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Abstract

Historically, unemployment peaks in the first and third quarters—the arrival of cold win-

ters and hot summers. This paper attributes non-seasonally-adjusted (NSA) unemploy-

ment fluctuations to temperature shocks and assesses the impact of climate change on

unemployment seasonality. Combining granular daily weather across US counties with

monthly unemployment rates over the period 1990-2019, we find that extreme tempera-

ture days fuel unemployment by freezing hiring and triggering layoffs and thus, insurance

claims and recipients. Climate change accounts for 40% of the decline in unemployment

seasonality and 13% of the moderation in fluctuations in the overall NSA unemployment

rate. Accelerated future warming will propagate the unemployment seasonality through

milder winters and harsher summers.
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1 Introduction

At least since the Great Depression, the containment of unemployment has been a historical

theme of economic policy. Although the unemployment rate is monthly monitored as the “tem-

perature” of the economy and serves as a central input to policy debates (e.g., unemployment

insurance, minimum wage, fiscal/monetary policy), little is known about its regularity and the

mechanism of its seasonal dynamics; in fact, most economists statistically smooth out these

seasonal movements using statistical techniques. This lack of inquiry is surprising given this

the rise of in-and-out type workers within years (Katz and Krueger (2019); Coglianese (2018)),

increased female labor market entry as part-time workers, threat to consumption smoothing

and association with UI policies. To reveal the mechanism of seasonal unemployment dynam-

ics, this paper studies how temperature shocks shape unemployment, and assess the long-run

implication of climate change on unemployment seasonality, given the forecast of accelerated

warming in the new century.

To motivate our investigation, we begin by contrasting a half-year change in the unemploy-

ment rate (in summer and winter) with its seasonal temperature exposure. Panel A of Figure

1 plots nationwide experience of hot days in summers (April to September, left) and cold days

in winter (pre-year October to March, right), juxtaposed with half-year change of unemploy-

ment rates in 1950-2019. Despite the limited sample size of 70 years, the plots give a statisti-

cally significantly positive slope (t = 2).1Analogously, Panel B shows an adverse temperature-

unemployment nexus across US commuting zones split by summers (left) vs. winters (right) in

2019. In summers, hot cities (e.g., Miami, FL, Austin, TX) experienced larger increase relative

to cold days (e.g., Minneapolis, MN, Rochester, PA) in unemployment. In contrast, in winter,

cold cities experienced a relative increase.

Guided by the dynamic and spatial associations, we hypothesize that the arrival of hot sum-

mers and cold winters fuel unemployment rates. Extreme temperature days would significantly

hurt labor efficiency by interrupted work, increasing physical / mental fatigue, lowering work

morale, operational errors, and workplace injury risk (Park et al., 2021), and thus lead to a

decrease in labor demand —- resulting in fewer hires and more separations. This prediction

is consistent with our finding on seasonal regularity of unemployment cycle—starting with the

peak in the first quarter (Jan-Mar), and re-peaking in the third quarter (Jul-Sep), when the

average temperature hits the lowest and highest. To formally test this, we build a new panel

data connecting plausibly-random monthly-level exposure to hot days and cold days, and non-

seasonally adjusted (NSA) unemployment rates during 1990-2019, allowing for straightforward

identification of temperature-unemployment nexus. We also add extra weather proxies (e.g.,

1Including or excluding recession years does not significantly change the estimate.
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Figure 1: Temperature Shocks and Half-year Unemployment Dynamics in the US

(a) Nationwide Time Trend (1950–2019)
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(b) Spatial Dispersion across Commuting Zone (2019)

WLS slope (%pts per 10 days):  0.032 (0.003)-3

-2

-1

0

1

0 50 100 150
hot days 

 (in April-September)

Δ
%

pt
s

summer (from April to October)

WLS slope (%pts per 10 days):  0.025 (0.009)-3

-2

-1

0

1

0 50 100 150
cold days 

 (in last October-March)

Δ
%

pt
s

winter (from last October to April)

Notes: Panel (a): County-level exposure to hot and cold days are aggregated at the national level,
weighted by labor force, obtained from Bureau of Labor Statistics. Hot and cold days are defined as
days with an average temperature during working hours (8 a.m. to 6 p.m.) exceeding 77◦F and below
50◦F, respectively. Nationwide monthly unemployment is taken from the Bureau of Labor Statistics.
The fitted lines are trends without recession years, identified by NEBR-dated recession periods. Panel
(b): County-level exposure to analogously defined hot and cold days is aggregated to commuting zone
(CZ) level as the period average, 2015–2019, weighted by a county labor force. Each bubble represents
a CZ, with its size corresponding to the labor force. Small CZs with labor force below 10,000 are
dropped for clarity.
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humidity, precipitation, snowfalls) which presumably prevents business operation outdoors or

indoors without air conditioning. This granularity of analysis permits estimating climate impact

on unemployment at within-county-by-year level, which are free from statewide institutional

confounders (e.g., unemployment insurance; minimum wage; unionization). Importantly, we

include year-month fixed effects to isolate temperature impacts from nationwide business cycle

and institutional calendar effects (e.g., year-end contract; school graduation in May).

We find that 10 more extreme temperature days per month (hot days over 75◦F and cold

days below 45◦F) increases monthly unemployment rate by 0.2-0.3%pts. The results are robust

to alternative thresholds of hot and cold days, pre-trends, and combination of fixed effects.

To unpack the mechanism behind, we next track the quarterly job and employment flows by

county-by-sector during 2001-2019. We find that both hot and cold days freeze job creation

(or hiring) and induce job destruction (or separations) in wide range of sectors. Especially,

job destruction was most severe in heat-sensitive sectors (e.g., construction, manufacturing).

Fewer job hiring was observed in in-person service sectors, suggesting that temperature shocks

might have reduced labor-intensive service demand. Return hiring of possibly seasonally laid-off

workers to the previous employers was severely hurt, contributing to the expansion of unem-

ployment pool. In addition, we find that more layoffs, instead of quits, are responsible for more

separation, and suppressed job openings, suggesting that labor demand shrinkage is at work.

As is well known, layoffs are most likely lead to unemployment, we view this as especially

alarming. To examine the reasons of mass layoffs during 1996-2013, we find that seasonal lay-

offs acyclically accounts for 20-30% of total mass layoff cases, and most responsive to extreme

temperature days. One would expect that the increase layoffs would lead to receipts of unem-

ployment insurance (UI). We find that experience of hot and cold days raises statewide monthly

UI claims, reduce exits from UI exits, and thus, expand a pool of continued recipients, sug-

gesting seasonal fiscal burdens. Guided by our findings, we turn to assess how climate change,

especially, global temperature warming, activating since 1970-1980s, shapes the seasonality of

unemployment. Aligned with the ongoing climate change, we document that unemployment

seasonality has tarnished overtime especially around the recessionary peak in 1983. Unemploy-

ment in the first quarter (e.g., New Year’s Day, Super Bowl Sunday) has declined, while that in

the third quarter (e.g., Independence day; Labor Day) has risen overtime. Consistently, we show

that climate change through fewer cold days and more hot days accounts for about a half of the

decline in unemployment seasonality, measured by a variance of seasonal unemployment rate.

In the coming decades, however, temperature rising scenario predicts that climate change will

increase the volatility of unemployment—threatening the welfare, especially seasonal workers,

and calls for countermeasures of unemployment forecast and job security.
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Related Literature. Bridging temperature shocks and unemployment dynamics with an em-

pirical approach, this paper contributes to the intersection of macro labor economics and climate

science. First, this paper provides a descriptive contribution by documenting the status and

change of seasonality of unemployment as an empirical regularity. To our surprise, we are

not aware of papers explicitly codifying the unemployment seasonality from unadjusted raw

records, presumably due to the dominance of the conventional practice of seasonal adjustment.

In particular, we also document that unemployment seasonality is time-variant and shrinking.

Second, the paper proposes temperature shocks as a novel determinant of unemployment

dynamics. The literature has long interested in macroeconomic outcomes such as growth (Dell

et al., 2012; Colacito et al., 2019), income (Deryugina and Hsiang (2014)), labor share (Qiu

and Yoshida (2024)) and labor force participation (Yoshida (2025)). Our paper is the first

to associate unemployment rate, varying across time and space with arguably most seasonal

factor—climatic temperature. 2 Leveraging granular spatial and monthly variation, we run a

”natural” experiment to attribute the incidence and changing nature of seasonality to climate

change. We show that climate change, characterized by a long-run change of temperature shock

smooth out a within-year temperature fluctuation.

Third, the proposed mechanism of temperature-induced unemployment builds on establishment-

level studies in climate science, exploring climate impacts of employments factory productivity

(Chen and Yang, 2019; Somanathan et al., 2021). The findings are aligned to burgeoning studies

showshrinkage and destruction of employment of small establishments (Ponticelli et al. (2023)),

reallocation across areas (Acharya et al. (2023)). By adding on the literature by looking at em-

ployment inflows and outflow, we bring the insights of labor demand response to unemployment

dynamics. Importantly, we identify not only frozen hires, but increased layoffs on the firm side.

From a policy perspective, our finding speaks to policies on job security, especially in summers.

The remainder of the paper is structured as follows. Section 2 describes the data sources used

in the study. Section 4.1 presents the baseline results, validated by robustness checks in Section

4.1.1. Section 5 explores the mechanism via layoffs and frozen hires. Section 7 evaluates the role

of climate change to moderated fluctuation of both unadjusted and seasonal unemployment.

Section 6 creates implication to unemployment insurance claims and recipients, and Section 8

concludes.

2As a notable exception, recently, Kim et al. (2025) analyzes the effect of temperature shocks on outputs,
prices and unemployment, using a time-series method.
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2 Data

2.1 Weather

We construct daily temperature at county-level, using weather station data from the Global

Historical Climatology Network Daily (GHCN-Daily), managed by the National Climatic Data

Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). The GHCN-

Daily database provides daily climate statistics, such as maximum and minimum daily temper-

ature, precipitation, and snowfall, from approximately 15,000 weather stations across the US,

offering a comprehensive climatic dataset with the highest frequency, resolution, and quality

since the 19th century. We use data from stations with complete annual records during 1950–

2019. 3 To aggregate station-level data to each county level, we employ an inverse-distance

weighting method (e.g., Barreca et al. (2016)) Specifically, for each county we select the three

nearest weather stations to the county’s population centroid and aggregate their daily records,

weighted by the inverse square of the distance from the centroid. Then, we construct an aver-

age daytime temperature for each day d as a weighted average of the maximum and minimum

temperature, i.e., Td = ωTmax
d + (1 − ω)Tmin

d . Instead of using ω = 0.5 as is common in the

climate literature, we assign ω = 0.75 in light of our focus on regular working hours, 8 am to 6

pm.4 We find a substantial geographical variation of exposure to climate change across counties

even within states.5

2.2 Unemployment

To uncover the climate-unemployment mechanism, we combine a series of datasets to measure

employment flow.

Local Area Unemployment Statistics (LAUS) The LAUS provides unemployment and em-

ployment by counties-by-year-months. The dataset is produced by the Bureau of Labor Statis-

tics (BLS) from the CPS, the Current Employment Statistics (CES) survey, and state unem-

ployment insurance (UI) systems.

3The relative humidity is constructed from dew points at another set of station records from NOAA’s Global
Summary of the Day (GSoD).

4This calculation assumes a linear fluctuation of temperature between its minimum at 6 am and its maximum
at 1:30 pm.

5Other extreme weather or natural disasters caused by climate change would trigger unemployment (hurri-
canes in Groen and Polivka (2008); Belasen and Polachek (2008), tornados in Riesing (2018).) Although our
precipitation proxies partially captures these phenomenon, our analysis is focused on temperature.

5
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Quarterly Workforce Indicators (QWI) The QWI provides local employment flows by county-

by-NAICS-by-year-quarter during 2001-2019: job flows (creation and destruction) as well as

worker flows (separation and hires ). This is constructed from the Longitudinal Employer-

Houshold Dynamics (LEHD) by the Census Bureau—employer-employee linked massive longi-

tudinal microdata covering over 95% of US private sector jobs.

The Job Openings and Labor Turnover Survey (JOLTS) The JOLTS provides demand-side

indicators of labor shortages at the national level. We use job openings on the last business day

of the month, hires and separations (split by layoffs and quits) by state-by-year-month during

2000 December-2019 December across 48 states. This data is constructed from a monthly survey

of approximately 21,000 U.S. business establishments in all nonagricultural industries, collected

by the BLS.

Mass Layoff Statistics (MLS) The MLS offers mass layoffs reported by the BLS. In particular,

we use mass layoff cases for a variety of reasons by state-by-year-quarter during 1995 Q2-2013

Q1 6across 48 states and the DC.. The data is constructed from monthly information on all

establishments that generate at least 50 initial unemployment insurance (UI) claims for a 5-week

period. In contrast to the strong cyclical nature of mass layoff cases from business demands or

financial constraints, we find that seasonal layoffs acyclically accounts for 20-30% of total mass

layoff cases (see Figure A-1).

3 Unemployment Seasonality

To extract seasonal unemployment rate at each county on a monthly basis, we take a difference

of non-seasonally-adjusted (NSA) and seasonally-adjusted (SA) unemployment rate from the

BLS during 1990-2019. Figure 2 documents the regularity of changing monthly unemployment

seasonality, which we codify as three stylized facts.

Fact 1: The unemployment rate in the first quarter is declining. The left of Panel (a) illus-

trates the seasonal unemployment at monthly level before and after the post-war recessionary

peak in 1983. The nationwide unemployment peaks in the first quarter and reaches lowest in

the last quarter. 7 Traditionally, the unemployment rate jumps up in January from the last

6The data was discontinued in 2013 due to spending cut.
7A notable pattern is a spike in unemployment from May to June, the onset of summer, coinciding with start

of the summer break and graduation of high schools and colleges when students search for summer jobs.
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year’s December, presumably reflecting annual contracts (January-December) in fiscal years. 8

However, one can see that unemployment rate in Q1 has declined.

Fact 2: The unemployment in the third quarter is on the rise. Panel (a) shows that unem-

ployment in Q3 (July-September) is gradually on the rise.9 Intriguingly, the change in unem-

ployment rate in Q1 and Q3 (Fact 1 and Fact 2) corresponds with fewer cold days and more

hot days, driven by temperature warming (as observed in the quarterly trend of unemployment

rate and temperature shocks in Panel (b)).

Fact 3: Unemployment seasonality has been declining since the 1970s. As a consequence

of lower and higher unemployment in Q1 and Q3, unemployment seasonality has declined

overtime. Panel (c) illustrates seasonal component of monthly unemployment rates overtime

and its within-year variance declined since 1960s, when global warming loomed up. Given the

forecast of global warming in the coming century, unemployment in summer (e.g., labor day)

is alarming. According to the standard climate forecast in the coming decades, unemployment

seasonality may be amplified.

4 Empirical Analysis

4.1 Baseline Results

Model. The baseline model regresses county-level monthly unemployment rates on the number

of hot and cold days for each county, controlling for other climatic factors and a rich set of

socioeconomic variables. Specifically, for counties (indexed by l) in years (indexed by t, 1950-

2019) and month m , we build the following model:

UnempRatel,t,m =
∑

b∈{1,··· ,10,13,··· ,16}

βbdaysbl,t,m +ΛCl,t,m + δl,t + δt,m + εl,t,m, (1)

where UnempRatel,t,m is county l’s average unemployment rate at year t and month m. We also

control for additional climate covariates Cl,t,m, including daily precipitation and the number of

days with no precipitation, and those with heavy snowfall. The granularity of the data permits

inclusion of county-year fixed effects δl,t, suggesting that the estimates are within-year impacts at

county level. Year-month fixed effects δt,m, capturing any time-varying nationwide shocks (e.g.,

8This annual contract might be aligned with Americans’ preference for leisure at festive seasons of the fourth
quarter Thanksgiving and Christmas—when few employers would wish to layoff workers.

9Unemployment rate in June decreased even though hot days in June increased. This is probably due to
lagged effects (see Table A-2) from less cold days in Q1 and Q2.
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Figure 2: Dynamics of Unemployment Seasonality in the US

(a) Seasonal Unemployment By Months: Before and After 1983
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business cycles or technological, globalization shocks). δt,m also isolate temperature effects from

institutional calendar effects (e.g., end of year contracts). As we presume that temperatures

shocks are unconditionally random, βb captures the temperature impact of 10 days in each bin.

The regression is weighted by log of labor force of each county and, standard errors are clustered

at the county level.

Results. Panel (a) of Figure 3 illustrates our baseline results. The red line of the top figure

plots the response of unemployment rate to each temperature bin of 10 days with 95 % con-

fidence intervals. One can see that 10 day increase of hot days (≥ 75◦F) and cold days (<

45◦F), approximately increases the unemployment rate by 0.2-0.3 %pts. Panel (b) shows the

change of distribution of days from the pre-analysis period (1950-1986) and the analysis period

(1990-2019). One can see that mildly hot days of 75-80◦F is a mode of the climate distribution.

The distributional change is characterized by the increase of hot days (>75◦F) and decrease of

cold days (<45◦F). Recall that since Cl,t,m includes snowfalls, the effect of cold days should be

isolated from the effect from snowfall. The second and third figures decompose the unemploy-

ment rate into unemployment and employment in log-scales. The loss of employment is larger

than the increase of unemployment in magnitude, implying the increase of non-employment,

presumably, including discouraged workers.

Two-tail parsimonious models Founded on the U-shaped estimates in Figure4a, we use a

parsimonious two-tail model below10: replace treatment variables
∑

b∈{1,··· ,10,13,··· ,16} days
b
l,t,m by

βhhdl,t,m+βccdl,t,m, where hdl,t,m, cdl,t,m are hot and cold days in county l during year t, month

m, respectively. The coefficients of interest, βh, βc, capture the impact of additional 10 hot or

cold days on unemployment rates. Each location’s exposure to climate change is measured as

the changing number of monthly hot and cold days. Specifically, hot and cold days are defined

as those with an average working-hour temperature above 75◦F (23.4◦C) and as below 45◦F

(7.2◦C) respectively.

4.1.1 Robustness checks

To establish our main findings, we provide a list of robustness checks. All the tables are shown

in Appendix.

Temperature thresholds The baseline model used 75◦F and 45◦F as cutoffs for hot and cold

days.

10A similar two-tail specification has been a standard in the climate literature, for example, Barreca et al.
(2016) and Somanathan et al. (2021).
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Figure 3: Temperature Shocks and Unemployment (by county-by-month, 1990–2019)

(a) Semi-parametric Estimates (65-75◦F as baseline)
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at the county level.
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Alternatively, we reasonable pairs of temperature cutoffs of 73, 75, 77, 80◦F for hot days, and

35, 40, 45, 50◦F for cold days. Consistent with the U-shape estimates at Figure 1, all models

exhibit significantly positive estimates (see Table A-1).

Fixed effects Under the baseline, we incorporate state-by-year and monthly fixed effects. We

tried out alternative constellation of fixed effects. The estimates are broadly stable. Instead

of δt,m, the inclusion of state-by-year-month fixed effects δs,t,m preserves the effect, suggesting

that any time-varying statewide change of business cycles, unemployment insurance and other

institutions (e.g., minimum wage; unionization) does not confound the estimate (see Table A-3).

Other climatic variables It is well known that humidity affects the human discomfort, inter-

acted with temperature. Consistently, using heat index, interacting temperature and humidity,

increases the magnitude and precision of the estimate. We also find significant effects of pre-

cipitation or snowfall on unemployment in both extensive and intensive margins (see Table

A-4).11

Treatment windows The baseline model takes one month as treatment of temperature. How-

ever, businesses might take a lag to adjust monthly labor demand in response to temperature

shocks. To account for temperature adjustment, we expand the treatment window to 6 months

in a lagged treatment model. The effects of hot and cold days is larger for 5-6 months after the

shock, suggesting the cumulative impact of temperature (see Table A-2).

5 Mechanism

Job Creation and destruction across sectors Having established the main findings, we turn

to explore the mechanism of temperature-induced unemployment. We track the change of

unemployment by job flows (destruction and creation) and by worker flows (separation and

hires). 12 Using QWI, we estimate responses of county-by-NAICS level employment flows by

quarters during 2001-2019. We build and estimate the following model at county l, year t, and

quarter q ∈ {1, · · · , 4}.

∆El,i,t,q

El,i,t,q

= βhhdl,t,q + βccdl,t,q +ΛCl,t,q + δl,i,t + δi,t,q + εl,i,t,q, (2)

11Since our dataset does not include natural disasters (e.g., hurricanes; floods; wildfires), the paper limits our
analysis to conventional proxies.

12A caveat is that these job flows include J2J flow and transition to non-employment, which does not affect
unemployment.
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where
∆El,i,t,q

El,i,t,q
is employment change from the start-of-quarter employment. 13δi,t,q captures

time-variant sector specific shocks (ICT, robot shocks and business cycles), the estimates are

interpretably free from sectoral business cycles. Guided by Figure 4a, Panel A tracks the

Table 1: Temperature Shocks and Job Creation/Destruction

Panel A: Employment

level (%) Job Flow (%pts) Worker Flow (%pts)

End-quarter Job Job Net Job. Job Hires Separation
Emp. creation destruction growth Turnover

(1)-(2) ((1)+(2))
/start-of-quarter emp.

(1) (2) (3) (4) (5) (6) (7)
10 hot days −0.149∗∗∗ −0.276∗∗∗ 0.052∗∗∗ −0.327∗∗∗ −0.224∗∗∗ −0.210∗∗ 0.118∗∗

per quarter (0.040) (0.046) (0.006) (0.046) (0.046) (0.083) (0.049)

10 cold days −0.375∗∗∗ −0.167∗∗∗ −0.035∗∗∗ −0.132∗∗∗ −0.202∗∗∗ −0.411∗∗∗ −0.279∗∗∗

per quarter (0.043) (0.042) (0.005) (0.043) (0.042) (0.083) (0.054)

Observations 378,579
Adjusted R2 0.998 0.554 0.577 0.498 0.601 0.611 0.602

Panel B: By Sectors

Agriculture Cons- Manu- Trans- Retail Low-skill High-skill
truction facturing portation service service

Panel B-1: Job Creation Rate (%pts)

(1) (2) (3) (4) (5) (6) (7)
10 hot days 0.002 −0.627∗∗∗ −0.094∗∗∗ 0.057 0.077∗∗∗ −0.315∗∗∗ −0.232∗∗∗

per quarter (0.397) (0.063) (0.029) (0.045) (0.028) (0.063) (0.037)

10 cold days −1.461∗∗∗ −0.315∗∗∗ 0.008 −0.090∗ −0.123∗∗∗ −0.186∗∗∗ −0.076∗∗

per quarter (0.453) (0.076) (0.032) (0.048) (0.028) (0.053) (0.038)

Observations 41,398 57,447 47,860 44,736 52,609 59,130 58,103
Adjusted R2 0.480 0.459 0.647 0.328 0.461 0.550 0.584

Panel B-2: Job Destruction Rate (%pts)

(1) (2) (3) (4) (5) (6) (7)
10 hot days 0.078∗ 0.126∗∗∗ 0.033∗∗∗ 0.051∗∗∗ 0.020∗∗ 0.026∗∗∗ 0.043∗∗∗

per quarter (0.041) (0.013) (0.007) (0.011) (0.008) (0.009) (0.008)

10 cold days −0.235∗∗∗ −0.039∗∗∗ 0.001 0.003 −0.016∗∗ 0.009 −0.038∗∗∗

per quarter (0.047) (0.014) (0.006) (0.011) (0.008) (0.009) (0.008)

Observations 41,398 57,447 47,860 44,736 52,609 59,130 58,103
Adjusted R2 0.479 0.459 0.647 0.328 0.461 0.550 0.584

county × sector × year FE Yes Yes Yes Yes Yes Yes Yes
year× quarter FE Yes Yes Yes Yes Yes Yes Yes

Notes: Unit of analysis: counties × sectors × quarters × years, 2001–2019. Employment flows are
from Quarterly Workplace Indicators from the Census Bureau.

level and flow of sector employment. Column 1 shows within-sector impact of end-quarter

employment. Columns 2-3 show that hot days significantly reduce job creation and increase

13We use a job (or worker flow) /beginning-of-quarter employment. The results are robust to log of end-of-
period employment level, log(El,t,q)) after dropping zero samples.
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job destruction. Cold days reduce both job creation and destruction, economically freezing

economic activity. The response of job creation is 4-time larger than job destruction in magni-

tude. Consequently, net job growth and job turnover are both negative for hot and cold days.

Corresponding with job creation and destruction, Columns 6-7 address worker flows, suggesting

fewer hires and more separations, respectively.14 Panel B investigates the job flow by sectors.

Panel B-1 shows job creation is inhibited in construction and manufacturing, but also service

sectors. This might suggest that some service demand (e.g., tourism; restaurants) is hampered

by temperature. This is also consistent with observations that service sectors include a decent

share of outdoor jobs (Yoshida (2025)) and evidence that even indoor businesses suffer from

productivity loss (Cook and Heyes (2020) for cognitive ability, and Cachon et al. (2012) for au-

tomobile plants). As a notable exception, retail sector shows increased job creation. Panel B-2

shows that job destruction is facilitated by hot days in near all sectors, especially in construc-

tion, which motivates the inquiry into layoff below. For cold days, job destruction is mitigated,

especially in agriculture, construction and high-skill service.

Layoffs vs. Quits Previous analysis showed that the increase in unemployment from hot days

is driven by fewer jobs creation and more job destruction. To see whether this is driven by

the labor demand side, we further limit separations to layoffs and explore the response of job

openings, which are direct proxies for labor demand. Use the JOLTS during 2000 Dec.-2019

Dec. across 48 states and DC., we estimate a variant of the model at state s, year t, and month

m:

log Es,t,m = βhhds,t,m + βccds,t,m +ΛCs,t,m + δs,t + δm + εs,t,m, (3)

Table 2, Panel A shows the temperature effect on outflows and inflows of employment. Extreme

temperature days increase layoffs (Column 2), not quits (Column 3). Moreover, within hiring,

job openings, as a more direct proxy of labor demand, significantly shrinks. Combined, the

results suggest that the temperature impact is primarily on the labor demand side. Unlike

quitters, laid-off workers face a very high probability, close to 90 percent, of entering unemploy-

ment (Elsby et al., 2011). This motivates the reasons of mass layoff evens in Panel B. Using

Mass Layoff Statistics from BLS. 1995 Q2-2013 Q1 by 48 states and DC., Panel B estimates a

model at state s, year t, and quarter q:

log(mass layoffss,t,q) = βhhds,t,q + βccds,t,q +ΛCs,t,q + δs,t + δq + εs,t,q, (4)

Column 1-5 show the sensitivity of mass layoff cases by reasons: seasonal layoffs increase most

as well as other reasons (i.e., demand, finance, and organizational reasons).

14For hires, return hiring accounts for most of the effects, suggesting that delayed recall of temporarily laid-off
workers would lead to unemployment.
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Table 2: Temperature Shocks and Separations and Hires across States

Panel A: Employment Flow

(percent (log scales × 100))

outflow inflow

Separation Layoff Quits Hiring Job openings

(1) (2) (3) (4) (5)

10 hot days 1.216∗∗∗ 1.580∗∗∗ 0.320 −1.980∗∗∗ −1.122∗∗∗

(0.360) (0.567) (0.353) (0.312) (0.314)

10 cold days 0.631∗∗ 2.632∗∗∗ −1.496∗∗∗ −4.268∗∗∗ −2.332∗∗∗

(0.296) (0.469) (0.327) (0.309) (0.322)

state × year FE Yes Yes Yes Yes Yes
month FE Yes Yes Yes Yes Yes

Observations 11,221 11,221 11,221 11,221 11,221
Adjusted R2 0.983 0.954 0.982 0.984 0.986

Panel B: Mass Layoff Events by Reasons

(log of mass layoff events)
Season Demand Finance Organization Production

(1) (2) (3) (4) (5)

10 hot days 0.089∗∗∗ 0.030∗∗ 0.028∗ 0.027∗∗∗ −0.099
(0.028) (0.011) (0.016) (0.009) (0.097)

10 cold days 0.054 −0.020∗ −0.014 −0.015 −0.052
(0.037) (0.011) (0.010) (0.012) (0.087)

state × year FE Yes Yes Yes Yes Yes
quarter FE Yes Yes Yes Yes Yes

Observations 1,116 1,346 564 665 101
Adjusted R2 0.650 0.843 0.692 0.792 0.207

Notes: Panel A: Unit of analysis: years × months × 48 states and DC.. Weighted by log(population).
Panel B: Unit of analysis: years × quarters × 48 states and DC.. Weighted by log(employment).

6 Unemployment Insurance

Temperature-induced layoffs should expectedly induce insurance claims and recipients, leading

to fiscal expenditure. We use the state-level UI initial claimants and continuing recipients,

sourced from Employment and Training Administration at the Department of Labor. UI is
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eligible for laid-off workers with minimum wages earned during a reasonable period under

various generosity across states. We find analogous flattening of seasonality pattern of UI

recipients (see Figure A-2), suggesting the tight link between unemployment and insurance

take-ups. We estimate the following model with UI related variable, UIs,t,m across state s, year

t, month m:

UIs,t,m = βhhds,t,m + βccds,t,m +ΛCs,t,m + δs,t + δm + εs,t,m. (5)

Table 3 reports the estimates. Columns 1-2 show that 10 hot or cold days per month increase

Table 3: Temperature Shocks and Unemployment Insurance across states (1990–2019)

Statewide UI Receipts

(1) (2) (3) (4)

UI new claims UI recipients share of recipients share of recipients
in unemployment in covered emp.

(%) (%) (%pts) (%pts)

10 hot days 4.357∗∗∗ 4.402∗∗∗ 0.034∗∗∗ 0.153∗∗∗

per month (0.417) (0.352) (0.003) (0.008)

10 cold days 13.049∗∗∗ 8.582∗∗∗ 0.064∗∗∗ 0.147∗∗∗

per month (0.468) (0.511) (0.003) (0.010)

state × year FE Yes Yes Yes Yes
month FE Yes Yes Yes Yes

Observations 17,640 17,640 17,640 17,640
Adjusted R2 0.973 0.980 0.766 0.918

Notes: Unit of analysis: states × years × months. Thresholds for hot and cold days are set at 75◦F
and 45◦F, respectively, based on average temperature during business hours (8 am to 6 pm).

UI new claims and recipients. Columns 3-4 show that the effects are observed for a share of

UI recipients in either unemployment or UI-covered employment. Although this paper remains

silent on political adjustment of UI generosity, the findings suggest that temperature shocks

would expand public expenditure, especially in the summer.

7 Accounting: The Decline of Unemployment Seasonality

We assess how much contemporaneous temperature shocks account for unemployment season-

ality in both unadjusted (NSA) and seasonal unemployment rate in 1990-2019. Panel (a) in

Figure4a illustrates the impacts from temperature shocks using the semi-parametric bin model
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at Figure 4a.

Figure 4: Quantitative Assessment on Unemployment Seasonality

(a) Impacts from Temperature Shocks (1990–2019)
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Notes: Impacts from the level and change of hot days (≥ 75°F) and cold days (< 45°F) are simulated,
using bin estimates in Figure 4a. Seasonal unemployment rate is a difference of NSA (non-seasonally
adjusted) and SA (seasonally adjusted) unemployment rate from the BLS.

If all days have normal temperature days (45-75°F), the NSA unemployment rate is lower

by the range from 0.156 pp (2.8% in April) to 0.493 pp (8.2% in July). Comparison with this

counterfactual scenario suggests that monthly extreme temperature explains 28% of unemploy-

ment seasonality (i.e., within-year variance of NSA unemployment rate). This suggests that the

residual of 72% stems from the institutional calendar effect. Next, we assess how much climate

change accounts for the documented moderation of monthly NSA unemployment fluctuation
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and unemployment seasonality. Panel (b) illustrates the average shifting climate impacts from

the previous period (1950-1989) to the study period (1990-2019), using the estimates from the

bin model. The left shows that while impacts from more hot days raise unemployment in all

months, impacts from less cold days are limited in last November to May; the right shows

counterfactual unemployment seasonality in addition to shrinkage of unemployment seasonality

shown at Panel (a) in Figure 2. If temperature distribution stayed in the average of 1950-1989,

the seasonality should have been more volatile. Using the model with a six-month treatment

window, climate change accounted for about 40% of the decline in unemployment seasonal-

ity (i.e., the variance in the seasonal unemployment rate within a year) and about 13% of

the moderation in the overall NSA unemployment fluctuations (i.e., the variance in the NSA

unemployment rate).15

Policy Implication: Summer Programs Unemployment might induce serious mental health

disasters, such as crimes (Raphael and Winter-Ebmer (2001)) and suicides (Milner et al.

(2013)).16 Given the forecast of accelerated warming, our findings create policy implications of

job security, especially in the summer. Overall findings suggest that the forecast of unemploy-

ment may be interacted with weather forecasting technology with a long established history,

and call for countermeasures of job security at federal or state level: UI extension, Continua-

tion of Health Coverage (COBRA), and retraining program (e.g., Summer Youth Employment

Program (SYEP)), targeted in the summer.

8 Concluding Remarks

Since the pre-industrial era, economic activity has been hampered by seasonality of Mother

Nature, including drought, floods, hurricanes and the pandemic.17 Using a newly created

county-level panel data, this paper demonstrates the effect of temperature shocks on seasonal

unemployment, most presumably via labor demand adjustment. Our paper provides one ex-

planation for shrinking uncertainty of macro outcomes after 1980s, called Great Moderation.

Imminent global warming in the next decades would expand the summer unemployment and

may propagate the unemployment seasonality.

15Our temperature analysis speak to the Great Moderation since 1980s, which has been often treated by ad
hoc shrinkage of TFP shocks.

16This is consistent with prior work connecting extreme hot days and suicides (Burke et al., 2018) or violent
crimes (Ranson, 2014).

17In ancient Egypt, the summer flooding of the Nile River created an abundance of unemployed workers. The
kingdom provided pyramid construction as job security.
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I Mass Layoff Statistics

Figure A-1 illustrates the composition and change of mass layoff events by reasons. Seasonal

layoffs acyclically accounts for 20-30% of mass layoffs, which generates 50+ UI claims. The

cases from a disaster/safety reason spiked in 2005 due to Hurricane Katrina.

]

Figure A-1: Mass Layoff Events and its Reasons (1995-2013)
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II Seasonality of UI recipients

Mirroring the unemployment seasonality, UI recipients also exhibit similar seasonality.

Figure A-2: UI recipients by months (1950-1982 vs. 1983-2019)
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III Robustness checks

Temperature thresholds We consider a variety of temperature thresholds for hot days and

cold days in the two-tailed baseline model.

Table A-1: Two-tailed Model

dependent variable: Unemployment Rate (in % pts)

Thresholds for hot days
Baseline

73◦F 75◦F 77◦F 80◦F 85◦F 90◦F

(1) (2) (3) (4) (5) (6)
10 hot days 0.139∗∗∗ 0.195∗∗∗ 0.236∗∗∗ 0.256∗∗∗ 0.230∗∗∗ 0.179∗∗∗

(0.024) (0.023) (0.021) (0.019) (0.020) (0.037)

10 cold days 0.296∗∗∗ 0.254∗∗∗ 0.216∗∗∗ 0.193∗∗∗ 0.246∗∗∗ 0.327∗∗∗

(< 45◦F) (0.031) (0.031) (0.030) (0.029) (0.029) (0.029)

Observations 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045
Adjusted R2 0.904 0.904 0.905 0.905 0.904 0.904

Thresholds for cold days
Baseline

50 ◦F 45◦F 40 ◦F 35◦F 30◦F 25◦F

(1) (2) (3) (4) (5) (6)

10 hot days 0.208∗∗∗ 0.195∗∗∗ 0.217∗∗∗ 0.252∗∗∗ 0.282∗∗∗ 0.300∗∗∗

(> 75◦F) (0.025) (0.023) (0.021) (0.021) (0.021) (0.022)

10 cold days 0.240∗∗∗ 0.254∗∗∗ 0.238∗∗∗ 0.210∗∗∗ 0.187∗∗∗ 0.186∗∗∗

(0.029) (0.031) (0.031) (0.032) (0.034) (0.039)

Observations 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045
Adjusted R2 0.904 0.904 0.904 0.904 0.904 0.904

Notes: Unit of analysis: by counties × years × months, 2001–2019
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Treatment windows We consider a variety of treatment windows for hot days and cold days

in the two-tailed baseline model.

Table A-2: Robustness by Treatment Windows

dependent variable: Unemployment Rate

(in % pts)

Baseline 2 months 3 months 4 months 5 months 6 months

(1) (2) (3) (4) (5) (6)

10 hot days 0.195∗∗∗ 0.275∗∗∗ 0.368∗∗∗ 0.452∗∗∗ 0.495∗∗∗ 0.488∗∗∗

(0.023) (0.037) (0.052) (0.064) (0.069) (0.067)

10 cold days 0.254∗∗∗ 0.335∗∗∗ 0.353∗∗∗ 0.337∗∗∗ 0.320∗∗∗ 0.309∗∗∗

(0.031) (0.041) (0.049) (0.055) (0.058) (0.057)

Observations 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045

Adjusted R2 0.904 0.906 0.907 0.907 0.906 0.905

Notes: Unit of analysis: by counties × years × months, 2001–2019
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Fixed effects We consider a variety of fixed effects in the two-tailed baseline model.

Table A-3: Robustness by Fixed Effects

dependent variable: Unemployment Rate

(in % pts)

Baseline

(1) (2) (3) (4) (5) (6)

10 hot days 0.195∗∗∗ 0.135∗∗∗ 0.204∗∗∗ 0.131∗∗∗ 0.228∗∗∗ 0.208∗∗∗

(0.023) (0.037) (0.020) (0.033) (0.023) (0.020)
10 cold days 0.254∗∗∗ 0.195∗∗∗ 0.221∗∗∗ 0.192∗∗∗ 0.244∗∗∗ 0.223∗∗∗

(0.031) (0.051) (0.026) (0.049) (0.030) (0.025)

Fixed effects
county-year FE Yes Yes Yes - - -
county FE - - - Yes Yes Yes
year-month FE Yes Yes - - Yes -
state-year-month FE - Yes - Yes - -
state-year FE - - - - - Yes
state FE - - Yes - - -
month FE - - Yes - - Yes

Observations 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045 1,111,045
Adjusted R2 0.904 0.918 0.895 0.796 0.714 0.776

Notes: Unit of analysis: by counties × years × months, 2001–2019

Other climate proxies We use a meteorological formula of heat index. I obtain dew points

from weather station records from NCEI’s Global Summary of the Day (GSoD). I use a standard

meteorological formula from Glossary of Meteorology by the American Meteorological Society

to compute a relative humidity and heat index. A relative humidity Hd of day d and a vapor

pressure v(T ) as a function of temperature T is given by: Hd

Hd ≡
v(Tdew)

v(Td)
; v(T ) = 0.6112 exp(17.67T/(T + 243.5))× 10

where v(Tdew) is a saturation vapor pressure at the dew point Tdew and v(Td) is a day d ’s

vapor pressure at a temperature Td. Heat Indexd is a function of a temperature Td and a daily

relative humidity Hd such that Heat Indexd = 0.81T +Hd(0.99Td − 14.3) + 46.3.
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Table A-4: Other climate proxies

dependent variable: Unemployment Rate (in % pts)

Baseline

(1) (2) (3) (4)

10 hot days 0.195∗∗∗ 0.172∗∗∗ 0.177∗∗∗

(0.023) (0.023) (0.022)

10 uncomfortable days 0.244∗∗∗

(0.020)

10 cold days 0.254∗∗∗ 0.212∗∗∗ 0.180∗∗∗ 0.178∗∗∗

(0.031) (0.029) (0.032) (0.029)

light rainy days 0.119∗∗∗

(0.019)

medium rainy days 0.144∗∗∗

(0.028)

heavy rainy days 0.125∗∗∗

(0.037)

light snow days 0.124∗∗∗

(0.017)

medium snow days 0.181∗∗∗

(0.030)

heavy snow days 0.266∗∗∗

(0.047)

no rainy days −0.126∗∗∗

(0.022)

daily precipitation 0.020∗∗

(0.010)

no snowy days −0.139∗∗∗

(0.021)

daily snowfall 0.0001∗∗∗

(0.00002)

humidity 0.004 0.003
(0.003) (0.003)

Observations 1,111,045 1,111,045 1,117,982 1,111,045
Adjusted R2 0.904 0.905 0.905 0.905

Notes: Unit of analysis: by counties × years × months, 2001–2019
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