors are established, including Japan's first three joint graduate schools.		
2011	Department Intermedia Art and Science is established in the Graduate School of WASEDA		
	Fundamental Science and Engineering		

Departments

Fundamental

School of Fundamental Science and Engineering

Department of Mathematics
Department of Applied Mathematics
Department of Applied Mechanics and
Aerospace Engineering
Department of Electronic and Physical Systems
Department of

Computer Science and Engineering
Department of Communications
Computer Engineering

Department of Intermedia Art and Science

Creative

School of Creative Science and Engineering

Department of Architecture

Department of

Modern Mechanical Engineering

Department of Industrial and

Management Systems Engineering Department of Civil and

Environmental Engineering Department of Earth Science,

Resources and Environmental Engineering

Advanced

Graduate School of Advanced Science and Engineering

Department of Physics Department of Applied Physics Department of

Chemistry and Biochemistry
Department of Applied Chemistry
Department of Life science and
Medical Bioscience

Department of Electrical Engineering and Bioscience

And graduate school.

Graduate School of Fundamental Science and Engineering

Department of

Pure and Applied Mathematics

Department of Applied Mechanics

Department of

Electronic and and Physical Systems

Department of Computer Science and

Engineerir

Department of Intermedia Studies

Graduate School of Creative Science and Engineering

Department of Architecture
Department of

Modern Mechanical Engineering

Department of Industrial and

Management Systems Engineering

Department of Civil and

Environmental Engineering

Department of Earth Sciences,

Resources and

Environmental Engineering

Department of

Business Design and Management

Graduate School of Advanced Science and Engineering

Department of Pure and Applied Physics Department of Chemistry and Biochemistry Department of Applied Chemistry Department of

Life Science and Medical Bioscience Department of Electrical Engineering

and Bioscience

Department of Integrative Bioscience and
Biomedical Engineering

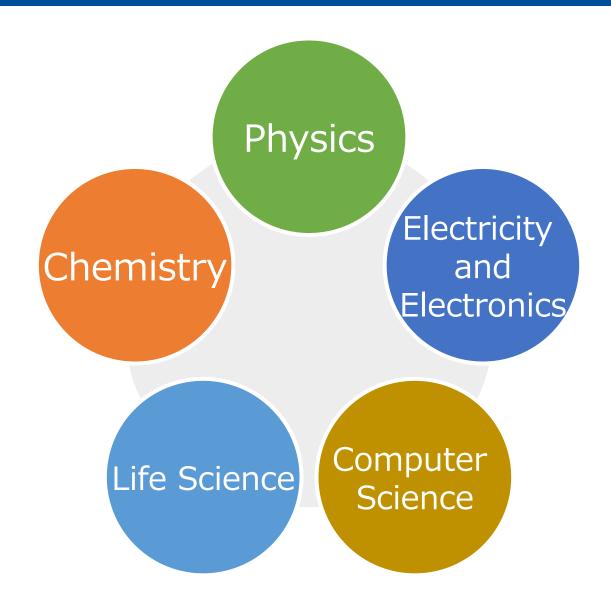
Department of Nano-Science and Engineering Cooperative Major

in Advanced Biomedical Sciences Cooperative Major in Advanced Health Science

Cooperative major in Nuclear Energy

Department of

Advanced Science and Engineering


Graduate School of Information, Production and Systems

Environment and Energy Engineering

School

What is Advanced Science and Engineering?

What is Advanced Science and Engineering?

Department of Physics

Department of Applied Physics

Physics

Department of Applied Chemistry

Chemistry

Electricity and Electronics

Department of Chemistry and Biochemistry

Life Science

Department of Life Science and Medical Biosciences Department of Electrical Engineering and Bioscience

Computer Science

Six departments of Advanced Science and Engineering

Basic education for all three schools of science and engineering

- Classes for basic science and lab courses.
- Language training
- Liberal Arts Education

Specialized education based on natural science

 Unique science and engineering education in each department

Department of Physics

Department of Applied Physics

Department of Chemistry and Biochemistry

Department of Applied Chemistry

Department of Life Science and Medical Biosciences

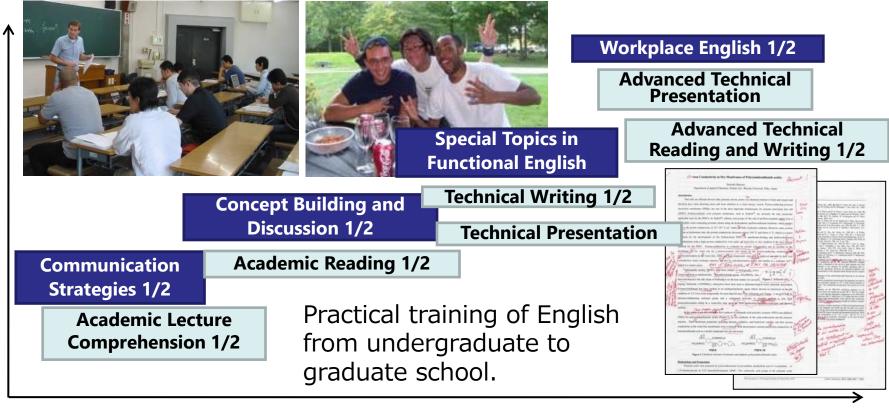
Department of Electrical Engineering and Bioscience

Developping basic academic skills in undergraduate course

Stepping up from the basics to expertise through an integrated curriculum

	first year second year third year fourth year
	Multidisciplinary Courses
	Comprehensive Courses: Courses that allow students to comprehend interdisciplinary issues in an integrated manner
group A 22-28 credits	Special Topics: approaching to humanities, social sciences And technology issues from multiple perspectives
	Foreign Language Courses
	English
	German, French, Chinese, Spanish and Russian
	Mathematics
group B 22-32 credits	Natural science Physics, Chemistry and Life Sciences
ZZ OZ CICCIIS	Basic Science and Engineering experiments, Computer Science and Related Courses
group C	Specialized education courses - each department has its own unique characteristics Introductory and Basic Courses, Specialized Basic Courses, Specialized Applied Courses Graduation Research
62-82 credits	Graduation research
	Pre-requisite for graduate courses
group D	Physical Education, and Other subjects (Engineering and Culture, Volunteering, Internship)
Cooperative	e-programs Basic Exercises Exercises and Graduation Thesis

Faculty of Science and Engineering put emphasis on


"experience-based education" that allows students to actually touch things and experience phenomena

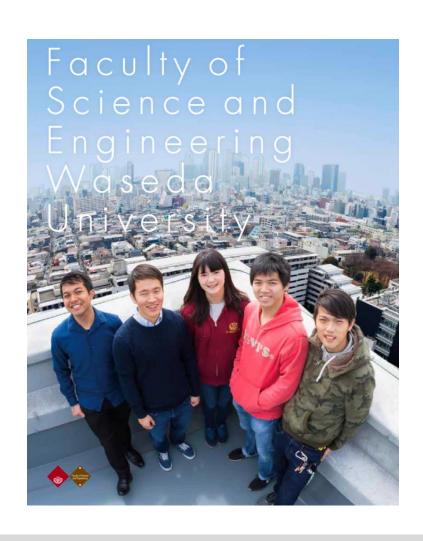
Through lab courses and hands-on classes, students can better understand the content of classroom lectures and acquire the basics of techniques needed in the future.

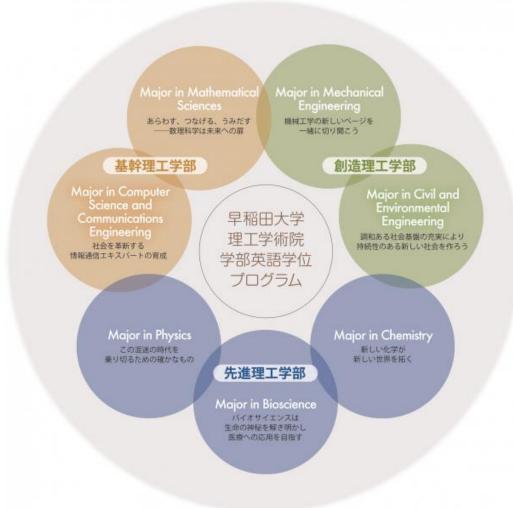
Students also experience the actual process of creating things and develop the ability to tackle problems on their own initiative.

- ✓ to read scientific papers in English.
- ✓ to present and discuss scientific research in English.

Undergraduate

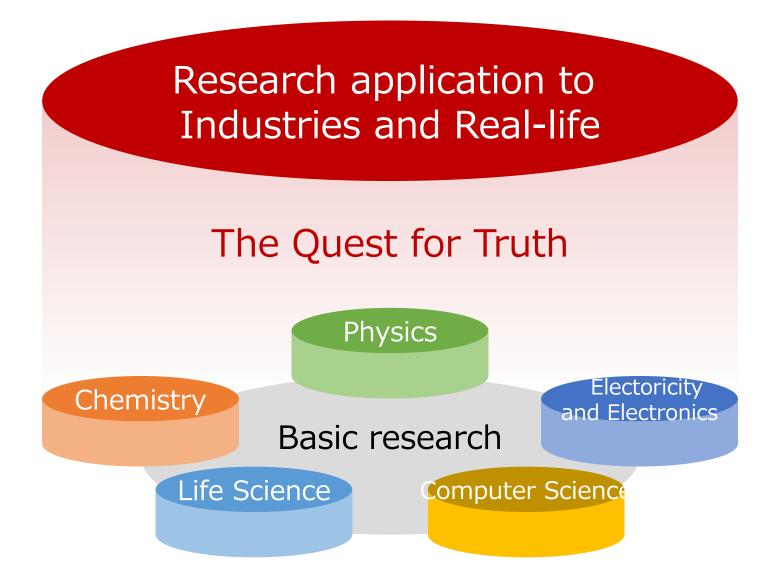
Master's Degree


Doctoral Degree


skill

English-based Programs

https://www.waseda.jp/fsci/en/about/education/english-based/



Research Ethics

- ✓ Programs given by each department
- ✓ University-wide on-demand content "Introduction to Research Ethics "

From undergraduate school to graduate school

6 departments $\rightarrow 1$ 1 departments

School of

Advanced Science and Engineering

Department of Physics

Department of Applied Physics

Department of

Chemistry and Biochemistry

Department of Applied Chemistry

Department of Life science and

Medical Bioscience

Department of Electrical

Engineering & Biosciences

Graduate School of

Advanced Science and Engineering

Department of Pure and Applied Physics Department of Chemistry and Biochemistry Department of Applied Chemistry Department of Life Science and Medical

Bioscience

Department of Electrical Engineering and

Biosciences

Department of Integrative Bioscience and Biomedical Engineering

Department of Nano-Science and Engineering Cooperative Major in Advanced Biomedical

Sciences

Cooperative Major in Advanced Health Science Cooperative Major in Nuclear Energy Department of Advanced Science and Engineering (5 Years)

Recommendation system

Higher educatior

11 majors in the Graduate School of Advanced Science and Engineering

Education and Support for All Three Schools of Science and Engineering

- Integrated English education program from undergraduate to graduate levels
- Career Support through Industry-Academic Collaboration

Academic Research beyond Traditional Research Fields

- Expansion into new and interdisciplinary fields
- Interdisciplinary majors and Cooperative majors

Developing professional skills to solve problems in a wide range of fields

	Department of Pure and Applied Physics
	Department of Chemistry and Biochemistry
	Department of Applied Chemistry
	Department of Life Science and Medical Bioscience
	Department of Electrical Engineering and Bioscience
Interdisc	Department of Integrative Bioscience and ciplinary Biomedical Engineering
majors	Department of Nano-Science and Engineering
	Cooperative Major in Advanced Biomedical Sciences
Cooperat majors	tive Cooperative Major in Advanced Health Science
	Cooperative Major in Nuclear Energy
Five-yea	r program Advanced Science and Engineering

Undergraduate/graduate school education to develop a high level of expertise

- Through a unique education and research program that integrates science, which aims to pursue principles, and engineering, which leads to technologies contributing to society, we educate students with a high degree of expertise and the ability to understand problems from a broad perspective.
- Students can take lecture courses at the graduate school while they are in the undergraduate program so that they can learn efficiently from undergraduate to graduate school.
- Using the skipping grade system, students can obtain a doctoral degree within six years of entering the undergraduate course.

Leading Waseda as a research university

Strengthen important fields through Cooperative Majors and collaborations

Tokyo Women's Medical University

Tokyo University of Agriculture and Technology

Tokyo City University

The Center for Advanced Biomedical Sciences (TWIns)

External Collaborators

- RIKEN
- Tsukuba National Institute of Advanced Industrial Science and Technology
- Tsukuba, National Institute for Materials Science (NIMS)
- Japan Aerospace Exploration Agency (JAXA)
- National Center for Neurology and Psychiatry
- Japan Atomic Energy Agency (JAEA)

Nanotechnology Research Facility

University Research Center

- Nano-Life Research Institute
- WISE, GCOE, ans 21COE programs
- High-tech research centers

Obtaining a research budget to conduct world-class research

- Support for Pioneering Research Initiated by the Next Generation Program (SPRING)
- Moonshot Research and Development Program
- Exploratory Research for Advanced Technology Program (ERATO)
- Program for Creating STart-ups from Advanced Research and Technology (START, SCORE, STARTUP ECOSYSTEM)
- Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)
- Doctoral Program for World-leading Innovative & Smart Education (WISE Program)
- Exploration and Development of Global Entrepreneurship for Next Generation Program (EDGE-NEXT)
- Enhancing Development of Global Entrepreneur Program (EDGE)
- Program for Leading Graduate Schools
- Global COE Program
- Strategic Research Center Development Program (Super COE)
- Global 30 Program
- 21st Century COE Program
- Private University Strategic Infrastructure Formation Support Project
- Grant-in-Aid for Scientific Research etc.

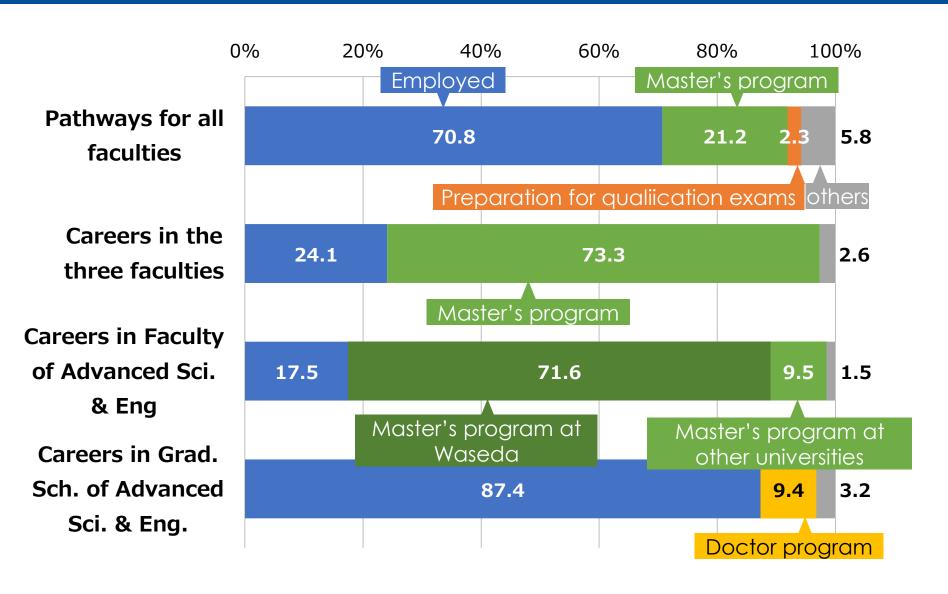
Various Scholarship Programs

More than 80% of undergraduates go to master's programs

- Variety of scholarships from the Japan Student Services Organization (JASSO) and private organizations to support undergraduate and graduate students financially
- Most of the graduate students (more than 1,000) can obtain a scholarship if they apply
 - Many master's students go on to doctoral programs
- People with PhDs are working in various companies
- Students can obtain a "Scholarship for Fostering Researchers in Doctoral Programs"

- Scholarships: loans and grants
- Japan Student Services Organization (JASSO):Loan

On evaluation of activities during the master course


(papers, conference presentations, awards, TA's experience, etc.)

Full or half repayment may be exempted

Career paths for March 2024 Graduates

Main Employment Opportunities for Graduates

(Results for March 2019 graduates)

Major employers

Accenture

Asahi Kasei

Ajinomoto

AGC

NTT DATA

Olympus

Kao

Canon

Kyocera

Kirin Beverages

JXTG Energy

Shin-Etsu Chemical Co.

Sumitomo Chemical

All Nippon Airways (ANA)

Sony

SoftBank

Daiichi Sankyo

Dai Nippon Printing Co.

Takeda Pharmaceutical Co.,Ltd.

Terumo.

Power supply development

Denso Dentsu

Tokyo Gas

Tokyo Electric Power Company

Holdings, Inc.

Mitsubishi Electric Industrial Systems,

Toshiba Corp.

Toray Industries, Inc. Toyota Motor Corporation

IBM Japan, Ltd.

Oracle Corporation of Japan Nippon Steel Corporation

Japan Tobacco Inc.

Japan Broadcasting Corporation (NHK)

Nomura Research Institute, Ltd.

Panasonic

Nippon Telegraph and Telephone

Corporation (NTT East)

East Japan Railway Company

(JR East)

Hitachi, Ltd.

Fujitsu Fujifilm

Honda Motor Co.

Mitsui Chemicals, Inc.

Mitsui & Co.

Mitsubishi Chemical

Mitsubishi Heavy Industries, Ltd.

Mitsubishi Electric

Mitsubishi Materials Corporation

Mitsubishi UFJ Bank

Murata Manufacturing Co. Morinaga Milk Industry Co. Yokogawa Electric Corporation

The Lion

and many more

INTRODUCTION TO DEPARTMENT OF PHYSICS

Research Field (Department of Physics)

Getting to the Ultimate World

Nuclear and Elementary Particle Physics

Astrophysics

Quantum and Condensed Matter
Physics

Pursuing New Materials and New Phenomena

Biophysics

Unraveling Complex Life Phenomena

Research content (Physics)

Elementary Particle and Astrophysics

- Research on physical laws of the microscopic world such as quarks and neutrinos (quantum theory and particle theory)
- Theoretical and experimental research on the origin and evolution of the universe, black holes, supernovae and other unknown objects based on modern physics (relativity and quantum theory)

Quantum, Condensed Matter Physics, Nonlinear Science, Statistical Physics

- Study of various properties of solid materials such as superconductivity, superfluidity,
 Bose-Einstein condensation, magnetism, and dielectricity
- Extraction of universal kinetic structure independent of system details, such as physical systems (mechanical properties and crystal growth of soft matter), chemical systems and biological systems

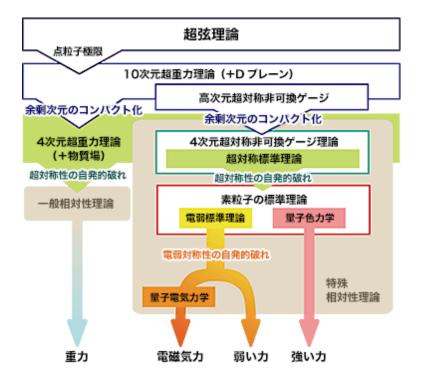
Biophysics

- Research on the function and structure of proteins (biomolecular machines) that play a role in biological locomotion and energy conversion from both experimental and theoretical perspectives
- Studying the mechanisms (principles) that govern life from the perspective of physics

Physics Department Faculty

Advanced Top Runner

第16回

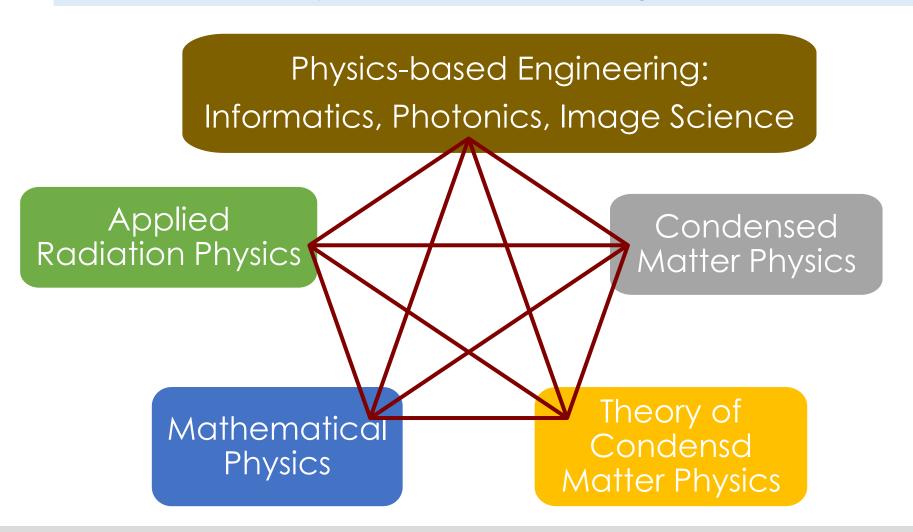


物理学科/物理学及応用物理学専攻 安倍博之 教授 Hiroyuki, Abe

全ての物理現象を表現できる素粒子の 究極的統一理論を求めて

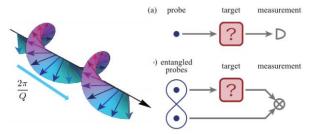
第16回は安倍博之 教授のインタビュー。私たちの世界 に起こるあらゆる物理現象を表現できる素粒子の突極的 統一理論を求めて、理論研究を進めています。

The smallest components of matter are called subatomic particles, which are classified according to their properties into leptons, such as electrons, quarks, which make up protons and neutrons, and gauge particles, which mediate the forces acting between these particles of matter. It is believed that our world exists and all phenomena are caused by the interaction of these elementary particles, but no theory has been developed to explain them all since the beginning of history. Associate Professor Hiroyuki Abe of the Department of Physics is challenging this difficult question from a phenomenological perspective.

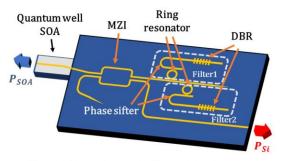


INTRODUCTION TO DEPARTMENT OF APPLIED PHYSICS

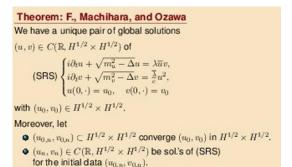
Research Field (Applied Physics)



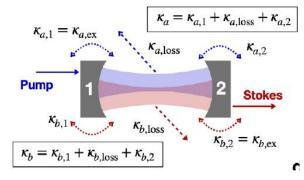
Innovate physics and next-generation technologies by leveraging the fruits of physics and research methodologies

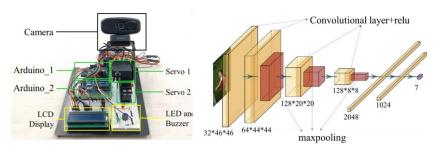


Examples of Research Topics (Applied Physics)



Theory for physical behavior of electrons, spins, magnets etc.


Two-Wavelength Tunable Laser


Then $(u_n, v_n) \longrightarrow (u, v)$ in $H^{1/2} \times H^{1/2}$ locally uniformly in time.

Describe and predict new physical phenomena with mathematics

Imaging of wave function by Attosecond laser

Brillouin lasing in short fiber Fabry–Perot resonators

Deep Learning-Based System for Real-Time Face Tracking and Expression Recognition

Anatomy Based Facial Animation and Fat Simulation

Faculty in the Department of Applied Physics

Advanced Top Runner

第19回

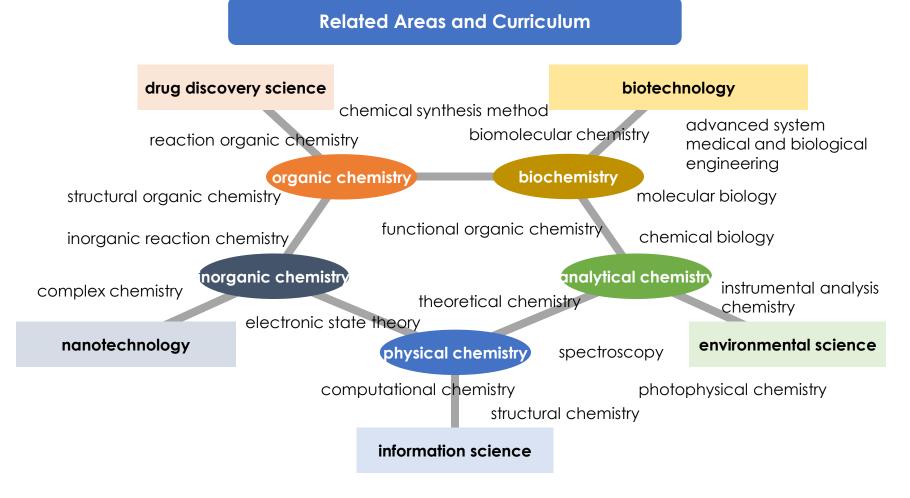
Jun, Kataoka

X線・ガンマ線で宇宙を見る技術と、 医療・産業機器への展開

第19回は片岡淳教授のインタビュー。未知なる宇宙を解き明かすことを目指して天文衛星に搭載する放射線検出器の開発を進めると共に、産業機器への技術応用も実践しています。

Ordinary astronomical telescopes use visible light to observe the moon and stars, but in order to observe special astronomical objects such as giant black holes and neutron stars at greater distances, high-temperature gases that are invisible to the human eye but exist in space, and explosive phenomena, electromagnetic waves such as X-rays and gamma rays, which have a higher energy than visible light, are used to observe the moon and stars. (a type of radiation) is advantageous. In the field of high-energy astrophysics, Professor Jun Kataoka of the Department of Applied Physics is developing radiation detectors and optical sensors to observe unknown celestial objects and reveal their true nature.

Exploratory Research for Advanced Technology Program (ERATO) Kataoka Project


https://www.jst.go.jp/erato/research_area/ ongoing/jpmjer2102.html

INTRODUCTION TO DEPARTMENT OF LIFE SCIENCE AND MEDICAL BIOSCIENCE

Research Field (Department of Chemistry and Biochemistry)

Learn a wide range of "chemistry"

Fundamental Law of Matter and Energy

The starting point for cutting-edge science and technology

Science of molecules to create new materials

Elucidation of chemical and biological phenomena at the molecular level

"Central Science"

Basis for collaboration with engineering, life sciences, pharmaceutical and natural sciences

Aiming to foster creative excellence

Faculty in the Department of Chemistry and Biochemistry

Advanced Top Runner

第22回

NEW

化学・生命化学科/化学・生命化学専攻

中尾 洋一 教授

Yoichi, Nakao

食べ物から「体にいい」物質を見つけ出す

第22回は中尾洋一教授を紹介します。海に潜って海洋生物から薬のもとになる化学物質を探したり、「健康を保てる」とされる発酵食品の機能性を探るなどして、「体にいい」を化学的に解明しようと研究されています。

It is often said that traditional fermented foods are good for you, such as "drinking miso soup every day will keep you healthy" and "Natto is good for you". In the world of food chemistry, which is based on nutrients, many explanations are based on the function of minerals, vitamins, etc. Recently, catechins and isoflavones are said to be good for you. However, are they really the only reasons why catechins and isoflavones are "good for you"? Isn't there more hidden in food that we don't know about? Based on this idea, we are searching for chemical substances in fermented foods that are considered to be "good for you" and "keep you healthy" that have some effects on living organisms (i.e., have biological activity).

A variety of marine life

INTRODUCTION TO DEPARTMENT OF APPLIED CHEMISTRY

8 Research Field (Applied Chemistry)

Practical Applications of Theories

- Practical Chemistry as Solutions for Sustainable Society
- Integration of Interdisciplinary Fields Based on Chemistry

Education and Research

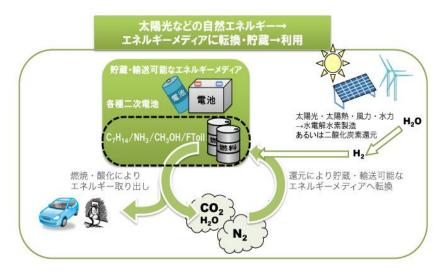
- "Lecture-Practice-Experiment" Cycled Programs to Master Practical Chemistry
- Cutting-edge Research in 8 Research Divisions Related to Energy, Materials, Biotechnology, and Carbon Neutrality
- Great Research Facilities Supported by National Grants and Industrial Collaborations

Our History and Tradition

- since 1917, Active and Strong Network of >10,000 alumni.
- Our own scholarship programs

Faculty in the Department of Applied Chemistry

Advanced Top Runner


応用化学科/応用化学専攻

関根 泰 教授 Sekine Yasushi

触媒反応の低温化で、エネルギーと環境の 未来を拓く

Prof. Sekine has proposed an "Non-conventional" catalytic process that can operate at temperatures as low as 100°C in which an electric field is applied to the catalyst layer. He is challenging the development of catalytic processes to solve the time and space constraints of renewable energy, such as ammonia and biomass.

Exploration of Non-conventional Catalytic Process for Transformation, Storage, and Utilization of Renewable Energy

INTRODUCTION TO DEPARTMENT OF LIFE AND MEDICAL SCIENCES

Research Field (Life Science and Medical Bioscience)

Science, engineering and basic medicine

Anatomy and Histology Laboratory, Physiology, Biochemistry, Pharmacology Genetic medicine, immunology, and Introduction to Clinical Medicine, etc.

Physical Chemistry, Analytical Chemistry, Organic Chemistry, Basic Statistics, and Applied Mathematics, Bioinformatics Exercises, etc.

medical science subject

science and technology subject

Integration of Science and Engineering and Medicine

Molecular and Cellular Biology,. Microbiology, Developmental Biology, and Neuroscience,. Introduction to Research Ethics, etc.

life science subject

Bio-medicine I is to learn faculty philosophy and research Bio-medical Sciences II is for Guidance for Laboratory Assignment

We train our students to be global leaders in life sciences, medical sciences, and medical engineering

- Students are required to complete a good balance of science and engineering, life science, and medical subjects and experiments to develop the academic ability to understand biological phenomena from cells to individuals.
- This is a 6+3 year intensive education and research program that includes
 doctoral courses in collaboration with domestic and international educational
 and research institutions and corporate researchers.
- Faculty members from various backgrounds are fused together in an open laboratory to develop international researchers with a pioneering spirit that creates new fields.

For more information, please visit the Department of Life Science and Medical Biosciences website. (http://www.biomed.sci.waseda.ac.jp/).

Faculty in the Department of Biomedical Sciences

Advanced Top Runner

第20回

生命医科学科/生命医科学専攻 竹山 春子 教授 Haruko, Takeyama

海洋微生物の有用性を解明し、資源として 活用するマリンバイオテクノロジーを 日本から世界へ

第20回は竹山春子教授のインタビュー。多くの可能性を秘めた宝箱である海から、私たちの生活・健康に有用な微生物を見出して資源として利用するために、国内外の研究者とマリンバイオテクノロジーの研究を進めています。

Most of the microorganisms on Earth have not been successfully cultivated and, as a result, their properties and characteristics are not known. In particular, since many microorganisms in the ocean are even more difficult to culture than those on land, the ocean is expected to be a treasure chest with many hidden possibilities. Professor Haruko Takeyama of the Department of Life Science and Medical Biosciences is engaged in research and development of marine biotechnology for the microorganisms of the sea, using cutting-edge technologies such as genetic engineering, Raman spectroscopic analysis technology and microfluidic devices.

The Moonshot Research and Development Program Goal 5 "Construction of circulating production platform by environmental control based on Soil Microbe Atlas"

https://www.microbe-soil.sci.waseda.ac.jp/2021/06/08/84/

INTRODUCTION TO DEPARTMENT OF ELECTRICAL ENGINEERGIN AND BIOSCIENCE

Research Field (Electrical Engineering and Bioscience)

Human body is information bodies connected with electrical signals

- Combining life sciences and electrical and electronic information fields
- Four vertices in the four domains of life, electricity, electronics and information
- Challenging both "research in depth in each field" and "research that spans multiple fields

Various research fields

Themes that sharply penetrates each field

- A theme that lies on the line connecting the two vertices
- A theme corresponding to a surface composed of three vertices
- A theme leading to a consolidated research composed of all four vertices

biological rhythm **DNA functional structure** theoretical biology neuroscience intracellular signal transduction machine learning natural energy synthetic biology stochastic information bioinformatics processing photobiological control biometric identification Electric energy system informationelectrical medical optics related system design system computer-vision superconductivity Photonic Materials power electronics optical integrated circuit Functional Ma² alsquantum materials

Semiconductor Nanotechnology

electronics

life cycle

The theory and technology gained at each field expand into the fusion field.

Consolidate lots of research examples in the fusion field and develop them into higher level ressearch

Education (Electrical Engineering and Bioscience)

Educational Programmes: Subject Group System

Advanced Subjects and Graduate School Courses Specialized Subjects

Basic

Subjects

electronics

Basic Life Sciences

The Science of Health and Disease

Introduction to Medical Flectronics

Introduction to Medical Flectrical Measurement

Introduction to Energy Systems

Power network

Introduction to Energy Conversion

Introduction to Materials Science

Introduction to Electronics

Introduction to Structure of Matter

Quantum science

electrical system

The Molecular Biology of Medicine and Time

life cycle The Biology of Genetics and Diversification

Introduction to Biophysics

Synthetic biology

Life Information Science
Simulation

information-related

Stochastic information processing

Introduction to Computational Science

Introduction to Data Analysis

Control theory

Introduction to Computer Software

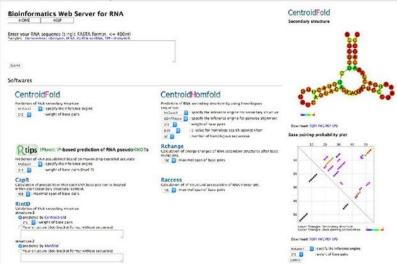
Introduction to Computer Hardware

The Science of Vacuum

Faculty members of the Department of Electrical Engineering and Bioscience

Advanced Top Runner

電気・情報生命工学科/電気・情報生命専攻


浜田 道昭 教授 Hamada Michiaki

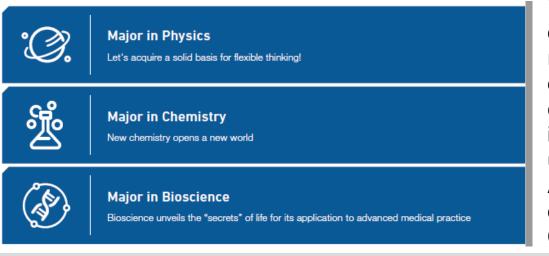
純粋数学でつなぐ、情報科学と生命科学: バイオインフォマティクス

解析装置等の性能向上に従って大量に蓄積されてきたゲノムやRNA等の配列データを、様々な情報科学的手法により分析処理し、新たな発見を目指すバイオインフォマティクスの研究を進めていらっしゃいます。

Since the discovery of DNA, the source of life, in 1869, many scientists have been studying it, and the Human Genome Project, completed in 2003, has revealed the entire DNA sequence of humans. At present, research is being conducted based on this information to elucidate the sequence, structure and roles of substances expressed from DNA, such as RNA and proteins, in order to better understand the mechanisms of biological activities. This has led to the development of instruments that can amplify and analyze DNA faster and in greater quantities, resulting in the accumulation of too much sequence data to handle. In the field of bioinformatics, we aim to make new discoveries by reviewing these data, which must contain a great deal of useful information, from various perspectives using information science technology, and developing highly efficient and accurate analysis and prediction tools that incorporate knowledge from various fields such as mathematics, physics and chemistry. is Associate Professor Michiaki Hamada of the Department of Electrical, Computer and Biological Engineering.

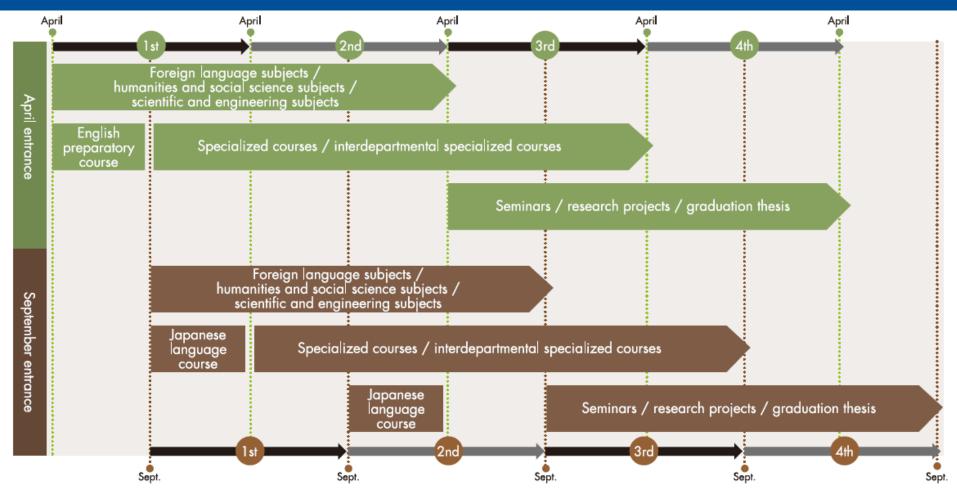
Rtools, a web server that integrates a number of RNA information analysis tools

英語学位プログラム: Physics, Chemistry, Bioscience Majors



In 2010, the Faculty of Science and Engineering at Waseda University became one of the first institutions in Japan to introduce an English-based Program, offering students the opportunity to acquire an undergraduate degree solely taught in English.

This program has been highly acclaimed both in Japan and overseas.

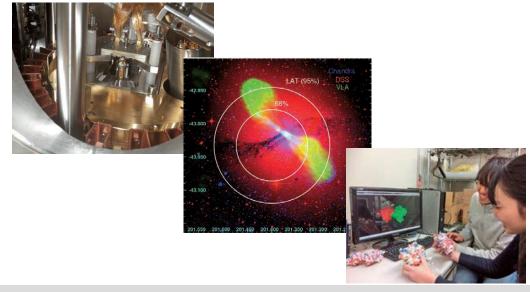

From April 2018, the undergraduate "English-based Program" is reorganized into seven Majors, with education and research programs strengthened through the addition of new disciplines and by boosting the faculty numbers. Based around this world-class program, we aim to create new value through the mutual stimulation of a diverse student body and by building the best possible environment for education in science and engineering.

The English-based program of the Faculty of Science and Engineering covers a wide range of scientific and engineering disciplines. We offer unique specialized courses that cannot be found in the international science programs of other universities in Japan. The School of Advanced Science and Engineering offers our students three program; Physics, Chemistry, and Bioscience.

Curriculum Outline of Physics, Chemistry, and Bioscience Majors

- ·Students can obtain a degree by taking courses in English only
- ·No Japanese Language proficiency is required in prior to enter the program
- Japanese language course is compulsory for admitted in both Apr/Sept application

INTRODUCTION TO PHYSICS MAJOR


https://www.ase.sci.waseda.ac.jp/english/departments/physics.php

Let's acquire a solid basis for flexible thinking!

The Major in Physics will provide you with a solid basis in physics, which strengthens your way of logical and scientific thinking and enables you to pursue cutting-edge researches on pure and applied physics. You can systematically learn the fundamentals in classical and modern physics and the basics in the physics-based engineering. In the graduation thesis, you may discover as-yet-unknown phenomena in physics, break new ground in the discipline, and develop epoch-making technologies. The faculty members who are well-versed in a wide area of physics are looking forward to enjoying physics with you!

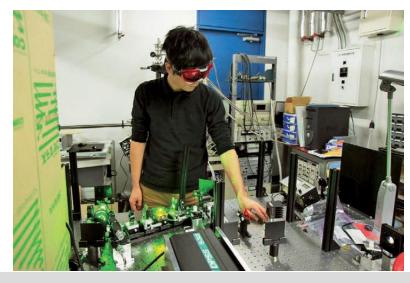
Message from student and graduate/Faculty Member

Living in Malaysia for almost my whole life, I was brought up in a multicultural community. Coming to Waseda felt just like home, welcoming me with a studentfriendly atmosphere and international environment. I enjoy studying physics because it unravels various mysteries of the universe in such a logical and concise manner. Since young, I loved playing sport and I'm glad to have joined the windsurfing club, where I can meet students from various departments and create everlasting bonds with my teammates. I'm confident to say, I'm having the best time of my life!

Learning physics in English was a privilege especially in Japan where the leading edge research was happening. The best thing about the IPSE Applied Physics program was that it provided me with the strong foundation. Not only on the core skills, but skills such emerging programming, academic writing and presenting gave me the confidence as a Physics graduate. I most enjoyed my time with the experienced and passionate professors from freshmen where they were always willing to help whenever I needed them. A great course for a challenging and exciting experience!

ABE, Hiroyuki	Theoretical Particle Physics
AOKI, Takao	Quantum Optics Research
HARAYAMA, Takahisa	Nonlinear Physics
HASEGAWA, Tsuyoshi	Surface and Interface Physics
INOUE, Akio	Experimental Astrophysics
KATSUFUJI, Takuro	Complex Quantum Physics
KATAOKA, Jun	Applied Radiation Physics
KITA, Tomohiro	Integrated Optical Devices
KOIKE, Shigeaki	Mathematical Physics
KOMATSU, Shinichi	Optical Science and Engineering
MAEDA, Kei-ichi	Relativistic Astrophysics and Cosmology
MATSUDA, Azusa	Experimental Low Temperature Condensed Matter Physics
MIKHAILENKO Sergey	Experimental Biophysics
MIZOKAWA, Takashi	Electronic Correlation Physics
MOCHIZUKI, Masahito	Emergent Materials Physics
MORISHIMA, Shigeo	Image Information Processing
MOTZ, Holger Martin	Cosmic Ray Physics
NAKAZATO, Hiromichi	Fundamental Theory of Quantum Mechanics
NIIKURA, Hiromichi	Atomic, Molecular and Optical Physics
OTANI, Mitsuharu	Mathematical Physics
OZAWA, Tohru	Mathematical Physics
SAWADA, Hideyuki	Fundamentals and Applications of Pattern Information Proce
TABE, Yuka	Soft Matter Physics
TAKANO, Masatoshi	Theoretical Nuclear Physics
TAKANO, Mitsunori	Theoretical Biophysics
TAKAYAMA, Akari	Surface Science
TAKEUCHI, Atsushi	Semiconductor Device Engineering
TANAKA, Masashi	Experimental Particle Physics
UYEDA, Taro	Molecular Biophysics
WASHIO, Masakazu	High Quality Beam Science
YAMADA, Shoichi	Theoretical Astrophysics
YAMAZAKI, Yoshihiro	Physics of Non-equilibrium System
YASUDA, Kenji	Experimental Biophysics
YORITA, Kohei	High Energy Experimental Particle Physics
YUASA, Kazuya	Theoretical Quantum Physics

INTRODUCTION TO CHEMISTRY MAJOR


https://www.ase.sci.waseda.ac.jp/english/departments/chemistry.php

Features of Chemistry Major

New Chemistry opens a new world!

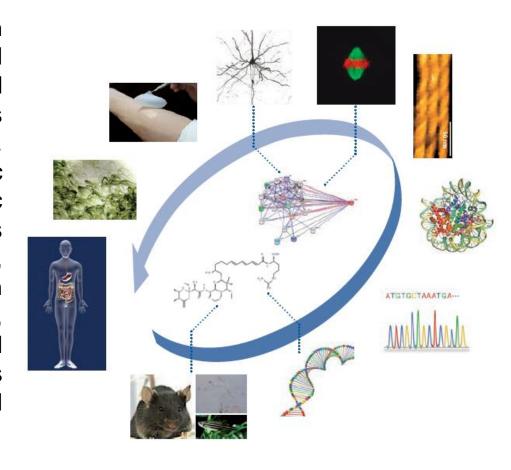
Chemistry is a field of science that studies chemical syntheses and reactions, as well as the functions of substances and materials, at the atomic and molecular levels. Our undergraduate curriculum covers the major areas of chemistry and chemical engineering and is designed to provide students with broad knowledge and understanding. It also offers opportunities for more in-depth study in their specific area of interest in Japanese. Upon completion of our program, students have the choice of continuing their research in graduate programs or starting a professional career in a range of fields, such as environmental science, biotechnology, nanotechnology, and chemical engineering.

Message from student and graduate/Faculty Member

Waseda for me is the place that showed me challenge enormous amount of and opportunities. Majoring chemistry here meant access to various laboratories and from the best learning professors in the field. People have different here backgrounds which allows me to learn so much from others. Classes are also different as they are usually small but can be big and each professor has his/her teaching own technique and they always and welcome encourage guestions. We have plenty of circles and activities which allow close interactions with the Japanese culture.

Studying at Waseda was an extraordinary experience. As a chemistry major, was exposed aspects to chemistry both theoretically and practically. I especially the biomedical enjoyed laboratory conducted at Tokyo Women's Medical University. This what course was ultimately motivated me to study biochemistry further. I recently started working as a research technician in a biology laboratory at ETH Zürich. It is a laboratory that focuses on . studying the molecular and cellular mechanisms behind wound healing and skin cancer. The G30 programme is a perfect fit for any international students like myself.

EGUCHI, Miharu	Photo Chemistry, Nano-structure Control
FUKUNAGA, Akihiko	Energy Materials
HANADA, Nobuko	Materials Science, Chemical Engineering
HIRAI, Yusuke	Polymer Physical Chemistry
HOMMA, Takayuki	Functional Surface Chemistry, Interfacial Electrochemistry
HOSOKAWA, Seijiro	Synthetic Organic Chemistry
IMURA, Kohei	Photo-Physical Chemistry
ISHII, Ayumi	Inorganic Matreials Chemistry
KANOMATA, Nobuhiro	Functional Organic Chemistry, Organic Stereochemistry, Heterocyclic Chemistry
KIRIMURA, Kohtaro	Applied Biochemistry, Microbial Functions Development
KOHORI, Fukashi	Chemical Engineering, Interface Engineering
KOIDE, Takaki	Biomolecular Chemistry
KUNIMOTO, Masahiro	Functional Surface Chemistry, Electroanalytical Chemistry
MATSUKATA, Masahiko	Catalytic Chemistry, Membrane Separation
MOMMA, Toshiyuki	Applied Electrochemistry, Chemistry of Energy Materials
NAKADA, Masahisa	Synthetic Organic Chemistry, Total Synthesis of Bioactive
	Compounds, Asymmetric Catalysis
NAKAI, Hiromi	Electronic State Theory
NAKAO, Yoichi	Chemical Biology
NODA, Suguru	Reaction Engineering, Materials Process Engineering
OYAIZU, Kenichi	Polymer Chemistry
SAKTI, Aditya Wibawa	Molecular Simulation
SEINO, Junji	Cheminformatics
SEKINE, Yasushi	Catalysis, Surface Ionics
SHIBATA, Takanori	Reaction Organic Chemistry
SHIMOJIMA, Atsushi	Inorganic Solid State Chemistry, Synthetic Inorganic Chemistry
SUGA, Takeo	Polymer Chemistry, Functional Polymers
SUGAHARA, Yoshiyuki	Inorganic Materials Chemistry
TERADA, Yasuhiko	Molecular Biology & Cellular Biology
UMENO Daisuke	Umeno: Synthetic Biology
YAMAGUCHI, Junichiro	Organic Chemistry
YAMAGUCHI, Tadashi	Coordination Chemistry
YAMAMOTO, Kana	Bioorganic Chemistry, Medicinal Chemistry, Asymmetric Synthesis


INTRODUCTION TO BIOSCIENCE MAJOR

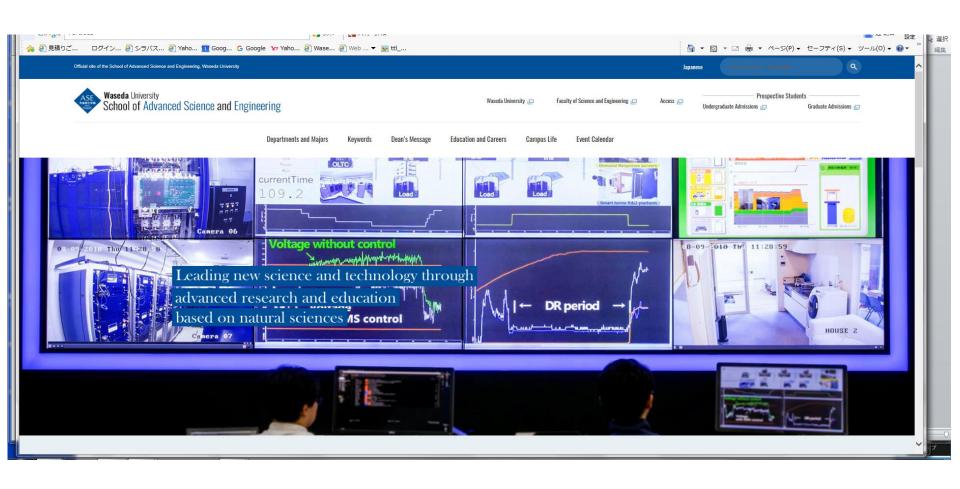
https://www.ase.sci.waseda.ac.jp/english/departments/bioscience.php

Bioscience unveils the "secrets" of life for its application to advanced medical practice

The Bioscience Major fuels discovery in Life Science and innovation for medical practice by providing fundamental and cutting-edge knowledge and techniques to explore the diversity of living systems. In addition to Bioscience major-specific disciplines, students will receive basic training in core scientific fields such as mathematics, physics, chemistry, biology, medicine, engineering, and information science. To gain practical skills, laboratory sessions will be incorporated to cover experimental techniques across the full spectrum of physical, chemical and biological sciences.

Message from student and graduate/Faculty Member

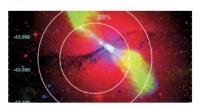
Having lived many different countries, I was for university looking a where I can receive quality education with people from diverse background. Waseda University is an epitome of such university. As a Medical Bioscience major, I am able to study wide range of and humanities science courses with fellow Japanese and international students. When I am struggling with a certain class, students majoring in that subject helps me get through it. I feel so blessed to be a part of this community and am looking forward to four years in Waseda!



2012 and currently am studying neuroscience in the graduate school. The reason I decided to come to Waseda is because of its interdisciplinary education system, which allows students to combine different fields to study science. Also, the friendly atmosphere of the faculty members made it easier for us to communicate freely. In addition, the life science department has advanced research facilities and students will have many opportunities to different experimental techniques. They can even design their own research! I hope you will enjoy your future in Waseda!

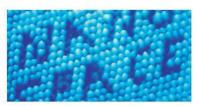
ASAHI, Toru	Bio Solid State Physics
CAMPBELL, Douglas S.	Neuroscience, Neuronal Remodeling, Cell Biology, Developmental Neurobiology
GODA, Nobuhito	Medical Biochemistry and Molecular Biology of Diseases
HAMADA, Michiaki	Bioinformatics, Computational Biology
HATTORI, Masahira	Genome and Metagenome Sciences, Bioinformatics
HOSOKAWA, Masahito	Biotechnology, Bioengineering, Microfluidic Device, Genomics
INOUE, Takafumi	Neurophysiology
INOUE, Masato	Probabilistic Information Processing
IWASAKI, Hideo	Biological Aesthetics/Art, Molecular Microbiology
KIGA, Daisuke	Synthetic Biology, Biochemistry
LI, Tianshu	Biomaterials, Nanomedicine, Cell Biology
OHSHIMA, Toshio	Molecular Neuroscience
OKANO, Toshiyuki	Photobiology, Biochemistry
ORIHARA, Kanami	Immunology, Molecular Bioscience
SATO, Masamitsu	Molecular Cell Biology, Cytoskeletal Regulation
SHIBATA, Shigenobu	Pharmacology, Nutrients Science
SEMBA, Kentaro	Molecular Oncology
TAKEDA, Naoya	Biomaterials, Soft Interface, Tissue Engineering
TAKEOKA, Shinji	Science of Biomolecular Assembly, Engineering of Nanomedicine
TAKEYAMA, Haruko	Biomolecular Engineering and Biotechnology
TSUNEDA, Satoshi	Environmental Biotechnology
UYEDA, Taro	Molecular Biophysics
YANAGITANI, Takahiko	Biosensors, Ultrasonics

Web Site

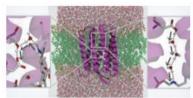


https://www.ase.sci.waseda.ac.jp/english/

Department and Major in Undergraduate and Graduate School


Departments and Majors

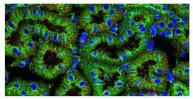
Department of Physics/
Department of Pure and Applied Physics, Graduate
School of Advanced Science and Engineering


□

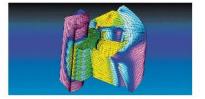
"Unraveling natural phenomena ranging from elementary particles to universe to biology"

Department of Applied Physics/
Department of Pure and Applied Physics, Graduate
School of Advanced Science and Engineering

"Producing next-generation technologies and new physics"


Department of Chemistry and Biochemistry/ Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering

"Studies on substances and energy from the view point of atoms and molecules"


Department of Applied Chemistry/
Department of Applied Chemistry, Graduate School of Advanced Science and Engineering 🕮

"Useful chemistry / Practical chemistry"

Department of Life Science and Medical Bioscience/ Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering

"Turning out fresh talent and advancing the frontier of medicine and life science through collaboration among medicine, science and engineering"

Department of Electrical Engineering and Bioscience/
Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering

"Enabling students to discover what they want to be"

Major in Physics →

Let's acquire a solid basis for flexible thinking!

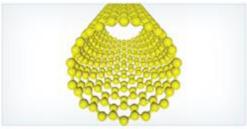
Major in Chemistry →

New chemistry opens a new world

Major in Bioscience →

Bioscience unveils the "secrets" of life for its application to advanced medical practice

Interdisciplinary & Joint Departments, 5-years Doctoral Program



Interdisciplinary Departments

Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering

"Moving into the future with cooperation between advanced biotechnology and advanced science and engineering"

Department of Nanoscience and Nanoengineering, Graduate School of Advanced Science and Engineering

"Developing new functions of photons, electrons, atoms and molecules to achieve a good quality of life"

5-Year Doctoral Program

Department of Advanced Science and Engineering

"We welcome Science and Engineering students who wish to become leaders on the international stage and we help them polish the skill set required to resolve global issues, which now involve a complicated web of physics, chemistry, life science, electricity and electronics."

Joint Departments

Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Science and Engineering

Waseda University-Tokyo Women's Medical University

"Achieving rapid clinical implementation of advanced medical equipment, newly developed drugs and regenerative medicine"

Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering

Waseda University-Tokyo University of Agriculture and Technology

"Promoting education and research on health science in the fields of life science, environmental science and food science and developing human resources to contribute to society"

Cooperative Major in Nuclear Energy, Graduate School of Advanced Science and Engineering

Waseda University-Tokyo City University

"A new world created by advanced nuclear energy and radiation applications"

Nine Key Words

Campus Life

Department of Physics, 4th year undergraduate student

LIAO Keng-Yi (Henry)

Investigating supergravity in a high-energy physics lab A desire for challenge convinced LIAO Henry to come to Waseda to do cutting-edge research

Department of Applied Physics, 4th year undergraduate student

LI Zi yuan

Unraveling the molecular mechanism of muscle contraction

LI Zi yuan engineers proteins to shed light on a basic natural process

Department of Chemistry and Biochemistry, 4th year undergraduate student

YAMASAKI Mone

Thriving in an international environment

Waseda offers a chance to do cutting-edge research into
cell biology

Department of Applied Chemistry, 4th year undergraduate student

PATIL Neel

Paving the way for fuel cell cars

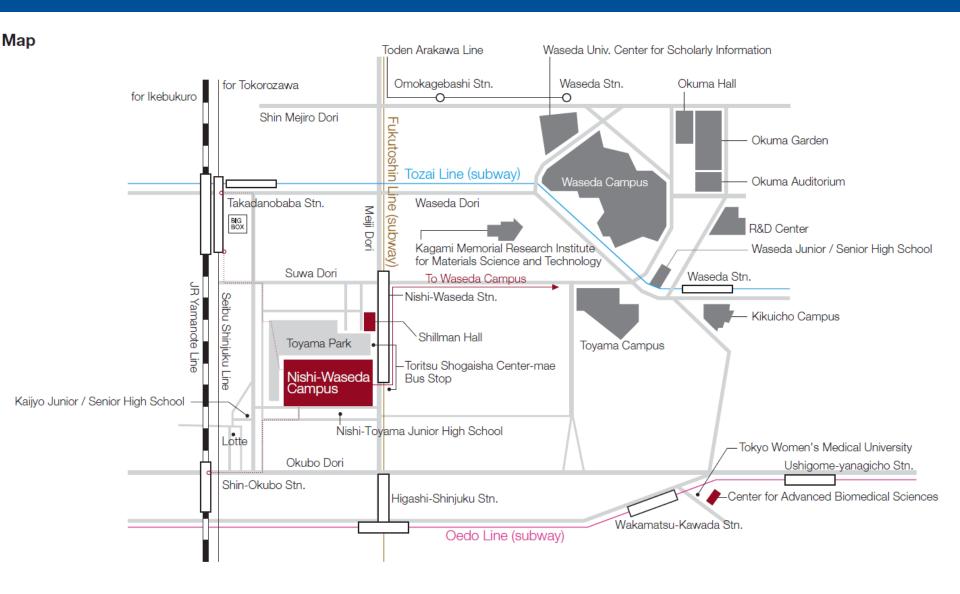
Producing hydrogen from ammonia could be the future of
driving

Department of Life Science and Medical Bioscience, 3rd year undergraduate student

HEERA Matilda

Cutting-edge research in tissue engineering is yielding exciting applications

HEERA Matilda is helping to develop life-saving biomedical technologies


Department of Electrical Engineering and Bioscience, 3rd year undergraduate student

HU Yuxin

Can you predict the future with information science? HU Yuxin, a 3rd year undergraduate student, is doing pioneering research to find out

Map near the Nishi-waseda Campus

