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Abstract

Bramoullé et al. (2009) provided identification conditions for linear social interaction
models through network structures. Despite the importance of their results, the authors
omitted detailed mathematical discussions. Moreover, they consider cases where many
identical networks are observed simultaneously within the same dataset. In reality, mul-
tiple networks with different structures, such as classrooms or villages, are repeatedly
observed within the same dataset. The purpose of this paper is to fill in the mathematical
gaps in their arguments and to establish identification conditions for networks with differ-
ent structures. In addition, we find the smallest network size as a necessary condition for
identifying social effects. We also discuss the identification conditions of network models
with a fixed network effect.
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1 Introduction

The social interaction model describes the case where the individual outcome is affected by
the outcomes of other individuals. Manski (1993) showed that social effects are not identified
in a linear social interaction model, where each individual is affected by all other individuals
in the same group1. A parameter is said to be identified if it is uniquely recovered from
observed data. If social effects are not identified, two distinct parameters are consistent with
a model, making it impossible to estimate the model. Several approaches are proposed to
address this identification problem. Brock and Durlauf (2001, 2007) exploited non-linearities
emerging from discrete choice models to identify social effects. Lee (2007) showed that social
effects are identified through variations in group sizes in a linear social interaction model.

Bramoullé et al. (2009) provided crucial identification results through network structures.
First, they showed that the social effects are identified in linear models. The linear models

∗Graduate School of Economics, Waseda University. 1-6-1, Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050,
Japan. Email: i-ryota@fuji.waseda.jp

1This model has many empirical applications including criminal activity (Glaeser et al., 1996), school
achievement (Sacerdote, 2001), and smoking behavior (Soetevent and Kooreman, 2007).
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are considered in most papers on social interactions since they are naturally related to the
standard simultaneous linear model (Moffitt, 2001). Second, they analyzed the identification
problem under a more realistic interaction pattern. Most papers on social interactions assumed
a group interaction such that individuals are affected by all others in their group (Manski,
1993; Moffitt, 2001; Lee, 2007). This type of interaction pattern is not likely to represent most
forms of relationships between individuals. In contrast, Bramoullé et al. (2009) considered a
more general interaction pattern through network structures. Due to these contributions, their
identification results are extended in many directions2: the network model with multivariate
choices (Cohen-Cole et al., 2018); the endogenous network model (Goldsmith-Pinkham and
Imbens, 2013; Hsieh and Lee, 2016; Johnsson and Moon, 2021; Auerbach, 2022; Jochmans,
2023); and the panel data network model (Comola and Prina, 2021).

The purpose of this paper is to fill in the gaps in the mathematical details of Bramoullé
et al. (2009) and to provide identification conditions for networks with different structures.
While the identification conditions provided by Bramoullé et al. (2009) are essential in econo-
metrics, the paper skips details of mathematical discussions. We rigorously verify the validity
of their claims by filling in the omitted discussions. Bramoullé et al. (2009) considered the
case where many identical network structures are observed simultaneously within the same
dataset. In reality, multiple networks with different structures, such as classrooms or villages,
are observed simultaneously within the same dataset. Although they applied their identifica-
tion results to a single large network constructed by stacking heterogeneous networks, they
implicitly assumed that a single large network is repeatedly observed, which is not consistent
with network observations. In this paper, we provide identification conditions for each differ-
ent network without stacking different network structures. While our identification conditions
are mathematically equivalent to those in Bramoullé et al. (2009), our results are consistent
with network observations. We present examples of network structures satisfying identifica-
tion conditions. We also provide an identification condition of a network model with a network
fixed effect when we observe different networks simultaneously within the same dataset.

We reveal the smallest network size as a necessary condition for identifying social effects.
For example, consider a network model with a network fixed effect. If the identification con-
dition is satisfied under identical network observations, the network must contain at least four
individuals. We verify through direct calculation that networks with two or three individuals
do not satisfy the identification condition. Similarly, if the identification condition is satisfied
under heterogeneous network structures, the network size is at least three. If the identification
conditions are satisfied for network models with or without a network fixed effect, the smallest
network size is smaller than that for identical network structures.

The remainder of this paper is organized as follows. In Section 2, we provide the identi-
fication condition of the network model when we observe different structures of the networks
simultaneously within the same dataset. Identification is obtained from the variations of net-
work structures, which create exogenous variations of the reduced-form parameters. Section
3 addresses the correlated effects in the form of the network fixed effect. Section 4 concludes
the paper.

2The network model has a broad range of empirical applications including network of coauthorships among
economists (Goyal et al., 2006), network of check-out workers (Mas and Moretti, 2009), and network of farmers
for adopting new technologies (Conley and Udry, 2010).
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2 Identification of the basic network model

Suppose that we observe L independent networks. Each network ℓ = 1, . . . , L has nℓ

individuals. A peer group Pℓi ⊂ {1, . . . , nℓ} of individual i in network ℓ is a set of nℓi

individuals who affect individual i. Individual i is excluded from his or her own peer group:
that is, i ̸∈ Pℓi. An individual is said to be isolated if his or her peer group is empty. The
adjacency matrix is an nℓ × nℓ matrix Gℓ whose elements are given by

(Gℓ)ij =

{
1
nℓi

j ∈ Pℓi

0 j ̸∈ Pℓi,

where Pℓi ̸= ∅. We set (Gℓ)ij = 0 for isolated individual i. The adjacency matrix of the
network illustrated in Figure 1 is given below.

Gm =


0 1/3 1/3 1/3
1 0 0 0
1 0 0 0
1 0 0 0

 .

The peer group of individual 1 is Pm1 = {2, 3, 4}, while the peer groups of others are Pm2 =
Pm3 = Pm4 = {1}. In the following part of the paper, we assume that the network structure
is exogenously given.

1

3 4

2

Figure 1: Network m

The individual-level network model is given by

yℓi = α+β

∑
j∈Pℓi

(Gℓ)ijyℓj

+x⊤ℓiγ+

∑
j∈Pℓi

(Gℓ)ijxℓj

⊤

δ+εℓi, ℓ = 1, . . . , L, i = 1, . . . , nℓ,

where yℓi ∈ R is an outcome variable for individual i in network ℓ, xℓi = (xℓi1, . . . , xℓiK)⊤ ∈
RK is a covariate vector for individual i in network ℓ, and εℓi is an error term satisfying
E[εℓi|xℓ1, . . . , xℓnℓ

] = 0. Let (α, β, γ, δ) ∈ R× R× RK × RK be parameters such that |β|< 1.
The network-level model is given by

yℓ = αι+ βGℓyℓ +Xℓγ +GℓXℓδ + εℓ, E[εℓ|Xℓ] = 0, (2.1)

where yℓ = (yℓ1, . . . , yℓnℓ
)⊤ is an outcome vector, Xℓ = (x⊤ℓ1, . . . , x

⊤
ℓnℓ

)⊤ is an nℓ×K covariate

matrix, ι = (1, . . . , 1)⊤ is a vector of 1s, and εℓ = (εℓ1, . . . , εℓnℓ
)⊤ is a vector of error terms.
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Assumption 1. The support of the distribution of Xℓ is not contained in any proper linear
subspaces of Rnℓ .

In order to derive the reduced-form equation of the model (2.1), we need to show the
existence of (I − βGℓ)

−1.

Proposition 2.1. ∥Gℓ∥∗≤ 1 holds, where ∥·∥∗ is the operator norm.

Proof. By the definition of the operator norm,

∥G⊤
ℓ ∥∗=

[
max
v∈Rnℓ

√
(G⊤

ℓ v)
⊤G⊤

ℓ v s.t.
√
v⊤v = 1

]
. (2.2)

The Lagrangian function of (2.2) is

L = v⊤GℓG
⊤
ℓ v + λ(1− v⊤v),

where λ is the Lagrange multiplier. The first-order condition is given by

∂L
∂v

= 2GℓG
⊤
ℓ v − 2λv = 0,

which implies
nℓ∑
i=1

nℓ∑
j=1

(G̃ℓ)ijvivj = λ,

where G̃ℓ := GℓG
⊤
ℓ . Note that λ is an eigenvalue of G̃ℓ. Since each element of Gℓ is less than

or equal to 1 and each row sum of Gℓ is 1 or 0,

|(G̃ℓ)ij |=

∣∣∣∣∣
nℓ∑
k=1

(Gℓ)ik(Gℓ)jk

∣∣∣∣∣ ≤
nℓ∑
k=1

|(Gℓ)ik||(Gℓ)jk|≤
nℓ∑
k=1

|(Gℓ)ik|≤ 1.

By the Cauchy-Schwarz inequality,

|λ|=

∣∣∣∣∣∣
nℓ∑
i=1

nℓ∑
j=1

(G̃ℓ)ijvivj

∣∣∣∣∣∣ ≤
nℓ∑
i=1

nℓ∑
j=1

|(G̃ℓ)ij ||vi||vj |≤

(
nℓ∑
i=1

|vi|

)2

≤
nℓ∑
i=1

v2i = 1.

Since ∥G⊤
ℓ ∥∗= ∥Gℓ∥∗ and ∥G⊤

ℓ ∥∗=
√
λmax, where λmax is the maximum eigenvalue of G̃ℓ,

∥Gℓ∥∗=
√

λmax ≤ 1

is shown. ■

If ∥βGℓ∥∗< 1, I − βGℓ is invertible. To see this, assume that I − βGℓ is not invertible
under ∥βGℓ∥∗< 1. Then,

∃u ∈ Rnℓ \ {0} s.t. (I − βGℓ)u = 0.

Without loss of generality, assume ∥u∥= 1. Then, u = βGℓu implies ∥βGℓ∥∗≥ ∥βGℓu∥= ∥u∥=
1, which leads to a contradiction.

Since |β|< 1 is assumed, (I − βGℓ)
−1 exists. The reduced-form equation of the model

(2.1) is given by

yℓ = α(I − βGℓ)
−1ι+ (I − βGℓ)

−1(Xℓγ +GℓXℓδ) + (I − βGℓ)
−1εℓ. (2.3)
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Theorem 2.1 (Bramoullé et al., 2009). Suppose that for some k0, γk0β + δk0 ̸= 0.

(1) If the matrices I,Gℓ, andG2
ℓ are linearly independent, the structural parameters (α, β, γ, δ)

are identified.

(2) If the matrices I,Gℓ, and G2
ℓ are linearly dependent, and no individual is isolated, the

structural parameters (α, β, γ, δ) are not identified.

Proof. (1) The expectation of the reduced-form equation (2.3) conditioned on Xℓ is

E[yℓ|Xℓ] = α(I − βGℓ)
−1ι+ (I − βGℓ)

−1(Xℓγ +GℓXℓδ).

Assume that for θ = (α, β, γ, δ) and θ′ = (α′, β′, γ′, δ′),

α(I −βGℓ)
−1ι+(I −βGℓ)

−1(Xℓγ+GℓXℓδ) = α′(I −β′Gℓ)
−1ι+(I −β′Gℓ)

−1(Xℓγ
′+GℓXℓδ

′)
(2.4)

holds with probability one. By Assumption 1, (2.4) implies{
α(I − βGℓ)

−1ι = α′(I − β′Gℓ)
−1ι

(I − βGℓ)
−1(Xℓγ +GℓXℓδ) = (I − β′Gℓ)

−1(Xℓγ
′ +GℓXℓδ

′).
(2.5)

Let xkℓ := (xℓ1k, . . . , xℓnℓk)
⊤ be a covariate vector of characteristics k in network ℓ. Then, the

second equation of (2.5) implies

(I − βGℓ)
−1(γkI + δkGℓ)x

k
ℓ = (I − β′Gℓ)

−1(γ′kI + δ′kGℓ)x
k
ℓ (2.6)

for all k = 1, . . . ,K, which yields

(γkI + δkGℓ)x
k
ℓ = (I − βGℓ)(I − β′Gℓ)

−1(γ′kI + δ′kGℓ)x
k
ℓ . (2.7)

By Proposition A.1 in Appendix, we can write (2.7) as

(γkI + δkGℓ)x
k
ℓ = (I − β′Gℓ)

−1(I − βGℓ)(γ
′
kI + δ′kGℓ)x

k
ℓ

and multiplying (I − β′Gℓ) on both sides, we get

(I − β′Gℓ)(γkI + δkGℓ)x
k
ℓ = (I − βGℓ)(γ

′
kI + δ′kGℓ)x

k
ℓ . (2.8)

Arranging (2.8) results in

[(γk − γ′k)I + (δk − δ′k + γ′kβ − γkβ
′)Gℓ + (δ′kβ − δkβ

′)G2
ℓ ]x

k
ℓ = 0. (2.9)

If I,Gℓ, and G2
ℓ are linearly independent, (2.9) implies

γk = γ′k
δk + γ′kβ = δ′k + γkβ

′

δ′kβ = δkβ
′.

If δ′kβ ̸= 0, δ′kβ = δkβ
′ implies

∃λ ̸= 0 s.t. β′ = λβ and δ′k = λδk.
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Since γk = γ′k and δk + γ′kβ = δ′k + γkβ
′, we get

δk + γkβ = λ(δk + γkβ).

Since δk0 + γk0β ̸= 0 for some k0, λ = 1 holds for k0. Thus, β′ = β and δ′k0 = δk0 are shown.
Moreover, α(I − βGℓ)

−1ι = α′(I − β′Gℓ)
−1ι implies

α(I − βGℓ)
−1ι = α′(I − βGℓ)

−1ι,

which results in α′ = α. Therefore, in the case of δ′kβ ̸= 0, (α, β, γk0 , δk0) = (α′, β′, γ′k0 , δ
′
k0
)

holds.

Table 1: Pairs of parameters satisfying δk0β = δk0β
′ = 0

Pairs of parameters γk0β + δk0 ̸= 0 γ′k0β
′ + δ′k0 ̸= 0

(δ′k0 , δk0) = (0, 0) possible possible

(δ′k0 , β
′) = (0, 0) possible impossible

(β, δk0) = (0, 0) impossible possible
(β, β′) = (0, 0) possible possible

If δ′kβ = 0, δ′kβ = δkβ
′ = 0 is satisfied. Since γk0β + δk0 ̸= 0 and γ′k0β

′ + δ′k0 ̸= 0 for some
k0,

β = δk0 = 0 or β′ = δ′k0 = 0

cannot be satisfied. Thus, β = β′ = 0 or δk0 = δ′k0 = 0 holds (Table 1). If β = β′ = 0
holds, δk0 + γ′k0β = δ′k0 + γk0β

′ implies δk0 = δ′k0 . If δk0 = δ′k0 = 0 holds, γk0 = γ′k0 and
δk0 + γ′k0β = δ′k0 + γk0β

′ lead to β = β′. For both cases, β′ = β results in α′ = α.
For any other k, by multiplying (I − βGℓ) on both sides of (2.6), we get

(γkI + δkGℓ)x
k
ℓ = (γ′kI + δ′kGℓ)x

k
ℓ ,

which implies
[(γk − γ′k)I + (δk − δ′k)Gℓ]x

k
ℓ = 0.

Since I and Gℓ are linearly independent, (γk, δk) = (γ′k, δ
′
k) is obtained.

(2) By the same argument as in the proof of (1) in Theorem 2.1, we obtain{
α(I − βGℓ)

−1ι = α′(I − β′Gℓ)
−1ι

[(γk − γ′k)I + (δk − δ′k + γ′kβ − γkβ
′)Gℓ + (δ′kβ − δkβ

′)G2
ℓ ]x

k
ℓ = 0,

(2.10)

where xkℓ := (xℓ1k, . . . , xℓnℓk)
⊤ is a covariate vector of characteristics k in network ℓ. Since no

individual is isolated, Gℓι = ι is satisfied, which implies

α(I − βGℓ)
−1ι = α

∞∑
t=0

βtGt
ℓι = α

∞∑
t=0

βtι =
α

1− β
ι.

The first equation of (2.10) becomes

α

1− β
=

α′

1− β′ . (2.11)
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By substituting G2
ℓ = λI + λ′Gℓ, λ, λ′ ∈ R into the second equation of (2.10), we get

[(γk − γ′k + λ(δ′kβ − δkβ
′))I + (δk − δ′k + γ′kβ − γkβ

′ + λ′(δ′kβ − δkβ
′))Gℓ]x

k
ℓ = 0.

The linear independence of I and Gℓ implies

γk − γ′k + λ(δ′kβ − δkβ
′) = 0 (2.12)

and
δk − δ′k + γ′kβ − γkβ

′ + λ′(δ′kβ − δkβ
′) = 0. (2.13)

Only the three equations (2.11), (2.12), and (2.13) need to be satisfied for identifying four
parameters (α, β, γk, δk), which implies that the structural parameters are not identified. ■

If the identification condition in Theorem 2.1 is satisfied, the network size is at least three
(Example 2.1). For networks with two individuals, the matrices I,Gℓ, and G2

ℓ are always
linearly dependent. There are four possible adjacency matrices for such networks:

Ga =

[
0 1
1 0

]
, Gb =

[
0 0
1 0

]
, Gc =

[
0 1
0 0

]
, Gd =

[
0 0
0 0

]
.

In the case of Ga, the square of the matrix is

G2
a =

[
1 0
0 1

]
= I,

which implies that I,Ga, and G2
a are linearly dependent. In the case of Gb, we have

G2
b =

[
0 0
0 0

]
= 0I + 0Gb,

which implies that I,Gb, and G2
b are linearly dependent. Similarly, for Gc and Gd, we can

verify that the matrices I,Gℓ, and G2
ℓ are linearly dependent.

Corollary 2.1. If the identification condition in Theorem 2.1 is satisfied, a network must
contain at least three individuals.

Example 2.1. The adjacency matrix G1 of network 1 illustrated in Figure 2 is given by

G1 =

0 1 0
0 0 1
1 0 0

 .

G2
1 is calculated as

G2
1 =

0 0 1
1 0 0
0 1 0

 .

Apparently, I,G1, and G2
1 are linearly independent. By Theorem 2.1, the structural parame-

ters are identified.
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Figure 2: Network 1

The identification condition of Theorem 2.1 is satisfied if there exists an intransitive triad
in the network. An intransitive triad is a set of three individuals i, j, k such that i is affected
by j, j is affected by k, but i is not affected by k (Figure 3). Then, (Gℓ)ik = 0 and (G2

ℓ )ik =
(Gℓ)ij(Gℓ)jk > 0. If we assume G2

ℓ = λI + λ′Gℓ for λ, λ
′ ∈ R,

(G2
ℓ )ik = λ(I)ik + λ′(Gℓ)ik = 0,

which contradicts with (G2
ℓ )ik > 0. Therefore, the existence of an intransitive triad implies

linear independence of I,Gℓ, and G2
ℓ . In Example 2.1, network 1 in Figure 2 contains an

intransitive triad: that is, 1 is affected by 2, 2 is affected by 3, but 1 is not affected by 3.
Thus, we can identify the structural parameters.

i j k

Figure 3: An intransitive triad

In reality, we often observe multiple networks with different structures, such as classrooms
or villages, simultaneously within the same dataset. Bramoullé et al. (2009) applied the identi-
fication condition in Theorem 2.1 to a single large network G := diag{G1, . . . , GL} by stacking
different network structures G1, . . . , GL. However, this approach implicitly assumes that a
single large network G is repeatedly observed, which is not consistent with network observa-
tions. In Theorem 2.2 below, we provide an identification condition for each heterogeneous
network without stacking different network structures. While our identification condition is
mathematically equivalent to the result in Bramoullé et al. (2009), our result is consistent
with network observations.

Theorem 2.2. Suppose that γk0β + δk0 ̸= 0 for some k0. For all networks ℓ, the matrices
I,Gℓ, and G2

ℓ are linearly dependent, and

G2
ℓ = λℓI + µℓGℓ, ℓ = 1, . . . , L,

where λℓ, µℓ ∈ R. If there exist two networks r and s such that (λr, µr) ̸= (λs, µs), the
structural parameter θ = (α, β, γ, δ) is identified.

Proof. By the same argument as in the proof of Theorem 2.1, we obtain

[(γk − γ′k)I + (δk − δ′k + γ′kβ − γkβ
′)Gℓ + (δ′kβ − δkβ

′)G2
ℓ ]x

k
ℓ = 0, (2.14)
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where xkℓ := (xℓ1k, . . . , xℓnℓk)
⊤. Since we assumed G2

ℓ = λℓI + µℓGℓ, we can write (2.14) as

[(γk − γ′k + λℓ(δ
′
kβ − δkβ

′))I + (δk − δ′k + γ′kβ − γkβ
′ + µℓ(δ

′
kβ − δkβ

′))Gℓ]x
k
ℓ = 0.

By linear independence of I and Gℓ, we obtain{
γk − γ′k + λℓ(δ

′
kβ − δkβ

′) = 0

δk − δ′k + γ′kβ − γkβ
′ + µℓ(δ

′
kβ − δkβ

′) = 0.
(2.15)

If λr ̸= λs, the first equation of (2.15) implies δ′kβ = δkβ
′. If µr ̸= µs, the second equation of

(2.15) implies δ′kβ = δkβ
′. In any cases, by substituting δ′kβ = δkβ

′ into (2.15), we get{
γk = γ′k
δk + γ′kβ = δ′k + γkβ

′.

By the same argument as in the proof of Theorem 2.1, we obtain θ = θ′. ■

In Theorem 2.2, the identification arises because the variations of the network structures
create exogenous variations in the reduced-form parameters. By multiplying Gℓ on both sides
of the reduced-form equation (2.3),

Gℓyℓ = αGℓ(I − βGℓ)
−1ι+ (I − βGℓ)

−1GℓXℓγ + (I − βGℓ)
−1G2

ℓXℓδ + (I − βGℓ)
−1Gℓεℓ.

For each covariate xkℓ , the reduced-form equation is given by

Gℓyℓ = αGℓ(I − βGℓ)
−1ι+ (I − βGℓ)

−1Gℓx
k
ℓγk + (I − βGℓ)

−1G2
ℓx

k
ℓ δk + (I − βGℓ)

−1Gℓεℓ.

Substituting G2
ℓ = λℓI + µℓGℓ into the above equation gives

Gℓyℓ = αGℓ(I−βGℓ)
−1ι+δkλℓ(I−βGℓ)

−1xkℓ +(γk+δkµℓ)(I−βGℓ)
−1Gℓx

k
ℓ +(I−βGℓ)

−1Gℓεℓ.
(2.16)

Furthermore, by substituting (2.16) into the structural model (2.1), we obtain the reduced-
form equation given by

yℓ = [αI + αβGℓ(I − βGℓ)
−1]ι+ [γkI + βδkλℓ(I − βGℓ)

−1]xkℓ

+ [δkI + β(γk + δkµℓ)(I − βGℓ)
−1]Gℓx

k
ℓ + (β(I − βGℓ)

−1Gℓεℓ + εℓ).

The reduced-form parameters for network ℓ(
αI + αβGℓ(I − βGℓ)

−1, γkI + βδkλℓ(I − βGℓ)
−1, δkI + β(γk + δkµℓ)(I − βGℓ)

−1
)

are uniquely recovered from the data. If we observe two networks r and s such that (λr, µr) ̸=
(λs, µs), we can introduce exogenous variations in the reduced-form parameters, which results
in the identification of the structural parameters.

Corollary 2.2. If the identification condition in Theorem 2.2 is satisfied, a network must
contain at least two individuals.

9



Example 2.2. Suppose that we simultaneously observe two networks with different struc-
tures, as illustrated in Figure 4, within the same dataset. The adjacency matrices G2 and G3

for each network are given by

G2 =

[
0 1
1 0

]
, G3 =

[
0 1
0 0

]
.

G2
2 and G2

3 are calculated as

G2
2 =

[
1 0
0 1

]
, G2

3 =

[
0 0
0 0

]
.

Since G2
2 = I + 0G2 holds while G2

3 = 0I + 0G3 is satisfied, the structural parameters are
identified.

1 2 1 2
Figure 4: Network 2 (left) and network 3 (right)

3 Identification of the network model with the network fixed
effect

To account for the correlation between unobserved network attributes and the covariate,
we introduce network-specific unobservables in the model (2.1). In the schooling example,
wealthy parents tend to live in areas with good schools (Black, 1999). As a result, students
from high-income families are more likely to attend schools with teachers who possess better
unobserved teaching skills. To control for the network-level unobservables, we include a
network fixed effect, which may be correlated with the covariates.

The individual-level network model is given by

yℓi = αℓ + β

∑
j∈Pℓi

(Gℓ)ijyℓj

+ x⊤ℓiγ +

∑
j∈Pℓi

(Gℓ)ijxℓj

⊤

δ + εℓi, ℓ = 1, . . . , L, i = 1, . . . , nℓ,

(3.1)
where yℓi ∈ R is an outcome variable for individual i in network ℓ, xℓi = (xℓi1, . . . , xℓiK)⊤ ∈ RK

is a covariate vector for individual i in network ℓ, αℓ is a network fixed effect, and εℓi is an
error term satisfying E[εℓi|xℓ1, . . . , xℓnℓ

, αℓ] = 0. Let (β, γ, δ) ∈ R × RK × RK be parameters
such that |β|< 1. In this section, we assume that no individual is isolated: that is, Pℓi ̸= ∅
for all networks ℓ. The network-level model is given by

yℓ = αℓι+ βGℓyℓ +Xℓγ +GℓXℓδ + εℓ, E[εℓ|Xℓ, αℓ] = 0,

where yℓ = (yℓ1, . . . , yℓnℓ
)⊤ is an outcome vector, Xℓ = (x⊤ℓ1, . . . , x

⊤
ℓnℓ

)⊤ is an nℓ×K covariate

matrix, ι = (1, . . . , 1)⊤ is a vector of 1s, and εℓ = (εℓ1, . . . , εℓnℓ
)⊤ is a vector of error terms.
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We eliminate the network fixed effect by taking local differences. We average the individual-
level model (3.1) over all peers of individual i, and subtract it from i’s model. This approach
is local since it does not fully exploit the fact that the fixed effect is not only the same for all
individual i’s peers but also for all individuals in the network. In the matrix form, the local
difference is expressed by

(I −Gℓ)yℓ = αℓ(I −Gℓ)ι+(I −Gℓ)βGℓyℓ+(I −Gℓ)Xℓγ+(I −Gℓ)GℓXℓδ+(I −Gℓ)εℓ. (3.2)

Since there is no isolated individual, the sum of the row vector of Gℓ is 1, and Gℓι = ι holds.
Thus, we can write (3.2) as

(I −Gℓ)yℓ = (I −Gℓ)βGℓyℓ + (I −Gℓ)Xℓγ + (I −Gℓ)GℓXℓδ + (I −Gℓ)εℓ.

By Proposition A.1 in Appendix, the reduced-form equation is given by

(I −Gℓ)yℓ = (I − βGℓ)
−1(I −Gℓ)(Xℓγ +GℓXℓδ) + (I − βGℓ)

−1(I −Gℓ)εℓ. (3.3)

Theorem 3.1 (Bramoullé et al., 2009). Suppose that for some k0, γk0β + δk0 ̸= 0. The
structural parameter θ = (β, γ, δ) is identified if and only if the matrices I,Gℓ, G

2
ℓ , and G3

ℓ

are linearly independent.

Proof. The expectation of the reduced-form equation (3.3) conditioned on Xℓ and αℓ is

(I −Gℓ)E[yℓ|Xℓ, αℓ] = (I − βGℓ)
−1(I −Gℓ)(Xℓγ +GℓXℓδ).

Assume that for θ = (β, γ, δ) and θ′ = (β′, γ′, δ′),

(I − βGℓ)
−1(I −Gℓ)(Xℓγ +GℓXℓδ) = (I − β′Gℓ)

−1(I −Gℓ)(Xℓγ
′ +GℓXℓδ

′) (3.4)

holds with probability one. Let xkℓ := (xℓ1k, . . . , xℓnℓk)
⊤ be a covariate vector of characteristics

k in network ℓ. Then, (3.4) implies

(I − βGℓ)
−1(I −Gℓ)(γkI + δkGℓ)x

k
ℓ = (I − β′Gℓ)

−1(I −Gℓ)(γ
′
kI + δ′kGℓ)x

k
ℓ

for all k = 1, . . . ,K, which yields

(I −Gℓ)(γkI + δkGℓ)x
k
ℓ = (I − βGℓ)(I − β′Gℓ)

−1(I −Gℓ)(γ
′
kI + δ′kGℓ)x

k
ℓ . (3.5)

By Proposition A.1, we can write (3.5) as

(I −Gℓ)(γkI + δkGℓ)x
k
ℓ = (I − βGℓ)(I − β′Gℓ)

−1(γ′kI + δ′kGℓ)(I −Gℓ)x
k
ℓ ,

which implies

(I − β′Gℓ)(I −Gℓ)(γkI + δkGℓ)x
k
ℓ = (I − βGℓ)(I −Gℓ)(γ

′
kI + δ′kGℓ)x

k
ℓ . (3.6)

Arranging (3.6) results in[
(γk − γ′k)I + {δk − δ′k − (γk − γ′k) + γ′kβ − γkβ

′}Gℓ

− {δ′k − δk + β′(δk − γk)− β(δ′k − γ′k)}G2
ℓ + (β′δk − βδ′k)G

3
ℓ

]
xkℓ = 0. (3.7)

11



If I,Gℓ, G
2
ℓ , and G3

ℓ are linearly independent, (3.7) implies
γk = γ′k
δk + γ′kβ = δ′k + γkβ

′

δ′kβ = δkβ
′.

By the same argument as in the proof of Theorem 2.1, we obtain β = β′ and δk0 = δ′k0 .
For any other k, by multiplying (I − βGℓ) on both sides of (3.4), we get

(I −Gℓ)(γkI + δkGℓ)x
k
ℓ = (I −Gℓ)(γ

′
kI + δ′kGℓ)x

k
ℓ ,

which implies

[(γk − γ′k)I + (δk − δ′k + γ′kβ − γkβ
′)Gℓ + (δ′kβ − δkβ

′)G2
ℓ ]x

k
ℓ = 0.

Since I,Gℓ, G
2
ℓ , and G3

ℓ are linearly independent, we obtain (γk, δk) = (γ′k, δ
′
k).

Suppose that I,Gℓ, G
2
ℓ , and G3

ℓ are linearly dependent. If we assume G2
ℓ = λI + µGℓ for

λ, µ ∈ R, we can write G3
ℓ as

G3
ℓ = λGℓ + µG2

ℓ = λGℓ + µ(λI + µGℓ) = λµI + (λ+ µ2)Gℓ.

By substituting G2
ℓ = λI + µGℓ and G3

ℓ = λµI + (λ+ µ2)Gℓ into (3.7), we get[
{γk − γ′k − λ(δ′k − δk + β′(δk − γk)− β(δ′k − γ′k)) + (β′δk − βδ′k)λµ}I

+ {δk − δ′k − (γk − γ′k) + γ′kβ − γkβ
′ − µ(δ′k − δk + β′(δk − γk)− β(δ′k − γ′k))

+ (β′δk − βδ′k)(λ+ µ2)}Gℓ

]
xkℓ = 0.

By linear independence of I and Gℓ, we get{
γk − γ′k − λ(δ′k − δk + β′(δk − γk)− β(δ′k − γ′k)) + (β′δk − βδ′k)λµ = 0

δk − δ′k − (γk − γ′k) + γ′kβ − γkβ
′ − µ(δ′k − δk + β′(δk − γk)− β(δ′k − γ′k)) + (β′δk − βδ′k)(λ+ µ2) = 0.

Only the two equations are needed for identifying three parameters (β, γk, δk), which implies
that the structural parameters are not identified.

Assume that I,Gℓ, and G2
ℓ are linearly independent, and G3

ℓ = λI + µGℓ + νG2
ℓ , where

λ, µ, ν ∈ R. By substituting G3
ℓ = λI + µGℓ + νG2

ℓ into (3.7), we get[
(γk − γ′k + λ(β′δk − βδ′k))I + (δk − δ′k − (γk − γ′k) + γ′kβ − γkβ

′ + µ(β′δk − βδ′k))Gℓ

+ (−(δ′k − δk)− β′(δk − γk) + β(δ′k − γ′k) + ν(β′δk − βδ′k))G
2
ℓ

]
xkℓ = 0.

The linear independence of I,Gℓ, and G2
ℓ implies

γk − γ′k + λ(β′δk − βδ′k) = 0

δk − δ′k − (γk − γ′k) + γ′kβ − γkβ
′ + µ(β′δk − βδ′k) = 0

−(δ′k − δk)− β′(δk − γk) + β(δ′k − γ′k) + ν(β′δk − βδ′k) = 0.

(3.8)
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Since no individual is isolated, Gℓι = ι holds. By multiplying both sides of G3
ℓ = λI+µGℓ+νG2

ℓ

by ι, we get
λ+ µ+ ν = 1.

By summing the first and second equations in (3.8), we get

−(δ′k − δk)− β′(δk − γk) + β(δ′k − γ′k) + (1− λ− µ)(β′δk − βδ′k) = 0,

which implies the third equation in (3.8). Only the two equations are necessary for iden-
tifying three parameters (β, γk, δk), which implies that the structural parameters are not
identified. ■

If the identification condition in Theorem 3.1 is satisfied, the network size is at least four
(Example 3.1). For networks with two individuals, the matrices I,Gℓ, G

2
ℓ , and G3

ℓ are always
linearly dependent. There are four possible adjacency matrices for such networks:

Ga =

[
0 1
1 0

]
, Gb =

[
0 0
1 0

]
, Gc =

[
0 1
0 0

]
, Gd =

[
0 0
0 0

]
.

In the case of Ga, the square and cube of the matrix are

G2
a =

[
1 0
0 1

]
, G3

a =

[
0 1
1 0

]
= Ga,

respectively, which implies that I,Ga, G
2
a, and G3

a are linearly dependent. In the case of Gb,
we have

G2
b =

[
0 0
0 0

]
, G3

b =

[
0 0
0 0

]
= 0I + 0Gb + 0G2

b ,

which implies that I,Gb, G
2
b , and G3

b are linearly dependent. Similarly, for Gc and Gd, we
can verify that the matrices I,Gℓ, G

2
ℓ , and G3

ℓ are linearly dependent. For a network with
three individuals, the matrices I,Gℓ, G

2
ℓ , and G3

ℓ are always linearly dependent as shown in
Appendix A.2.

Corollary 3.1. If the identification condition in Theorem 3.1 is satisfied, a network must
contain at least four individuals.

Example 3.1. The adjacency matrix of network 4 illustrated in Figure 5 is given by

G4 =


0 1 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

 .

G2
4 and G3

4 are calculated as

G2
4 =


1/2 0 1/2 0
0 3/4 0 1/4
1/4 0 3/4 0
0 1/2 0 1/2

 , G3
4 =


0 3/4 0 1/4

3/8 0 5/8 0
0 5/8 0 3/8
0 1/4 0 3/4

 .

One can check the linear independence of I,G4, G
2
4, and G3

4. By Theorem 3.1, the structural
parameters are identified.
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1 2 3 4
Figure 5: Network 4

Intransitive triads have a natural counterpart. Define the distance between individuals
i and j in the network as the number of links connecting i and j in the shortest chain of
students i1, . . . , iℓ such that i is affected by i1, i1 is affected by i2, . . . , and iℓ is affected by
j. For example, an intransitive triad is a network with distance 2. Define the diameter of the
network as the maximum distance between any two individuals in the same network. The
identification condition in Theorem 3.1 is satisfied if the diameter of the network is greater
than or equal to 3. Suppose that the diameter of network ℓ is greater than or equal to 3.
Then, we can find two individuals i and j separated by a distance 3 in the network, where
i1 and i2 are individuals between them (Figure 6). In this case, (Gℓ)ij = 0, (G2

ℓ )ij = 0, and
(G3

ℓ )ij = (Gℓ)ii1(Gℓ)i1i2(Gℓ)i2j > 0, implying G3
ℓ ̸= µI + µ′Gℓ + µ′′G2

ℓ , where µ, µ′, µ′′ ∈ R.
Therefore, the matrices I,Gℓ, G

2
ℓ , and G3

ℓ are linearly independent.

i i1 i2 j

Figure 6: A network with distance 3

Theorem 3.2. Suppose that for some k0, γk0β + δk0 ̸= 0. For all networks ℓ, the matrices
I,Gℓ, G

2
ℓ , and G3

ℓ are linearly dependent, and

G3
ℓ = aℓI + bℓGℓ + cℓG

2
ℓ , ℓ = 1, . . . , L,

where aℓ, bℓ, cℓ ∈ R, and I,Gℓ, and G2
ℓ are linearly independent. If there exist two networks

r and s such that (ar, br, cr) ̸= (as, bs, cs), the structural parameter θ = (β, γ, δ) is identified.

Proof. By the same argument as in the proof of Theorem 3.1, we get

(I − βGℓ)
−1(I −Gℓ)(γkI + δkGℓ)x

k
ℓ = (I − β′Gℓ)

−1(I −Gℓ)(γ
′
kI + δ′kGℓ)x

k
ℓ (3.9)

for all k = 1, . . . ,K, where xkℓ := (xℓ1k, . . . , xℓnℓk)
⊤. Arranging (3.9) results in[

(γk − γ′k)I + {δk − δ′k − (γk − γ′k) + γ′kβ − γkβ
′}Gℓ

− {δ′k − δk + β′(δk − γk)− β(δ′k − γ′k)}G2
ℓ + (β′δk − βδ′k)G

3
ℓ

]
xkℓ = 0. (3.10)

Since we assumed G3
ℓ = aℓI + bℓGℓ + cℓG

2
ℓ , we can write (3.10) as[

(γk − γ′k + aℓ(β
′δk − βδ′k))I + {δk − δ′k − (γk − γ′k) + γ′kβ − γkβ

′ + bℓ(β
′δk − βδ′k)}Gℓ

+ {−(δ′k − δk)− β′(δk − γk) + β(δ′k − γ′k) + cℓ(β
′δk − βδ′k)}G2

ℓ

]
xkℓ = 0.
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By the linear independence of I,Gℓ, and G2
ℓ , we obtain

γk − γ′k + aℓ(β
′δk − βδ′k) = 0

δk − δ′k − (γk − γ′k) + γ′kβ − γkβ
′ + bℓ(β

′δk − βδ′k) = 0

−(δ′k − δk)− β′(δk − γk) + β(δ′k − γ′k) + cℓ(β
′δk − βδ′k) = 0.

(3.11)

If ar ̸= as, the first equation of (3.11) implies β′δk = βδ′k. If br ̸= bs, the second equation of
(3.11) implies β′δk = βδ′k. If cr ̸= cs, the third equation of (3.11) implies β′δk = βδ′k. In any
case, by substituting β′δk = βδ′k into (3.11), we get{

γk = γ′k
δk + γ′kβ = δ′k + γkβ

′.

Using the same argument as in the proof of Theorem 2.1, we obtain β = β′ and δk0 = δ′k0 .
For any other k, by multiplying (I − βGℓ) on both sides of (3.9), we get

[(γk − γ′k)I + (δk − δ′k + γ′kβ − γkβ
′)Gℓ + (δ′kβ − δkβ

′)G2
ℓ ]x

k
ℓ = 0.

The linear independence of I,Gℓ, and G2
ℓ implies (γk, δk) = (γ′k, δ

′
k). ■

If the identification condition in Theorem 3.2 is satisfied, the network size is at least three
(Example 3.2). Since Theorem 3.2 requires the linear independence of I,Gℓ, and G2

ℓ , the
structural parameters are not identified for a network with two individuals as shown in the
previous section.

Corollary 3.2. If the identification condition in Theorem 3.2 is satisfied, a network must
contain at least three individuals.

Example 3.2. Suppose that we simultaneously observe two networks with different struc-
tures, as illustrated in Figure 7, within the same dataset.

1 3 2 1 3 2

Figure 7: Network 5 (left) and network 6 (right)

Each network has a diameter of 2 and contains an intransitive triad: that is, 1 is affected
by 3, 3 is affected by 2, but 1 is not affected by 2. The adjacency matrices G5 and G6 for
each network are given by

G5 =

 0 0 1
1/2 0 1/2
0 1 0

 , G6 =

 0 0 1
1/2 0 1/2
1/2 1/2 0

 .

G2
5 and G2

6 are calculated as

G2
5 =

 0 1 0
0 1/2 1/2
1/2 0 1/2

 , G2
6 =

1/2 1/2 0
1/4 1/4 1/2
1/4 0 3/4

 .
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Then, G3
5 and G3

6 are calculated as

G3
5 =

1/2 0 1/2
1/4 1/2 1/4
0 1/2 1/2

 , G3
6 =

1/4 0 3/4
3/8 1/4 3/8
3/8 3/8 1/4

 .

The matrices I,Gℓ, and G2
ℓ are linearly independent for ℓ = 5, 6. Besides, while G3

5 =
1
2I+

1
2G5

holds for network 5, G3
6 = 1

4I + 3
4G6 holds for network 6. By Theorem 3.2, the structural

parameters are identified.

4 Conclusion

In this paper, we study the identification of social effects through network structures. The
identification conditions provided by Bramoullé et al. (2009) are foundational in econometrics
because linear models under a general interaction pattern are considered. Despite the signifi-
cance of their contributions, there are mathematical gaps in their arguments. We bridge these
gaps by providing the omitted mathematical discussions. Moreover, Bramoullé et al. (2009)
considered the case where we observe identical network structures simultaneously within the
same dataset. In reality, however, we often observe many networks with different structures,
such as classrooms or villages, simultaneously within the same dataset. Bramoullé et al. (2009)
applied their identification conditions to a single large network by stacking different networks.
Under this framework, a single large network is repeatedly observed, which is not consistent
with network observations. We provided identification conditions for network observations
with various structures. While our identification conditions are mathematically equivalent to
those in Bramoullé et al. (2009), our results are consistent with network observations. We
illustrate examples of networks satisfying the identification conditions. We also discuss the
identification of network models with a network fixed effect when we observe many networks
with different structures.

For network models, with or without a network fixed effect, we characterize the smallest
network size as a necessary condition for identifying social effects. For example, in a network
model with a fixed effect, if the identification condition is satisfied under identical network
observations, the network must contain at least four individuals. This is verified by consid-
ering all networks with two or three individuals and showing that they do not satisfy the
identification condition. If the identification conditions are satisfied, the smallest network size
is smaller when observing multiple different networks than when observing many identical
network structures.

This paper is subject to several limitations. First, we assume that the network is ex-
ogenous, which is restrictive in many empirical applications. In the case of an endogenous
network, the error term remains in the conditional expectation of the reduced-form equation,
complicating the identification of structural parameters. One possible approach to address
this issue is to explicitly model the formation of network links, as discussed in Johnsson and
Moon (2021). Second, we confirm the smallest network size necessary for identification by
directly calculating all possible adjacency matrices. For instance, in the case of a network
with three individuals, we verify the linear dependence of I,Gℓ, G

2
ℓ , and G3

ℓ by examining all
64 possible cases, as shown in Appendix A.2. Developing a more systematic method to verify
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linear dependence based on network structures remains an interesting direction for future
research.
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A Appendix

A.1 Commutativity of (I − βGℓ) and (I − β′Gℓ)
−1

Proposition A.1. For an adjacency matrix Gℓ,

(I − βGℓ)(I − β′Gℓ)
−1 = (I − β′Gℓ)

−1(I − βGℓ)

holds.

Proof. First of all, we show that

(I − β′Gℓ)
−1Gℓ = Gℓ(I − β′Gℓ)

−1 (A.1)

holds. In the case of β′ = 0, (A.1) is trivially satisfied. In the case of β′ ̸= 0,

(I − β′Gℓ)
−1Gℓ = − 1

β′ (I − β′Gℓ)
−1(−β′Gℓ)

= − 1

β′ (I − β′Gℓ)
−1((I − β′Gℓ)− I)

= − 1

β′ (I − (I − β′Gℓ)
−1)

= − 1

β′ ((I − β′Gℓ)− I)(I − β′Gℓ)
−1

= Gℓ(I − β′Gℓ)
−1

holds, implying (A.1).
Next, by (A.1), we can rewrite (I − βGℓ)(I − β′Gℓ)

−1 as

(I − βGℓ)(I − β′Gℓ)
−1 = (I − β′Gℓ)

−1 − βGℓ(I − β′Gℓ)
−1

= (I − β′Gℓ)
−1 − β(I − β′Gℓ)

−1Gℓ

= (I − β′Gℓ)
−1(I − βGℓ),

which completes the proof. ■
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A.2 Linear dependence of I,Gℓ, G
2
ℓ , and G3

ℓ for a network with three indi-
viduals

We confirm that the matrices I,Gℓ, G
2
ℓ , and G3

ℓ are linearly dependent for a network with
three individuals by calculating all possible adjacency matrices. When individual 1 is not
affected by others, and individual 2 is affected by individual 3,

G1 =

0 0 0
0 0 1
0 1 0

 , G2
1 =

0 0 0
0 1 0
0 0 1

 , G3
1 =

0 0 0
0 0 1
0 1 0

 = G1,

G2 =

0 0 0
0 0 1
1 0 0

 , G2
2 =

0 0 0
1 0 0
0 0 0

 , G3
2 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G2 + 0G2
2,

G3 =

 0 0 0
0 0 1

1/2 1/2 0

 , G2
3 =

 0 0 0
1/2 1/2 0
0 0 1/2

 , G3
3 =

 0 0 0
0 0 1/2
1/4 1/4 0

 =
1

2
G3,

G4 =

0 0 0
0 0 1
0 0 0

 , G2
4 =

0 0 0
0 0 0
0 0 0

 , G3
4 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G4 + 0G2
4.

When individual 1 is not affected by others, and individual 2 is affected by individual 1,

G5 =

0 0 0
1 0 0
0 1 0

 , G2
5 =

0 0 0
0 0 0
1 0 0

 , G3
5 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G5 + 0G2
5,

G6 =

0 0 0
1 0 0
1 0 0

 , G2
6 =

0 0 0
0 0 0
0 0 0

 , G3
6 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G6 + 0G2
6,

G7 =

 0 0 0
1 0 0

1/2 1/2 0

 , G2
7 =

 0 0 0
0 0 0

1/2 0 0

 , G3
7 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G7 + 0G2
7,

G8 =

0 0 0
1 0 0
0 0 0

 , G2
8 =

0 0 0
0 0 0
0 0 0

 , G3
8 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G8 + 0G2
8.
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When individual 1 is not affected by others, and individual 2 is affected by individuals 1 and
3,

G9 =

 0 0 0
1/2 0 1/2
0 1 0

 , G2
9 =

 0 0 0
0 1/2 0
1/2 0 1/2

 , G3
9 =

 0 0 0
1/4 0 1/4
0 1/2 0

 =
1

2
G9,

G10 =

 0 0 0
1/2 0 1/2
1 0 0

 , G2
10 =

 0 0 0
1/2 0 0
0 0 0

 , G3
10 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G10 + 0G2
10,

G11 =

 0 0 0
1/2 0 1/2
1/2 1/2 0

 , G2
11 =

 0 0 0
1/4 1/4 0
1/4 0 1/4

 , G3
11 =

 0 0 0
1/8 0 1/8
1/8 1/8 0

 =
1

4
G11,

G12 =

 0 0 0
1/2 0 1/2
0 0 0

 , G2
12 =

0 0 0
0 0 0
0 0 0

 , G3
12 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G12 + 0G2
12.

When individuals 1 and 2 are not affected by others,

G13 =

0 0 0
0 0 0
0 1 0

 , G2
13 =

0 0 0
0 0 0
0 0 0

 , G3
13 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G13 + 0G2
13,

G14 =

0 0 0
0 0 0
1 0 0

 , G2
14 =

0 0 0
0 0 0
0 0 0

 , G3
14 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G14 + 0G2
14,

G15 =

 0 0 0
0 0 0

1/2 1/2 0

 , G2
15 =

0 0 0
0 0 0
0 0 0

 , G3
15 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G15 + 0G2
15,

G16 =

0 0 0
0 0 0
0 0 0

 , G2
16 =

0 0 0
0 0 0
0 0 0

 , G3
16 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G16 + 0G2
16.

When individuals 1 and 2 are affected by individual 3,

G17 =

0 0 1
0 0 1
0 1 0

 , G2
17 =

0 1 0
0 1 0
0 0 1

 , G3
17 =

0 0 1
0 0 1
0 1 0

 = G17,

G18 =

0 0 1
0 0 1
1 0 0

 , G2
18 =

1 0 0
1 0 0
0 0 1

 , G3
18 =

0 0 1
0 0 1
1 0 0

 = G18,

G19 =

 0 0 1
0 0 1

1/2 1/2 0

 , G2
19 =

1/2 1/2 0
1/2 1/2 0
0 0 1

 , G3
19 =

 0 0 1
0 0 1

1/2 1/2 0

 = G19,

G20 =

0 0 1
0 0 1
0 0 0

 , G2
20 =

0 0 0
0 0 0
0 0 0

 , G3
20 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G20 + 0G2
20.
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When individual 1 is affected by individual 3, and individual 2 is affected by individual 1,

G21 =

0 0 1
1 0 0
0 1 0

 , G2
21 =

0 1 0
0 0 1
1 0 0

 , G3
21 =

1 0 0
0 1 0
0 0 1

 = I,

G22 =

0 0 1
1 0 0
1 0 0

 , G2
22 =

1 0 0
0 0 1
0 0 1

 , G3
22 =

0 0 1
1 0 0
1 0 0

 = G22,

G23 =

 0 0 1
1 0 0
1/2 1/2 0

 , G2
23 =

1/2 1/2 0
0 0 1

1/2 0 1/2

 , G3
23 =

1/2 0 1/2
1/2 1/2 0
1/4 1/4 1/2

 =
1

2
I +

1

2
G23,

G24 =

0 0 1
1 0 0
0 0 0

 , G2
24 =

0 0 0
0 0 1
0 0 0

 , G3
24 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G24 + 0G2
24.

When individual 1 is affected by individual 3, and individual 2 is affected by individuals 1
and 3,

G25 =

 0 0 1
1/2 0 1/2
0 1 0

 , G2
25 =

 0 1 0
0 1/2 1/2
1/2 0 1/2

 , G3
25 =

1/2 0 1/2
1/4 1/2 1/4
0 1/2 1/2

 =
1

2
I +

1

2
G25,

G26 =

 0 0 1
1/2 0 1/2
1 0 0

 , G2
26 =

 1 0 0
1/2 0 1/2
0 0 1

 , G3
26 =

 0 0 1
1/2 0 1/2
1 0 0

 = G26,

G27 =

 0 0 1
1/2 0 1/2
1/2 1/2 0

 , G2
27 =

1/2 1/2 0
1/4 1/4 1/2
1/4 0 3/4

 , G3
27 =

1/4 0 3/4
3/8 1/4 3/8
3/8 3/8 1/4

 =
1

4
I +

3

4
G27,

G28 =

 0 0 1
1/2 0 1/2
0 0 0

 , G2
28 =

0 0 0
0 0 1/2
0 0 0

 , G3
28 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G28 + 0G2
28.
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When individual 1 is affected by individual 3, and individual 2 is not affected by others,

G29 =

0 0 1
0 0 0
0 1 0

 , G2
29 =

0 1 0
0 0 0
0 0 0

 , G3
29 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G29 + 0G2
29,

G30 =

0 0 1
0 0 0
1 0 0

 , G2
30 =

1 0 0
0 0 0
0 0 1

 , G3
30 =

0 0 1
0 0 0
1 0 0

 = G30,

G31 =

 0 0 1
0 0 0

1/2 1/2 0

 , G2
31 =

1/2 1/2 0
0 0 0
0 0 1/2

 , G3
31 =

 0 0 1/2
0 0 0

1/4 1/4 0

 =
1

2
G31,

G32 =

0 0 1
0 0 0
0 0 0

 , G2
32 =

0 0 0
0 0 0
0 0 0

 , G3
32 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G32 + 0G2
32.

When individual 1 is affected by individual 2, and individual 2 is affected by individual 3,

G33 =

0 1 0
0 0 1
0 1 0

 , G2
33 =

0 0 1
0 1 0
0 0 1

 , G3
33 =

0 1 0
0 0 1
0 1 0

 = G33,

G34 =

0 1 0
0 0 1
1 0 0

 , G2
34 =

0 0 1
1 0 0
0 1 0

 , G3
34 =

1 0 0
0 1 0
0 0 1

 = I,

G35 =

 0 1 0
0 0 1
1/2 1/2 0

 , G2
35 =

 0 0 1
1/2 1/2 0
0 1/2 1/2

 , G3
35 =

1/2 1/2 0
0 1/2 1/2
1/4 1/4 1/2

 =
1

2
I +

1

2
G35,

G36 =

0 1 0
0 0 1
0 0 0

 , G2
36 =

0 0 1
0 0 0
0 0 0

 , G3
36 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G36 + 0G2
36.

When individual 1 is affected by individual 2, and individual 2 is affected by individual 1,

G37 =

0 1 0
1 0 0
0 1 0

 , G2
37 =

1 0 0
0 1 0
1 0 0

 , G3
37 =

0 1 0
1 0 0
0 1 0

 = G37,

G38 =

0 1 0
1 0 0
1 0 0

 , G2
38 =

1 0 0
0 1 0
0 1 0

 , G3
38 =

0 1 0
1 0 0
1 0 0

 = G38,

G39 =

 0 1 0
1 0 0
1/2 1/2 0

 , G2
39 =

 1 0 0
0 1 0

1/2 1/2 0

 , G3
39 =

 0 1 0
1 0 0
1/2 1/2 0

 = G39,

G40 =

0 1 0
1 0 0
0 0 0

 , G2
40 =

1 0 0
0 1 0
0 0 0

 , G3
40 =

0 1 0
1 0 0
0 0 0

 = G40.
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When individual 1 is affected by individual 2, and individual 2 is affected by individuals 1
and 3,

G41 =

 0 1 0
1/2 0 1/2
0 1 0

 , G2
41 =

1/2 0 1/2
0 1 0
1/2 0 1/2

 , G3
41 =

 0 1 0
1/2 0 1/2
0 1 0

 = G41,

G42 =

 0 1 0
1/2 0 1/2
1 0 0

 , G2
42 =

1/2 0 1/2
1/2 1/2 0
0 1 0

 , G3
42 =

1/2 1/2 0
1/4 1/2 1/4
1/2 0 1/2

 =
1

2
I +

1

2
G42,

G43 =

 0 1 0
1/2 0 1/2
1/2 1/2 0

 , G2
43 =

1/2 0 1/2
1/4 3/4 0
1/4 1/2 1/4

 , G3
43 =

1/4 3/4 0
3/8 1/4 3/8
3/8 3/8 1/4

 =
1

4
I +

3

4
G43,

G44 =

 0 1 0
1/2 0 1/2
0 0 0

 , G2
44 =

1/2 0 1/2
0 1/2 0
0 0 0

 , G3
44 =

 0 1/2 0
1/4 0 1/4
0 0 0

 =
1

2
G44.

When individual 1 is affected by individual 2, and individual 2 is not affected by others,

G45 =

0 1 0
0 0 0
0 1 0

 , G2
45 =

0 0 0
0 0 0
0 0 0

 , G3
45 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G45 + 0G2
45,

G46 =

0 1 0
0 0 0
1 0 0

 , G2
46 =

0 0 0
0 0 0
0 1 0

 , G3
46 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G46 + 0G2
46,

G47 =

 0 1 0
0 0 0
1/2 1/2 0

 , G2
47 =

0 0 0
0 0 0
0 1/2 0

 , G3
47 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G47 + 0G2
47,

G48 =

0 1 0
0 0 0
0 0 0

 , G2
48 =

0 0 0
0 0 0
0 0 0

 , G3
48 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G48 + 0G2
48.
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When individual 1 is affected by individuals 2 and 3, and individual 2 is affected by individual
3,

G49 =

0 1/2 1/2
0 0 1
0 1 0

 , G2
49 =

0 1/2 1/2
0 1 0
0 0 1

 , G3
49 =

0 1/2 1/2
0 0 1
0 1 0

 = G49,

G50 =

0 1/2 1/2
0 0 1
1 0 0

 , G2
50 =

1/2 0 1/2
1 0 0
0 1/2 1/2

 , G3
50 =

1/2 1/4 1/4
0 1/2 1/2

1/2 0 1/2

 =
1

2
I +

1

2
G50,

G51 =

 0 1/2 1/2
0 0 1

1/2 1/2 0

 , G2
51 =

1/4 1/4 1/2
1/2 1/2 0
0 1/4 3/4

 , G3
51 =

1/4 3/8 3/8
0 1/4 3/4

3/8 3/8 1/4

 =
1

4
I +

3

4
G51,

G52 =

0 1/2 1/2
0 0 1
0 0 0

 , G2
52 =

0 0 1/2
0 0 0
0 0 0

 , G3
52 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G52 + 0G2
52.

When individual 1 is affected by individuals 2 and 3, and individual 2 is affected by individual
1,

G53 =

0 1/2 1/2
1 0 0
0 1 0

 , G2
53 =

1/2 1/2 0
0 1/2 1/2
1 0 0

 , G3
53 =

1/2 1/4 1/4
1/2 1/2 0
0 1/2 1/2

 =
1

2
I +

1

2
G53,

G54 =

0 1/2 1/2
1 0 0
1 0 0

 , G2
54 =

1 0 0
0 1/2 1/2
0 1/2 1/2

 , G3
54 =

0 1/2 1/2
1 0 0
1 0 0

 = G54,

G55 =

 0 1/2 1/2
1 0 0

1/2 1/2 0

 , G2
55 =

3/4 1/4 0
0 1/2 1/2
1/2 1/4 1/4

 , G3
55 =

1/4 3/8 3/8
3/4 1/4 0
3/8 3/8 1/4

 =
1

4
I +

3

4
G55,

G56 =

0 1/2 1/2
1 0 0
0 0 0

 , G2
56 =

1/2 0 0
0 1/2 1/2
0 0 0

 , G3
56 =

 0 1/4 1/4
1/2 0 0
0 0 0

 =
1

2
G56.
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When individual 1 is affected by individuals 2 and 3, and individual 2 is affected by individuals
1 and 3,

G57 =

 0 1/2 1/2
1/2 0 1/2
0 1 0

 , G2
57 =

1/4 1/2 1/4
0 3/4 1/4
1/2 0 1/2

 , G3
57 =

1/4 3/8 3/8
3/8 1/4 3/8
0 3/4 1/4

 =
1

4
I +

3

4
G57,

G58 =

 0 1/2 1/2
1/2 0 1/2
1 0 0

 , G2
58 =

3/4 0 1/4
1/2 1/4 1/4
0 1/2 1/2

 , G3
58 =

1/4 3/8 3/8
3/8 1/4 3/8
3/4 0 1/4

 =
1

4
I +

3

4
G58,

G59 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , G2
59 =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

 , G3
59 =

1/4 3/8 3/8
3/8 1/4 3/8
3/8 3/8 1/4

 =
1

4
I +

3

4
G59,

G60 =

 0 1/2 1/2
1/2 0 1/2
0 0 0

 , G2
60 =

1/4 0 1/4
0 1/4 1/4
0 0 0

 , G3
60 =

 0 1/8 1/8
1/8 0 1/8
0 0 0

 =
1

4
G60.

When individual 1 is affected by individuals 2 and 3, and individual 2 is not affected by others,

G61 =

0 1/2 1/2
0 0 0
0 1 0

 , G2
61 =

0 1/2 0
0 0 0
0 0 0

 , G3
61 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G61 + 0G2
61,

G62 =

0 1/2 1/2
0 0 0
1 0 0

 , G2
62 =

1/2 0 0
0 0 0
0 1/2 1/2

 , G3
62 =

 0 1/4 1/4
0 0 0

1/2 0 0

 =
1

2
G62,

G63 =

 0 1/2 1/2
0 0 0

1/2 1/2 0

 , G2
63 =

1/4 1/4 0
0 0 0
0 1/4 1/4

 , G3
63 =

 0 1/8 1/8
0 0 0

1/8 1/8 0

 =
1

4
G63,

G64 =

0 1/2 1/2
0 0 0
0 0 0

 , G2
64 =

0 0 0
0 0 0
0 0 0

 , G3
64 =

0 0 0
0 0 0
0 0 0

 = 0I + 0G64 + 0G2
64.
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