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Abstract

The problem of efficient allocation of the grand coalition worth in transferable-
utility games boils down to specifying how the surplus is distributed among
individuals, in the situation where the individual share is well-defined. We show
that the Individual Monotonicity axiom for Equal Surplus, together with Effi-
ciency and Equal Treatment, implies Egalitarian Surplus Sharing, while the same
axiom for Equal Ratio implies Proportional Division. The results thus illustrate
the common structure in deriving two principles of surplus distribution, egali-
tarian and proportional, from the Individual Monotonicity axioms. We further
show that relaxation of Equal Treatment leads to Weighted Surplus Sharing
and Shifted Proportional Division, highlighting the common structure in which
Individual Monotonicity characterizes the allocations that can incorporate social
objectives of a redistributive nature.
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1 Introduction

Monotonicity plays a crucial role in characterizing values in cooperative games. One

of the primary examples is that the strong monotonicity, together with the axioms

of efficiency and symmetry, characterizes the Shapley value (Young, 1985).1 A vari-

ety of characterizations using monotonicity conditions have also been obtained in

the literature (Casajus and Yokote, 2019). Weak monotonicity, for instance, leads

to the egalitarian Shapley value (Joosten, 1996; van den Brink et al, 2013; Casajus

and Huettner, 2014b), while grand coalition monotonicity implies the equal division

value (Casajus and Huettner, 2014b). Based on linear algebraic arguments, Yokote

and Funaki (2017) provides a unified approach, in which various combinations of

monotonicity conditions imply linear combinations of the corresponding values. In par-

ticular, they show that surplus+individual monotonicity, together with efficiency and

symmetry, characterizes the Center of Imputation Set (CIS), introduced by Driessen

and Funaki (1991).

In addition to the above result, several characterizations of the CIS value have

been explored in the literature. Two kinds of characterizations are provided in van den

Brink and Funaki (2009), one with consistency and standardness, and another with

efficiency, symmetry, linearity and weak individual rationality. The characterization

given by Casajus and Huettner (2014a) is based on the axiom of coalition surplus

monotonicity, which requires that if all zero-normalized worths increase in coalitions

that include a player, then the excess amount the player receives over the individual

worth also increases.

Our characterization is simple and constructive. Suppose that an exogenous func-

tion specifies what is considered as a legitimate share of each individual in the society.

The Individual Monotonicity for Equal Surplus (IMES) axiom requires that, if an

individual’s share increases, what she receives also increases, given that the surplus,

1In the original work by Shapley (1953), the Shapley value is characterized by the axioms of efficiency,
symmetry, linearity and the null player property. The linearity axiom plays an essential role in the proof.
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defined as the remainder of the grand coalition worth net of the sum of the individual

shares, remains the same. Combined with the Efficiency and Equal Treatment axioms,

we obtain a characterization of the Egalitarian Surplus Sharing (ESS) value. In par-

ticular, we obtain a characterization of the CIS value if the individual share is defined

as the stand-alone coalition worth. Similarly, we obtain a characterization of the egal-

itarian non-separable contribution (ENSC) value, if the individual share is defined as

the separable contribution, i.e., the increase in worth when she joins the rest of the

society and forms the grand coalition (Driessen and Funaki, 1991).

A remarkable feature of our characterization results is that none of them relies on

the linearity axiom. This direction of research is in line with the recent work by Nakada

(2024) which uses decision-theoretic tools to provide an explanation how linearity is

derived from monotonicity.

Furthermore, we show that the same proof technique can be applied to the char-

acterization of the Proportional Division by the axiom of Individual Monotonicity for

Equal Ratio (IMER). The proof is analogous. Instead of considering the remainder

after subtracting the total individual shares from the grand coalition worth, we con-

sider the ratio after dividing the latter by the former. We then show that the surplus

should be divided proportionally. This line of characterization of the Proportional

Division value is new and different from those developed in recent papers (Zou et al,

2021, 2022; van den Brink et al, 2023). A novelty of our results lies in the common

structure in which the principles of egalitarian and proportional surplus sharing are

derived by the Individual Monotonicity axioms.

We then provide further characterizations by dropping the Equal Treatment axiom

and requiring Weak Homogeneity instead. By applying the same technique again, we

show that IMES characterizes the Weighted Surplus Sharing (WSS), which includes

Egalitarian Surplus Sharing as a special equal-weight case. Since the WSS is writ-

ten as a class of allocations obtained by a zero-sum redistribution based on the ESS,
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our characterization shows that dropping equal treatment corresponds to asymmetric

treatment of individuals, which allows us to incorporate social objectives of an asym-

metric nature, such as minority protection, support for the disabled, consideration of

seniority, and so on.

A novel finding is that the Proportional Division is also extended in an analogous

way. By dropping Equal Treatment, IMER characterizes the Shifted Proportional Divi-

sion, a class of allocations obtained as a zero-sum redistribution from the Proportional

Division. Given that the redistribution terms are written as proportional to the Equal

Surplus and Equal Ratio respectively, our results again highlight the central role of the

Individual Monotonicity axioms and the common structure of the characterization.

The rest of the paper is organized as follows. The characterization results of ESS,

including CIS and ENSC as special cases, are presented in Section 2. Our axiom

is extended to the Individual Monotonicity for Equal Ratio, and a characterization

of Proportional Division is obtained in Section 3. We relax the Equal Treatment

axiom and characterize Weighted Surplus Sharing and Shifted Proportional Division

in Section 4. Characterization in subdomains is considered in Section 5. Section 6

concludes.

2 Individual Monotonicity for Equal Surplus

2.1 Preliminary

Let N = {1, 2, · · · , n} be the set of the players. Let VN =
{
v : 2N → R|v (∅) = 0

}
denote the set of all cooperative transferable utility games (TU-games) on N . For

S ⊆ N , v(S) is called the worth of coalition S. Let φ : VN → Rn where φi (v) is the

value assigned to player i ∈ N . We say that player i and j(̸= i) are symmetric in v,

if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}. We say that a game v is symmetric if

all players are symmetric in v.

Axiom 1 (Efficiency). For any v ∈ VN ,
∑

i∈N φi (v) = v (N) .
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Axiom 2 (Equal Treatment). For any v ∈ VN , if i and j are symmetric in v, φi(v) =

φj(v).

Throughout the paper, the Efficiency axiom is required. The Equal Treatment

axiom is required except in Section 4, where we examine its relaxation.

2.2 A characterization of f-ESS

Suppose that there exists a function f : VN → Rn which represents the individual

share. The function f provides a general structure in what is considered as the legiti-

mate share of each individual given the game v. It may represent the social consensus

according to which how much individual share should reflect the factors such as indi-

vidual contribution to the coalitions of diverse sizes. For example, fi could be simply

the stand-alone coalition worth v({i}), or
∑

j ̸=i v({i, j}) where v({i, j}) is obtained

from i’s total pairwise contributions, e.g., revenue from matches in a sport league

(Bergantinos and Moreno-Ternero, 2020).

The surplus is defined as the remainder after subtracting the sum of individual

shares from the grand coalition worth. Since efficiency is not required on f , the surplus

can be positive or negative.

We consider the following axiom of Individual Monotonicity for Equal Surplus.

The axiom requires the value to be monotonic in the individual share, if the surplus

is equal.

Axiom 3 (f -Individual Monotonicity for Equal Surplus: f -IMES). For any v, w ∈ VN ,

if

v (N)−
∑
k∈N

fk (v) = w (N)−
∑
k∈N

fk (w)

and fi (v) ≥ fi (w) , then φi (v) ≥ φi (w).

We also introduce the following axiom, Individualistic property for Equal Surplus

(IES), which requires the value to depend solely on the individual share under equal

surplus.

5



Axiom 4 (f -Individualistic property for Equal Surplus: f -IES). For any v, w ∈ VN , if

v (N)−
∑

k∈N fk (v) = w (N)−
∑

k∈N fk (w) and fi (v) = fi (w) , then φi (v) = φi (w).

It is straightforward to see that (f -IMES) implies (f -IES), by applying the

inequality in the definition of (f -IMES) to both directions.

Our first result is that the f -IMES axiom, together with Efficiency and Equal

Treatment, characterizes the Egalitarian Surplus Sharing, defined as follows:

Definition 1 (Egalitarian Surplus Sharing: ESS). We say that φ is the Egalitarian

Surplus Sharing value with respect to f , if

φi (v) = fi (v) +
1

n

(
v (N)−

∑
k∈N

fk (v)

)
,∀i ∈ N. (f -ESS)

Before stating the theorem, we provide the following assumptions on f .

Assumption 1. f is symmetric, that is, for any permutation π on N and for any

i ∈ N , fi(v) = fπ(i)(πv) where the game πv is defined by v(S) = πv(πS) for all S ⊆ N .

Assumption 2. For any v ∈ VN , ∃c ∈ R such that for any x ∈ Rn whose i-th

component xi is either c or fi(v) for all i, there exists w ∈ VN which satisfies f(w) = x.

Moreover, if xi = c for all i, then there exists a symmetric w.

Assumption 3. For any v ∈ VN , f(v) does not depend on v(N).

Assumption 1 stipulates that the definition of individual share does not depend on

the label of the players. Assumption 2 guarantees a minimal variety for games. The

condition is fairly mild: it is satisfied if f is linear and symmetric.2 Assumption 3 is

imposed in order to avoid double-counting the grand coalition worth when the surplus

is defined and the Efficiency axiom is considered. Function f can be non-linear. For

example, fi(v) = v(i)α with α > 0 satisfies these assumptions.

The following theorem provides a characterization of the f -ESS value.

Theorem 1. Suppose that f satisfies Assumptions 1, 2 and 3. A value φ satisfies

(Efficiency), (Equal Treatment) and (f -IMES), if and only if it is the f -ESS value.

2A formal proof of this claim, extending Theorem 1 of Weber (1988), is in the Appendix.
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Proof. By Assumption 1, the “if” part is obvious. We show the “only if” part.

By Assumption 2, for any v, there exist a constant c ∈ R and a sequence of games

w0, w1, · · · , wn−1 such that, for k = 0, 1, · · · , n− 1,

fi
(
wk
)
=

 fi (v) if i ≤ k

c if i > k
. (1)

For each k, let vk be the game constructed from wk by replacing the grand coalition

worth as follows:

vk(S) :=

wk(S) if S ⊊ N,

v (N)−
∑

i∈N fi(v) +
∑

i∈N fi(w
k) if S = N.

(2)

By Assumption 3, we have

fi(v
k) = fi(w

k) ∀i, k. (3)

For k = n, let vn = wn = v and (1), (2) and (3) are satisfied. For k = 0, Assumption

2 guarantees that w0 is symmetric, and thus v0 is also symmetric, by construction.

By (2) and (3), the sequence (vk)
n
k=0 is constructed so that the surplus remains con-

stant for all k: vk (N)−
∑

i∈N fi
(
vk
)
= vk (N)−

∑
i∈N fi

(
wk
)
= v (N)−

∑
i∈N fi (v) .

Notice that the last part is independent of k. Hence, for k = 1, 2, · · · , n, we have:

vk (N) −
∑

i∈N fi
(
vk
)
= vk−1 (N) −

∑
i∈N fi

(
vk−1

)
. Also by (1) and (3), we have

fi
(
vk
)
= fi

(
vk−1

)
for all i ̸= k. Hence, we can apply (f -IES) to vk and vk−1, and

obtain

φi
(
vk
)
= φi

(
vk−1

)
for all i ̸= k. (4)

Then, for i ∈ N,  φi (v
n) = φi

(
vn−1

)
= · · · = φi

(
vi
)
,

φi
(
vi−1

)
= φi

(
vi−2

)
= · · · = φi

(
v0
)
.

(5)
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Now, consider any k ∈ N . By (Efficiency),

vk (N) =
∑
i∈N

φi
(
vk
)
= φk

(
vk
)
+
∑
i ̸=k

φi
(
vk
)
,

vk−1 (N) =
∑
i∈N

φi
(
vk−1

)
= φk

(
vk−1

)
+
∑
i ̸=k

φi
(
vk−1

)
.

By (4) and (5),

vk (N)− vk−1 (N) = φk
(
vk
)
− φk

(
vk−1

)
= φk (v

n)− φk
(
v0
)
. (6)

By (2), vk (N)− vk−1 (N) = fk (v)− c. Since vn = v,

φk (v) = fk (v)− c+ φk
(
v0
)
. (7)

Now, consider v0. Since v0 is symmetric, by (Equal Treatment) and (Efficiency), φ(v0)

should be the equal division: φi
(
v0
)
= v0(N)/n. Then, by (2),

φi
(
v0
)
=

1

n

(
v (N) + cn−

∑
k∈N

fk (v)

)
,∀i.

Combined with (7), we obtain:

φk (v) = fk (v) +
1

n

(
v (N)−

∑
i∈N

fi (v)

)
.

Theorem 1 can be applied to the characterization of several values studied in

the literature. First, suppose that the legitimate individual share is defined as the

stand-alone coalition worth. By letting fi(v) = v({i}) for all i, above assumptions are
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satisfied.3 We thus obtain a characterization of the Center of Imputation Set (CIS)

value (Driessen and Funaki, 1991).

Definition 2 (CIS). The Center of the Imputation Set is:

CISi (v) = v ({i}) + 1

n

(
v (N)−

∑
k∈N

v ({k})

)
, ∀i ∈ N.

The f -IMES axiom becomes as follows:

Axiom 5 (Individual Monotonicity for Equal Surplus: IMES). For any v, w ∈ VN , if

v (N)−
∑
k∈N

v ({k}) = w (N)−
∑
k∈N

w ({k})

and v ({i}) ≥ w ({i}) , then φi (v) ≥ φi (w).

Since Assumptions 1, 2 and 3 are satisfied for fi(v) = v({i}), we obtain:

Corollary 2. A value satisfies (Efficiency), (Equal Treatment) and (IMES), if and

only if it is the CIS value.

Notice that this characterization does not hinge on the linearity axiom, which is

often used in the literature.

The dual concept of the CIS is the ENSC, the Egalitarian Non-Separable Con-

tribution (Driessen and Funaki, 1991). In the ENSC, the non-separable contribution,

defined as the remaining part of the grand coalition value net of the total separable

contributions of all players, is distributed equally among all players.

Definition 3 (SC, NSC). The separable contribution of player i in game v is SCi (v) =

v (N) − v (N\ {i}) . The non-separable contribution of game v is NSC (v) = v (N) −∑
i∈N SCi(v).

3Moreover, Assumption 2 is satisfied with an arbitrary c ∈ R, since w is obtained from v by simply
replacing v({i}) with c.
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Definition 4 (ENSC). The Egalitarian Non-Separable Contribution is defined by:

ENSCi (v) = SCi (v) +
1

n
NSC (v) , ∀i ∈ N.

A characterization of ENSC, analogous to Corollary 2, is provided by the Individual

Monotonicity axiom defined over v∗, the dual of v.

Definition 5 (Dual). The dual v∗ of game v is defined by v∗ (S) = v (N)− v (N\S),

for any S ⊆ N.

In particular, v∗ ({i}) = SCi(v),∀i. The surplus to be shared among the players is

also defined by the dual. The IMES axiom for v∗ becomes as follows:

Axiom 6 (IMES*). For any v, w ∈ VN , if

v (N)−
∑
k∈N

v∗ ({k}) = w (N)−
∑
k∈N

w∗ ({k})

and v∗ ({i}) ≥ w∗ ({i}) , then φi (v) ≥ φi (w).

By definition, v∗({i}) coincides with SCi and the surplus coincides with NSC. It

is straightforward to verify that this axiom is equivalent to f -IMES by letting fi(v) =

−v(N\{i}).4 We thus obtain the following characterization as another corollary of

Theorem 1.

Corollary 3. A value φ satisfies (Efficiency), (Equal Treatment) and (IMES*), if

and only if it is the ENSC value.

Simplicity of our constructive proof allows us to apply the same technique to

various situations. We call our proof technique as the IM (Individual Monotonicity)

method and provide its outline in the Appendix.

4It is equivalent to set f(v) = v∗({i}), but the above definition guarantees that Assumption 3 is satisfied
so that the proof of Theorem 1 is applied directly.
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2.3 Characterization of the f-ESS family

In the previous subsection, we have first fixed a specific individual share represented

by function f , and then provided a characterization of the f -ESS value. Instead, we

provide here a characterization of the f -ESS family, the set of values that can be

obtained as a result of the egalitarian surplus sharing from some individual share f .

First, if no restriction is imposed on f , the answer becomes trivial. Any efficient

value φ can be written as an f -ESS by regarding φ itself as f . On the other hand,

any f -ESS value is efficient by definition. Therefore, the set of values which can be

written as an f -ESS by any f coincides with the set of all efficient values.

Second, if f is restricted to be linear, the answer is straightforward: a value φ is

f -ESS for some linear f , if and only if φ is efficient and linear. This follows from

linearity of (f -ESS) in Definition 1.

Now, suppose that f is linear and symmetric. Then, the set of f -ESS values turns

out to include known values such as CIS, ENSC and the Equal Division. To provide

a full description of the result, define a sequence of values
(
ψk
)n
k=1

as follows:

Definition 6. For each k, define ψk : VN → Rn by:

ψki (v) =

(
1− k

n

) ∑
S:|S|=k,S∋i

v (S)

− k

n

 ∑
S:|S|=k,S ̸∋i

v (S)

+
1

n
v (N) . (8)

In particular, note that ψ1 coincides with the CIS, ψn−1 coincides with the ENSC,

and ψn coincides with the Equal Division: EDi(v) = v(N)/n ∀i,∀v.5

Proposition 4. There exists a linear and symmetric function f : VN → Rn such that

a value φ is f -ESS, if and only if φ is written as an affine combination of
(
ψk (v)

)n
k=1

,

5Note that ψk satisfies the projection axiom if and only if k = 1 or k = n − 1: φi(v) = v(i) ∀i, for any
additive game v.
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that is, there exist coefficients
(
λk
)n
k=1

such that
∑n

k=1 λ
k = 1 and

φ (v) =

n∑
k=1

λkψk (v) . (9)

Proof is in the Appendix. It is known that the set of values described by (9)

coincides with the set of all linear, symmetric and efficient values (Ruiz et al (1998),

Lemma 9).

As can be seen from the proposition, the process of deriving an efficient value φ

by ESS from an arbitrary individual share f can be viewed as an efficient extension

operator using the principle of egalitarian surplus sharing. Further discussion on the

characterization of extension operators is beyond the scope of the current paper and

readers are invited to refer to Funaki et al (2024).

3 Individual Monotonicity for Equal Ratio

3.1 A characterization of Proportional Division

The IMES axiom can be extended to the one which requires monotonicity with respect

to the equal ratio, rather than the equal surplus. We then obtain a characterization of

the Proportional Division value. We limit our attention to the following class

VN+ :=

{
v ∈ VN

∣∣∣∣∣∑
k∈N

v ({k}) > 0

}
,

and let F+ :=
{
VN+ → Rn

∣∣∑
k∈N fk(v) > 0,∀v ∈ VN+

}
, in order to avoid division by

zero.

The IMER axiom and the PD value with respect to f are defined as follows:
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Axiom 7 (f -Individual Monotonicity for Equal Ratio: f -IMER). Fix f ∈ F+. For

any v, w ∈ VN+ , if

v (N)∑
k∈N fk (v)

=
w (N)∑
k∈N fk (w)

and fi (v) ≥ fi (w), then φi (v) ≥ φi (w).

Definition 7 (f -PD). The Proportional Division value with respect to f is:

φi (v) =
fi (v)∑
k∈N fk (v)

v (N) . (f -PD)

Theorem 5. Suppose that f ∈ F+ satisfies Assumptions 1, 2 and 3.6 A value φ

satisfies (Efficiency), (Equal Treatment) and (f -IMER), if and only if it is the f -PD

value.

Proof. Proof is analogous to that of Theorem 1. For any v ∈ VN+ , define a sequence of

games as in (1). The only difference is that we now define:

vk (N) =

∑
i≤k fi (v) + (n− k)c∑

i∈N fi (v)
v (N) (10)

for k = 0, 1, · · · , n, instead of (2). Then, we obtain equal ratio instead of equal surplus

between vk and vk−1, for k = 1, · · · , n. We can therefore apply (f -IMER) and obtain

(4), (5) and (6).

As in the proof of Theorem 1, apply (Efficiency) and (Equal Treatment) to v0 and

we obtain φi
(
v0
)
= v0 (N)/n for all i ∈ N . Letting k = 0 in (10), we have:

φi
(
v0
)
=

cv (N)∑
j∈N fj (v)

.

Also by (10),

vk (N)− vk−1 (N) =
fk (v)− c∑
i∈N fi (v)

v (N) .

6It is sufficient to require them for v ∈ VN
+ .
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Therefore, by (6), we obtain:

φk (v) =
cv (N)∑
i∈N fi (v)

+
fk (v)− c∑
i∈N fi (v)

v (N) =
fk (v)∑
i∈N fi (v)

v (N) ,

which is equal to (f -PD).

In particular, by letting fi(v) = v({i}) ∀i, we obtain a characterization of the

Proportional Division (PD) value.

Definition 8 (PD). The Proportional Division value is defined as:

φi (v) =
v ({i})∑
k∈N v ({k})

v (N) , ∀i ∈ N. (PD)

The f -IMER axiom becomes:

Axiom 8 (Individual Monotonicity for Equal Ratio: IMER). For any v, w ∈ VN+ , if

v (N)∑
k∈N v ({k})

=
w (N)∑

k∈N w ({k})

and v ({i}) ≥ w ({i}) , then φi (v) ≥ φi (w).

Corollary 6. A value φ satisfies (Efficiency), (Equal Treatment) and (IMER), if and

only if it is the PD value.

4 Characterization without Equal Treatment

We have required Equal Treatment in all the characterization results obtained above.

By dropping it, the value can incorporate social objectives of an asymmetric nature. In

this section, we consider characterization of the values without the Equal Treatment

axiom.
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4.1 Weighted Surplus Sharing

We first drop the Equal Treatment axiom used in the characterization of the Egali-

tarian Surplus Sharing, and consider the Weak Homogeneity axiom instead. Let uN

be the standard N -unanimity game, that is, uN (S) = 1 if S = N , and uN (S) = 0

otherwise.

Axiom 9 (Weak Homogeneity: WH). For any λ ∈ R, φ
(
λuN

)
= λφ

(
uN
)
.

Recall that the surplus is shared equally among all individuals in the ESS. Instead,

we consider Weighted Surplus Sharing (WSS), in which the surplus is shared in pro-

portion to a constant weight vector which sums up to one (Kongo, 2019; Yang et al,

2019). More precisely, WSS is defined as follows:

Definition 9 (Weighted Surplus Sharing: WSS). A value φ is a Weighted Surplus

Sharing value, if there exists a constant vector a = (ai)i∈N satisfying
∑

i∈N ai = 1,

such that

φi (v) = v ({i}) + ai

(
v (N)−

∑
k∈N

v ({k})

)
, ∀i ∈ N, ∀v ∈ VN . (WSS)

The ESS value is a special case of WSS in which ai = 1/n for all i. Also, notice

that we do not impose the restriction of ai ≥ 0,∀i ∈ N , although the weight is often

assumed to be non-negative in the literature (Kongo, 2019; Yang et al, 2019). The

reason is that we do not exclude general forms of surplus sharing, in which certain

individuals are taxed in order to achieve a desirable redistribution. The following

theorem provides a characterization of WSS.

Theorem 7. The value φ satisfies (Efficiency), (IMES) and (WH) if and only if it

is a WSS value.

Proof. The proof is analogous to that of Theorem 1. Set fi(v) = v({i}) for all i, and

c = 0. The only difference is the last part, which specifies the value of game v0. Now,

define a game w := v0 (N)uN where uN is the standard N -unanimity game. Then,
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w(N) = v0(N) and w ({i}) = v({i}) = 0 for all i ∈ N . Hence, by (IMES), we obtain

φk
(
v0
)
= φk (w) ,∀k ∈ N.

By (WH), we have φk(v
0) = v0(N)ak,∀k ∈ N, where ak := φk(u

N ). Then, by (7),

φi (v) = v ({i}) + v0 (N) ai

= v ({i}) + ai

(
v (N)−

∑
k∈N

v ({k})

)
.

This is exactly (WSS) with ai = φi
(
uN
)
.

In Theorem 7, we have extended the set of characterized allocations from ESS

to WSS by weakening Equal Treatment to Weak Homogeneity. In order to obtain

more precise mathematical boundary of the characterization between the two values,

consider Weak Symmetry (van den Brink, 2007):

Axiom 10 (Weak Symmetry). For every v ∈ VN , if v(S ∪ {i}) = v(S ∪ {j}), ∀S ⊆

N\{i, j}, ∀i, j ∈ N with i ̸= j, then there exists a constant c ∈ R such that φi(v) = c

for all i ∈ N .

By definition, Equal Treatment implies Weak Symmetry. Since the Equal Treat-

ment axiom is applied only to the unanimity game in the proof of Theorem 1 with

fi(v) = v({i}), we obtain another characterization of ESS, by weakening Equal Treat-

ment to Weak Symmetry. In turn, under the assumption of Efficiency, Weak Symmetry

implies Weak Homogeneity. Therefore, Theorem 7 indicates that a characterization

boundary between ESS and WSS lies between the requirement of Weak Symmetry

and that of Weak Homogeneity.
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4.2 Shifted Proportional Division

An analogous extension can be applied to characterization of the Proportional Division

value. Instead of Equal Treatment, we require Weak Grand Coalition Homogeneity.7

For λ ∈ R+, let ũλ be the game such that:

ũλ (S) =

 1 if S ̸= N, ∅

λ if S = N
.

Axiom 11. (Weak Grand Coalition Homogeneity: WGCH) For λ ∈ R+, φ
(
ũλ
)
=

λφ
(
ũ1
)
.

Definition 10 (Shifted Proportional Division: SPD). We say that φ is a Shifted

Proportional Division value, if ∃ (bi)i∈N such that
∑

i bi = 0 and

φi (v) =
v ({i}) + bi∑
k∈N v ({k})

v (N) , ∀i ∈ N. (SPD)

Theorem 8. A value satisfies (Efficiency), (IMER) and (WGCH), if and only if it

is a SPD value.

Proof. The proof is again analogous to that of Theorem 5, with fi(v) = v({i}). Since

such an f satisfies Assumption 2 with an arbitrary c, let c = 1. In particular, (10)

holds with c = 1.

Now, consider ũ1 and let ai := φi
(
ũ1
)
, ∀i ∈ N . By Efficiency,

∑
i∈N ai = 1.

Consider the game ũλ with λ = v0 (N). Then, by WGCH, φi
(
ũλ
)
= λφi

(
ũ1
)
= λai =

aiv
0 (N) ,∀i ∈ N . Since v0(N) = ũλ(N) and v0 ({i}) = ũλ ({i}) = 1,∀i ∈ N , we can

7This axiom is weaker than Grand Coalition Homogeneity, which requires homogeneity of the value when
only the grand coalition worth is multiplied by a constant.
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apply IMER to v0 and ũλ and obtain φi
(
v0
)
= φi

(
ũλ
)
,∀i ∈ N . Hence,

φi
(
v0
)
= φi

(
ũλ
)
= aiv

0 (N) =
ain∑

j∈N v ({j})
v (N) ,∀i ∈ N. (11)

By (10),

φk (v) = vk (N)− vk−1 (N) + φk
(
v0
)
=
v (k)− 1 + akn∑

j∈N v ({j})
v (N) .

By letting bk = akn− 1, we have
∑

k∈N bk = n
∑

k∈N ak − n = 0, and we obtain the

result.

Under the Efficiency assumption, if a value satisfies Equal Treatment, then it

also satisfies WGCH. Our results therefore indicate the extent to which the Equal

Treatment axiom can be relaxed so that the set of characterized values extends from

PD to SPD.

4.3 Interpretation of the weakening of ET

We have seen above that the set of characterized values is expanded from the ESS to

the WSS when the Equal Treatment axiom is relaxed. It is worth emphasizing that

the WSS can be written as a shifted allocation based on the ESS. To see that, let

bi := ai − 1/n, ∀i ∈ N in (WSS). Then, we have:

WSSi (v) = v ({i}) +
(
1

n
+ bi

)(
v (N)−

∑
k∈N

v ({k})

)

= ESSi (v) + bi

(
v (N)−

∑
k∈N

v ({k})

)
.
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Similarly, the Shifted Proportional Division can be written as:

SPDi (v) =
v ({i}) + bi∑
k∈N v ({k})

v (N) .

= PDi (v) + bi
v (N)∑

k∈N v ({k})
.

In both cases, the vector of coefficients b = (bi)i∈N satisfies
∑

i∈N bi = 0, and b = 0 is

the special case in which the Equal Treatment axiom is satisfied. Therefore, relaxing

the Equal Treatment axiom corresponds to an adjustment by a zero-sum transfer

proportional to the vector b, which is fixed and applied to all games v.

Our results thus imply that the extended sets of allocations can incorporate social

objectives of an asymmetric nature, such as redistribution, minority protection, sup-

port for the disabled, consideration of seniority, and so on. The coefficient vector b

is fixed exogeneously in each society, but the same b is applied to all games v. As

seen from the expressions above, the resulting allocation is written as a redistribution

based on the Egalitarian Surplus Sharing or the Proportional Division, which repre-

sents the egalitarian or proportional principle, respectively. What is common in both

cases is the structure in which relaxation of the Equal Treatment axiom leads to the

redistribution term in the above expressions. Notice that the term multiplied by bi

corresponds to the equal surplus and the equal ratio, specified in the Individual Mono-

tonicity axiom, respectively. Our characterization results thus highlight the common

structure in the characterization of ESS and PD, and the central role played by the

Individual Monotonicity axioms.

5 Characterization in subdomains

In this section, we consider the characterization in subdomains, which would high-

light a broader applicability of the IM method. We show that the same f -ESS
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characterization is obtained in the subdomains of convex games (Shapley, 1971), super-

additive games, exact games (Schmeidler, 1972), balanced games (Shapley, 1967), and

totally balanced games, or equivalently, market games (Shapley and Shubik, 1969),

for fi (v) = v ({i}) .

Theorem 9. Let V̄N be a subdomain of VN , either the set of convex games, super-

additive games, exact games, balanced games, or totally balanced games. A value φ

satisfies (Efficiency), (ET) and (IMES) for all v ∈ V̄N , if and only if it is the CIS

value for all v ∈ V̄N .

To prove the theorem, we use the following lemma (proof is in the Appendix).

Lemma 1. Suppose that v (S) =
∑

i∈S v ({i}) ,∀S ⊊ N .8 Then, v is convex,

superadditive, exact, balanced and totally balanced, if and only if v (N) ≥
∑

i∈N v ({i}).

Proof of Theorem 9. The if part is trivial. We show the only if part. The proof is

again by the IM method. Suppose v ∈ V̄N . We construct a sequence of games
(
vk
)n
k=0

in V̄N . For the stand-alone coalitions, define vk ({i}) as in (1) with fi (v) = v ({i})

and c = 0. Hence,
∑

i∈N v
k ({i}) =

∑
i≤k v ({i}) . Define the grand coalition worth

as in (2): vk (N) = v (N) −
∑

i>k v ({i}) . For the coalitions of size 2 to n − 1, define

vk (S) :=
∑

i∈S v
k ({i}). Since the coalition worth of these sizes does not matter, the

proof of Theorem 1 goes through.

It remains to verify that vk is constructed in the subdomain V̄N for each k. It

suffices to show that vk is convex, since convexity implies superadditivity, exactness,

balancedness and total balancedness. By Lemma 1, it remains to verify vk (N) ≥∑
i∈N v

k ({i}). By (2), vk (N) −
∑

i∈N v
k ({i}) = v (N) −

∑
i∈N v ({i}). Since v is

convex, vk is also convex.

Characterization in subdomains also applies to the Proportional Division value.

Theorem 10. Let V̄N+ be a subdomain of VN+ , either the set of convex games, super-

additive games, exact games, balanced games, or totally balanced games. A value φ

8We say that “v is additive except for the grand coalition” for such a game.
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satisfies (Efficiency), (ET) and (IMER) for all v ∈ V̄N+ , if and only if it is the PD

value for all v ∈ V̄N+ .

Proof. Suppose that v is convex. For each k = 0, · · ·n, pick any c > 0 and define vk by

vk ({i}) =

 v ({i}) if i ≤ k

c if i > k
,

vk (S) =
∑
i∈S

vk ({i}) if S ⊊ N, (12)

vk (N) =

∑
i∈N v

k ({i})∑
i∈N v ({i})

v (N) . (13)

In this way, definition of the stand-alone and the grand-coalition worths of vk is

identical to that in Theorem 5. Since the proof does not depend on the coalition worth

of size 2 to n− 1, it goes through as in Theorem 5.

By (13),
∑

i∈N v
k ({i}) ≤ vk (N) is equivalent to

∑
i∈N v ({i}) ≤ v (N). By (12),

we can apply Lemma 1. Since v is convex, vk is also convex for each k.

6 Concluding remarks

In this paper, we provide a characterization of the Egalitarian Surplus Sharing value

using the axioms of Individual Monotonicity for Equal Surplus, Efficiency and Equal

Treatment. Our characterization demonstrates that the three axioms lead to the egal-

itarian allocation principle, according to which each individual receives the sum of the

two terms, the individual share and the egalitarian share of the surplus.

When the Individual Monotonicity axiom is required for Equal Ratio, again com-

bined with the Efficiency and Equal Treatment, we obtain the proportional principle,

according to which each individual receives the payoff proportional to the individual

share. The main structure is the same: what each individual receives is the sum of

the two terms, the individual share itself and the portion of the surplus distributed
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proportionally to the individual share. Our characterization thus highlights the essen-

tial role of the Individual Monotonicity axioms played in the characterization of two

allocational principles.

We then relax the Equal Treatment axiom and show that the set of characterized

allocations is extended to the Weighted Surplus Sharing and the Shifted Proportional

Division, respectively. These allocations can be written as the consequence of a zero-

sum redistribution based on Egalitarian Surplus Sharing and the Proportional Division

respectively. Our characterizations therefore explicitly demonstrate how the relaxation

of Equal Treatment corresponds to the redistribution term in the resulting allocation.

It turns out that redistribution is proportional to the equal surplus and equal ratio

specified in the Individual Monotonicity axioms. Consequently, our results show that

integrating social objectives of an asymmetric nature boils down to how to redistribute

the equal surplus and equal ratio, respectively.

Our results are applicable to the discussion on the efficient allocation where there

is a social agreement concerning the individual share which does not necessarily satisfy

efficiency. A natural application is the bankruptcy problem. As our characterization

relies on the monotonicity axiom based on the individual shares and the grand coalition

worth, the structure of our problem fits well to the characterization of the allocations

in the bankruptcy problem. Another example is the Banzhaf index. It reflects individ-

ual’s influence on the social outcome, and does not satisfy efficiency in general. In the

commonly used normalization, the surplus is distributed proportionally to the indi-

vidual share. While characterizations of the normalized Banzhaf value are available in

the literature (van den Brink and van der Laan, 1998), our characterization provides

a common ground for the analysis of proportional and egalitarian surplus sharing.

Although the direct comparison of two types of normalization based on the common

feature of Individual Monotonicity axioms is intriguing, further analysis is beyond the

scope of the current paper and we leave it for future research.
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Appendix A Appendix

A.1 An outline of the IM method

Our proof technique, which we call the IM (Individual Monotonicity) method, is simple

and easy to apply in various situations. We provide an outline to clarify the proof

structure, hoping that it enhances transparency and applicability of the method. Here

we use the example of the simplest case, a characterization of the CIS value.

• Suppose that φ satisfies (Efficiency), (ET) and (IMES).

• For any v ∈ VN , we construct a sequence of games v0, v1, · · · , vn. Set vn = v.

• Let k ∈ N . Given vk, construct vk−1 by (i) replacing v ({k}) by 0, (ii) subtracting

v ({k}) from v (N), and (iii) keeping the rest of the game unchanged. In this way,
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the surplus remains constant, and thus (IMES) can be applied to all i ̸= k. By

(IMES), φi
(
vk
)
= φi

(
vk−1

)
,∀i ̸= k.

• Since the grand coalition worth decreases by v ({k}), Efficiency implies φk
(
vk
)
=

φk
(
vk−1

)
+ v ({k}).

• Additionally, set v0 (S) = 0 for all S ⊊ N such that 2 ≤ |S| < n. Then, v0 is sym-

metric, and thus (ET) implies φi
(
v0
)
= v0 (N) /n =

(
v (N)−

∑
k∈N v ({k})

)
/n.

• Therefore, for each i ∈ N, φi (v
n) = φi

(
vi
)
= v ({i}) + φi

(
vi−1

)
= v ({i}) +

φi
(
v0
)
= v ({i}) +

(
v (N)−

∑
k∈N v ({k})

)
/n. The surplus is equally shared.

For the PD characterization, v ({k}) is replaced by 1, and v (N) is adjusted pro-

portionally to
∑

i∈N v
k ({i}), at each step. The rest of the proof is the same. For

a general function f , replace fi instead of v ({i}). For the characterizations without

equal treatment, φi
(
v0
)
is not the equal division anymore, and the rest is the same.

A.2 Proofs

Proof of Proposition 4. We start with the “only if” part. Suppose there exists a linear

and symmetric function f : VN → Rn. Then, there exist constants
(
αk
)n
k=1

∈ Rn and(
βk
)n
k=1

∈ Rn such that9

fi (v) =
∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S) .

Then, we have:

∑
i∈N

fi (v) =
∑
i∈N

∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S)


=
∑
S⊆N

{
|S|α|S| + (n− |S|)β|S|

}
v (S) .

9This claim is implied from the same extension of Weber (1988) mentioned above.
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Since φ is the f -ESS value,

φi (v) = fi (v) +
1

n

v (N)−
∑
j∈N

fj (v)


=

∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S)

+
1

n

v (N)−
∑
j∈N

fj (v)


=

∑S∋i

{
α|S| − |S|α|S|+(n−|S|)β|S|

n

}
v (S)

+
∑

S ̸∋i

{
β|S| − |S|α|S|+(n−|S|)β|S|

n

}
v (S)

+
1

n
v (N)

=

∑S∋i

{
n−|S|
n

(
α|S| − β|S|)} v (S)

+
∑

S ̸∋i

{
|S|
n

(
β|S| − α|S|)} v (S)

+
1

n
v (N) .

Let γk := αk − βk for k = 1, · · · , n− 1. We thus obtain:

φi (v) =
∑
S∋i

(
1− |S|

n

)
γ|S|v (S)−

∑
S ̸∋i

|S|
n
γ|S|v (S) +

1

n
v (N) . (A1)

Now, let φ̄ := φ− ED and ψ̄k := ψk − ED. Then, (A1) implies that φ̄ is written

as a linear combination of
(
ψ̄k (v)

)n−1

k=1
as follows: φ̄ (v) =

∑n−1
k=1 γ

kψ̄k (v) . Therefore,

φ is written as an affine combination of
(
ψk (v)

)n−1

k=1
and ED.

Now we show the “if” part. Suppose that φ is written as an affine combination

of
(
ψk (v)

)n−1

k=1
and ED as in (9). Let fi (v) =

∑
S∋i λ

|S|v (S) . Then, f is linear and

symmetric. We show that the induced f -ESS value coincides with φ.

First, notice that when (fj)j∈N are summed up, each S ⊆ N is counted exactly

|S| times. Hence, we have

∑
j∈N

fj (v) =
∑
S⊆N

|S|λ|S|v (S)

=
∑
S∋i

|S|λ|S|v (S) +
∑
S ̸∋i

|S|λ|S|v (S) .
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The f -ESS value is then:

fi (v) +
1

n

v (N)−
∑
j∈N

fj (v)


=
∑
S∋i

λ|S|v (S) +
1

n

v (N)−

∑
S∋i

|S|λ|S|v (S) +
∑
S ̸∋i

|S|λ|S|v (S)


=
∑
S∋i

(
1− |S|

n

)
λ|S|v (S)−

∑
S ̸∋i

|S|
n
λ|S|v (S) +

1

n
v (N) . (A2)

By (8), (A2) is equal to:

n−1∑
k=1

λkψki (v) +

(
1−

n−1∑
k=1

λk

)
1

n
v (N)

=

n−1∑
k=1

λkψki (v) + λn
1

n
v (N) ,

which is equal to φi (v) in (9).

Proof of Lemma 1. The only if part is immediate: v (N) <
∑

i∈N v ({i}) implies that

the core is empty. Hence, v is neither convex, nor superadditive, nor exact, nor

balanced, nor totally balanced.

For the if part, it suffices to show that v is convex, since any convex game is

also superadditive, exact, balanced and totally balanced. Recall additivity: v (S) =∑
i∈S v ({i}) for all S ⊊ N . We thus have v (S) + v (T ) = v (S ∩ T ) +

∑
i∈S∪T v ({i})

for S, T ⊊ N . If S∪T ⊊ N ,
∑

i∈S∪T v ({i}) = v (S ∪ T ). If S∪T = N , the assumption

implies v (S) + v (T ) ≤ v (S ∩ T ) + v (N).

A.3 Linear and symmetric f

The following is a formal statement and proof which specify the linear form of the

value when f is linear and symmetric.
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Proposition 11. Suppose f is linear and symmetric, then there exist constants(
αk
)n
k=1

∈ Rn and
(
βk
)n−1

k=1
∈ Rn−1 such that

fi (v) =
∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S) . (A3)

Proof of Proposition 11. By Theorem 1 of Weber (1988), linearity of f implies that

there exists a set of constants
(
αSi
)
i∈N,S⊆N such that:

fi (v) =
∑
S⊆N

αSi v (S) ,∀i ∈ N, ∀v ∈ VN . (A4)

We first show the following lemma.

Lemma 2. Suppose that f is linear and symmetric. Then, there exists a set of

constants
(
α̂S , β̂S

)
S⊆N

such that:

fi (v) =
∑
S∋i

α̂Sv (S) +
∑
S ̸∋i

β̂Sv (S) ,∀i ∈ N, ∀v ∈ VN . (A5)

Proof of Lemma 2. Take an arbitrary S ⊆ N. Consider a game v such that v (S) ̸= 0

and v (T ) = 0 for all T ̸= S, T ⊆ N . Then, by (A4), fi (v) = αSi v (S) and fj (v) =

αSj v (S) . Now, suppose either i, j ∈ S or i, j /∈ S. Then, we have πv = v for the

permutation π which only exchanges i and j. Hence, symmetry implies fi (v) = fj (v) ,

which implies αSi = αSj . Now, for each S ⊆ N , replace αSi by α̂S for any i such that

i ∈ S, and by β̂S for any i such that i /∈ S. From (A4), we obtain (A5).

In order to proceed with the proof of Proposition 11, fix a permutation π on N .

Take any i, j ∈ N such that π (i) = j. Then, by symmetry,

fi (v) = fπ(i) (πv) = fj (πv) ,∀v. (A6)
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Using Lemma 2,

fj (πv) =
∑
S∋j

α̂Sπv (S) +
∑
S ̸∋j

β̂Sπv (S) . (A7)

Since πv (πS) = v (S) by definition, (A7) is equal to:

∑
S∋j

α̂Sv
(
π−1 (S)

)
+
∑
S ̸∋j

β̂Sv
(
π−1 (S)

)
. (A8)

For each S such that S ∋ j, let S′ = π−1 (S\ {j}) ∪ {i}. Since π (i) = j, this

induces a bijection from {S|S ∋ j} to {S′|S′ ∋ i}. Moreover, π (S′) = S. Therefore,

the first term of (A8) becomes
∑

S∋j α̂
Sv
(
π−1 (S)

)
=
∑

S′∋i α̂
π(S′)v (S′) . Similarly,

by setting S′′ = π−1 (S), the second term of (A8) becomes
∑

S ̸∋j β̂
Sv
(
π−1 (S)

)
=∑

S′′ ̸∋i β̂
π(S′′)v (S′′) . Therefore, by (A7), we have fj (πv) =

∑
S′∋i α̂

π(S′)v (S′) +∑
S′′ ̸∋i β̂

π(S′′)v (S′′) . By (A5) and (A6), the following equality should hold for any v:

∑
S∋i

α̂Sv (S) +
∑
S ̸∋i

β̂Sv (S) =
∑
S′∋i

α̂π(S
′)v (S′) +

∑
S′′ ̸∋i

β̂π(S
′′)v (S′′) .

This is an identity with respect to {v (S)}S⊆N . By comparing the coefficients of v (S)

on both sides for any S such that S ∋ i, we have α̂S = α̂π(S). Since this should hold

for any i, j ∈ N such that π (i) = j and i ∈ S, there exists a constant αk such that

αk = α̂S for any S ∋ i such that |S| = k. Similarly, by comparing the coefficients of

v (S) for any S such that S ̸∋ i, we obtain β̂S = β̂π(S). Hence, there exists a constant

βk such that βk = β̂S for any S ̸∋ i such that |S| = k. Finally, we obtain (A3).

In order to show that Assumption 2 is satisfied for any linear and symmetric f , we

use the following lemma.

Lemma 3. Let i ∈ N and S ⊆ N . Define a matrix by A = (aiS)i∈N,1≤|S|<n where

aiS = α|S| if i ∈ S, and aiS = β|S| if i /∈ S. If there exists k ∈ {1, 2, · · · , n− 1} such

that αk ̸= βk, then the matrix A has full rank.
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Proof of Lemma 3. Suppose that A has a rank less than n. Then, there exists a linear

combination of n row vectors which is equal to the zero vector, that is, there exists a

non-zero vector t = (ti)
n
i=1 ∈ Rn such that

∑
i

tiaiS = 0,∀S ⊊ N. (A9)

Then, for any S ⊊ N such that |S| = k, αk
(∑

i∈S ti
)
+ βk

(∑
i/∈S ti

)
= 0. Take any

i, j ∈ N such that i ̸= j, and S′ ⊆ N\ {i, j} such that |S′| = k− 1. Let S1 = S′ ∪ {i} ,

S2 = S′ ∪ {j}, and we have:

αk

(∑
i′∈S1

ti′

)
+ βk

∑
i′ /∈S1

ti′

 = 0,

αk

(∑
i′∈S2

ti′

)
+ βk

∑
i′ /∈S2

ti′

 = 0,

By subtracting one from the other, we obtain αk (ti − tj) − βk (ti − tj) = 0. Since

αk ̸= βk, we have ti = tj . Since the choice of i and j was arbitrary, we have t1 = t2 =

· · · = tn. Together with (A9), we have ti = 0,∀i, which is a contradiction.

Finally, we have the following proposition:

Proposition 12. Suppose f is linear and symmetric. Then, Assumption 2 is satisfied.

Proof of Proposition 12. First, suppose αk = βk for all k ∈ {1, 2, · · · , n− 1}. Then,

(A3) becomes fi (v) =
∑

S⊆N α
|S|v (S) , and thus, for any fixed v, fi(v) is a constant

independent of i. Then, by letting c be this constant, Assumption 2 is satisfied.

Suppose now that ∃k ∈ {1, 2, · · · , n− 1} such that αk ̸= βk. Then by Lemma 3,

matrix A = (aiS) has full rank. Then, the solution of f(w) = x is given by w =

AT (AAT )−1x for any x ∈ Rn. When x is symmetric, so is w. Again, Assumption 2 is

satisfied.

29



References

Bergantinos G, Moreno-Ternero JD (2020) Sharing the revenues from broadcasting

sport events. Management Science 66(6):2417–2431

van den Brink R, Funaki Y (2009) Axiomatizations of a class of equal surplus sharing

solutions for tu-games. Theory and Decision 67:303–340

van den Brink R, Funaki Y, Ju Y (2013) Reconciling marginalism with egalitarianism:

consistency, monotonicity, and implementation of egalitarian shapley values. Social

Choice and Welfare 40:693–714

Casajus A, Huettner F (2014a) Null, nullifying, or dummifying players: The difference

between the shapley value, the equal division value, and the equal surplus division

value. Economics Letters 122(2):167–169

Casajus A, Huettner F (2014b) Weakly monotonic solutions for cooperative games.

Journal of Economic Theory 154:162–172

Casajus A, Yokote K (2019) Weakly differentially monotonic solutions for cooperative

games. International Journal of Game Theory 48:979–997

Driessen T, Funaki Y (1991) Coincidence of and collinearity between game theoretic

solutions. OR Spektrum 13(1):15–30

Funaki Y, Koriyama Y, Nakada S (2024) A characterization of the f -ess solutions,

mimeo

Joosten RAMG (1996) Dynamics, equilibria, and values. PhD thesis, Maastricht

University

Kongo T (2019) Players’ nullification and the weighted (surplus) division values.

Economics Letters 183:108539

30



Nakada S (2024) Shapley meets debreu: A decision-theoretic foundation for monotonic

solutions of tu-games, URL http://dx.doi.org/10.2139/ssrn.4740922, mimeo

Ruiz LM, Valenciano F, Zarzuelo JM (1998) The family of least square values for

transferable utility games. Games and Economic Behavior 24:109–130

Schmeidler D (1972) Cores of exact games, i. Journal of Mathematical Analysis and

Applications 40(1):214–225

Shapley LS (1953) A Value for n-Person Games, Princeton University Press, Princeton,

pp 307–318

Shapley LS (1967) On balanced sets and cores. Naval research logistics quarterly

14(4):453–460

Shapley LS (1971) Cores of convex games. International Journal of Game Theory

1:11–26

Shapley LS, Shubik M (1969) On market games. Journal of Economic Theory 1(1):9–25

van den Brink R (2007) Null or nullifying players: The difference between the shapley

value and equal division solutions. Journal of Economic Theory 136(1):767–775

van den Brink R, van der Laan G (1998) Axiomatizations of the normalized banzhaf

value and the shapley value. Social Choice and Welfare 15(4):567–582

van den Brink R, Chun Y, Funaki Y, et al (2023) Balanced externalities and the pro-

portional allocation of nonseparable contributions. European Journal of Operational

Research 307(2):975–983

Weber RJ (1988) Probabilistic values for games, Cambridge University Press, p

101–120

31

http://dx.doi.org/10.2139/ssrn.4740922


Yang H, Wang W, Ding Z (2019) The weighted surplus division value for cooperative

games. Symmetry 11(9)

Yokote K, Funaki Y (2017) Monotonicity implies linearity: characterizations of convex

combinations of solutions to cooperative games. Social Choice and Welfare 49:171–

203

Young H (1985) Monotonic solutions of cooperative games. International Journal of

Game Theory 14(2):65–72

Zou Z, van den Brink R, Chun Y, et al (2021) Axiomatizations of the proportional

division value. Social Choice and Welfare 57:35–62

Zou Z, van den Brink R, Funaki Y (2022) Sharing the surplus and proportional values.

Theory and Decision 93:185–217

32


	E2413_FrontCover_WP_E_version
	Revision20250120
	Introduction
	Individual Monotonicity for Equal Surplus
	Preliminary
	A characterization of f-ESS
	Characterization of the f-ESS family

	Individual Monotonicity for Equal Ratio
	A characterization of Proportional Division

	Characterization without Equal Treatment
	Weighted Surplus Sharing
	Shifted Proportional Division
	Interpretation of the weakening of ET

	Characterization in subdomains
	Concluding remarks
	Acknowledgements

	Appendix
	An outline of the IM method
	Proofs
	Linear and symmetric f



