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ABSTRACT. We explore measures of relative social mobility in terms of equality of

opportunity. This study aligns with the principles of responsibility–sensitive egalitari-

anism, distinguishing between responsibility and non-responsibility factors. We intro-

duce an additive decomposability property when these factors are distinguishable and

independent. We subsequently provide axiomatic characterizations of mobility indices

that evaluate doubly stochastic transition matrices In addition to the conditions for the

index values to be the same, we employ the postulate that equalization of life chances

is desirable. Moreover, we demonstrate incompatibility in the invariance properties of

dimensional changes; that is, the values of the indices cannot be constant according

to the number of social ranking categories. Thus, two corresponding compromised

measures are proposed.
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JEL classification: D63

1. INTRODUCTION

In the current opportunity egalitarian paradigm, it is important to distinguish the

sources of inequality; that is, to identify whether it is the outcome for which individuals

should be held responsible. This prominent theory of distributive justice stems from

seminal works of Dworkin (1981a,b) which suppose that “we are responsible for the

consequence of the choices we make out of those convictions or preferences or person-

ality” (Dworkin, 2000, p. 7). Equality of opportunity is achieved when inequality that
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does not stem from individual responsibility is compensated for, but inequality because

of individual responsibility is kept untouched.

Meanwhile, social mobility is often used as a proxy measure of equality of opportu-

nity (e.g., Chetty et al., 2017). The importance of focusing on process over outcomes

has been argued for some time such as in Stiglitz (1999) who states “(u)nequal outcomes

that serve a social function, are arrived at fairly, or are a consequence of individual

exercise of responsibility are more acceptable than those that are not” (p. 46). We

can indeed take note of individual responsibility by focusing on processes rather than

outcomes; nevertheless, the process, or social mobility, also includes both factors that

individuals should and should not be responsible for. Mobility concepts themselves

follow a “more movement, more mobility” principle according to Cowell and Flachaire

(2019); however, “more movement” does not necessarily mean “more equality of op-

portunity.”

In this study, we investigate to construct measures of relative social mobility focusing

on the distinction between responsibility and non-responsibility factors because “if

social mobility is understood in terms of equality of opportunity, one should rely on

a notion of social welfare that embodies basic principles of responsibility–sensitive

egalitarianism” (Fleurbaey, 2008, p. 231). In addition to the sources of inequality,

the sources of mobility should be distinguished; thus, we propose an additive decom-

posability property of stochastically independent factors for indices that evaluate dou-

bly stochastic transition matrices. Furthermore, we postulate that equalization of life

chances is desirable, and introduce several conditions under which the index values

should be the same. We then provide axiomatic characterizations of the mobility mea-

sures for the responsibility cut, including an impossibility result between axioms.

The remainder of this paper is organized as follows. We present definitions and

preparatory results in Section 2. We provide the axioms and demonstrate the axiomatic

characterizations in Section 3. We conclude in Section 4.
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2. DEFINITIONS

We use N and R to denote the set of positive integers and the set of real numbers,

respectively. The set of all positive (resp. nonzero) real numbers is R++ = {x > 0|x ∈

R} (resp. R∗ = {x ≷ 0|x ∈ R}). We describe the mobility using a stochastic matrix,

following Atkinson (1983). Suppose that there are two periods and n classes of income

or some other social status for n ∈ N. For k = 1, ...,n, let mk
1 be the relative number

of observations in class k in period 1. The marginal discrete distribution in period

1 is indicated by the vector m1 =
[
m1

1,m
2
1, ...,m

n
1
]
, and correspondingly in period 2.

Thus, the mobility pattern can be represented by an n× n transition matrix A, where

m2 = m1A.

For i, j = 1, ...,n, let ai, j be i-th row and j-th column element of A. We focus on

changes in relative positions, or pure exchange mobility, so that A is doubly stochastic;

that is, ∑
n
i=1 ai, j = ∑

n
j=1 ai, j = 1. The typical element ai, j is the relative frequency of

observations with income or status class i in period 1 and class j in period 2. The set of

n×n doubly stochastic matrices is denoted as A .

For i = 1, ...,n, let λi denote eigenvalue of A.1 The bar notation |·| is used to denote

absolute values. The transpose of a vector is denoted by superscript T. The set of

eigenvalues of a square matrix A is denoted as σ (A).

The Kronecker product is indicated by ⊗; for example, for 2×2 matrices,

A =

 a1,1 a1,2

a2,1 a2,2

 , B =

 b1,1 b1,2

b2,1 b2,2

 , (1)

the Kronecker product of A and B is

A⊗B≡

 a1,1B a1,2B

a2,1B a2,2B

=


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2

a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2

a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2


. (2)

1There are n eigenvalues including algebraic multiplicity.
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A block matrix is a matrix defined using smaller matrices called blocks. For example,

A =

 A1,1 A1,2

A2,1 A2,2

 , (3)

where A1,1, A1,2, A2,1, and A2,2 are themselves matrices, is a block matrix. A matrix of

the form

A =



A1,1 F · · · F

A2,2
...

. . . F

0 Ak,k


, (4)

where i = 1, ...,k and all blocks below the block diagonals are zero is a block upper

triangular. A block upper triangular matrix in which all the diagonal blocks are 1× 1

or 2×2 is said to be upper quasitriangular.

A square matrix P is a permutation matrix if exactly one element in each row and

column is equal to 1 and all other elements are 0. Matrix A is permutation equivalent

to B if there exists a permutation matrix P such that A = PTBP. Moreover, A is called

reducible if PTAP is an upper quasitriangular matrix; otherwise, A is called irreducible.

Finally, we recall the following propositions.

Proposition 1 (Marcus and Minc, 1964, p. 133, 5.13.3). Every eigenvalue λi of a

doubly stochastic matrix satisfies |λi| ≤ 1.2

Proposition 2 (Matsui, 2020, Lemma 1). Each of the following statements (i)–(iii)

holds.

(i) If a doubly stochastic matrix A is diagonal, or identical, that is,

ai, j =

 0 (i 6= j)

1 (i = j)
, (5)

then every eigenvalue λi of A is 1.

2See also, for example, Gantmacher (1959, p. 100).
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(ii) If a doubly stochastic matrix A is antidiagonal, that is,

ai, j =

 0 (i+ j 6= n+1)

1 (i+ j = n+1)
, (6)

then the absolute value of every eigenvalue λi of A is 1.

(iii) If each element of a doubly stochastic matrix A is the same, that is, ai, j = 1/n for

all i, j = 1, ...,n, then only one eigenvalue of A is 1, and the other eigenvalues

are all 0.

3. FACTOR–DECOMPOSABLE MOBILITY INDICES

3.1. Axioms. We introduce the axioms for the mobility index, represented by the func-

tion φ : A → R. The first axiom is required for the responsibility cut. If the two

transition matrices are mutually independent, then the sum of the index values of each

matrix is equal to their Kronecker product.

Axiom 1 (Decomposability of independent factors). For transition matrices A and B,

each of which are generated from two independent factors,

φ (A⊗B) = φ (A)+φ (B) . (7)

Example 1. For example, assume that two independent factors generate the transition

matrices A and B:

A =

 1/3 2/3

2/3 1/3

 , B =

 1 0

0 1

 . (8)

The Kronecker product of A and B is

A⊗B =


1/3 0 2/3 0

0 1/3 0 2/3

2/3 0 1/3 0

0 2/3 0 1/3


. (9)
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Suppose that we observe (9) as a mobility matrix and that it is composed of A as a non-

responsibility factor and B as a responsibility factor. Since A and B are independent,3

we obtain the Kronecker product of them (not a normal matrix product). It seems

that some of the “0” elements of (9) are undesirable because they may indicate no

opportunity for individuals to move to another category, but all of them are because

of individual responsibility. Thus, we require the index value of (9) to be additively

decomposed into two factors, so that we can consider reducing opportunity inequality

only because of the non-responsibility factor based on the index values.

The second axiom requires that the value of the index is invariant to a change of basis.

Axiom 2 (Permutation equivalence). If the transition matrices A and B are permutation

equivalent; that is, for a permutation matrix P,

A = PTBP, (10)

then

φ (A) = φ (B) . (11)

Example 2. φ (A) = φ (B) holds for the transition matrices A and B:

A =


2/3 1/3 0

1/3 0 2/3

0 2/3 1/3

 , B =


1/3 2/3 0

2/3 0 1/3

0 1/3 2/3

 , (12)

3We can also say that A and B is a pair of independent Markov chains.
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where

PTBP =


0 0 1

0 1 0

1 0 0




1/3 2/3 0

2/3 0 1/3

0 1/3 2/3




0 0 1

0 1 0

1 0 0



=


2/3 1/3 0

1/3 0 2/3

0 2/3 1/3

= A. (13)

Suppose that the first, second, and third rows and columns represent the first, sec-

ond, and third income classes, respectively. On the one hand, the transition matrix A

describes the situation in which 2/3 of the first class will be the same and 1/3 the

second class in the next period; B describes the situation in which 1/3 of the first class

will be the same and 2/3 the second class in the next period. In this respect, B may

be considered better because it is more mobile. On the other hand, A describes the

situation in which 1/3 of the third class is persistent and 2/3 will be the second class

in the next period; B describes the situation in which 2/3 of third class is persistent

and 1/3 will be the second class in the next period. This time, A is more mobile. That

is, there is a trade-off, a kind of symmetric situation, between A and B because they

are only “permuted.” The index is real-valued and should be of complete order. We

therefore postulate that they have the same value in such a situation.

The third axiom requires the index values to be the same in the two extreme situa-

tions: perfect immobility and perfect mobility.

Axiom 3 (Symmetry). The index values of n×n matrices that are diagonal and antidi-

agonal are the same.



MOBILITY MEASURES FOR THE RESPONSIBILITY CUT 8

Example 3. For the transition matrices,

A =


1 0 0

0 1 0

0 0 1

 , B =


0 0 1

0 1 0

1 0 0

 , (14)

φ (A) = φ (B).

A perfect mobility situation (i.e., B) is one in which the children of the wealthiest

parents are the poorest and those of the poorest parents are the wealthiest. Aside from

the fact that this society is unstable, it is the same as perfect immobility in that the

status of children is determined by the status of their parents. Therefore, we consider

at least these two situations, A and B to be equal (or equally bad). We part way with

the mobility ordering on the principle that “more movement, more mobility” (Cowell

and Flachaire, 2018, 2019), and create a normative measure for mobility evaluation in

terms of opportunity equality.

Note that the axioms Permutation equivalence and Symmetry are independent. If

A and B satisfy Permutation equivalence, then they are similar matrices; that is, they

share the same eigenvalues, trace, determinant, etc. However, diagonal and antidiagonal

matrices do not have such properties; for example, it is easy to confirm that A and B in

(14) have different traces: tr(A) = 3 and tr(B) = 1. Thus, symmetric matrices are not

permutation equivalent in general.

The fourth axiom requires the index to be a continuous function of the elements of

the transition matrix.

Axiom 4 (Continuity). φ (A) is a continuous function of ai, j ∈ A.

The fifth axiom requires that the value of the index be maximized when individuals

have equal probabilities of moving to other social status categories.

Axiom 5 (Equalization of life chances). The index value is maximized when all the

elements of the n×n transition matrix A are the same; that is, ai, j = 1/n.
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The term Equalization of life chances is introduced by Van de gaer et al. (2001). This

is often considered a requirement for the equality of opportunity for transition matrices

(e.g., Shorrocks, 1978; Kanbur and Stiglitz, 2016; Matsui, 2020). However, our pur-

pose is to incorporate responsibility-sensitive egalitarianism into mobility evaluation to

measure (in)equality of opportunity. Hence, this is just one of the possible desirable

properties for mobility indices.

The sixth and seventh axioms require the index to be constant, regardless of the

dimensions of the transition matrices.

Axiom 6 (Maximum invariance to dimensions). The maximum value of the index of

n×n matrix is constant for any n ∈ N.

Axiom 7 (Minimum invariance to dimensions). The minimum value of the index of

n×n matrix is constant for any n ∈ N.

These invariance properties to dimensions require the values of mobility indices to

be identical if the actual situation in a society is the same, regardless of how categories

are created at least in the extreme cases.

3.2. Characterization results. We derive the mobility indices, each of which is a

function φ : A → R.

Theorem 1. If the mobility index satisfies Decomposability of independent factors, Per-

mutation equivalence, Symmetry, and Continuity, then it is represented by the function

φ : A → R such that

K log

(
n

∑
i=1
|λi|α

)
, (15)

where λi ∈ σ (A), A ∈A , and K,α ∈ R.

Lemma 1. If the index satisfies Permutation equivalence, then it is represented by a

function ψ : σ (·)→ R such that

φ (A) = ψ (σ (A)) . (16)
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Proof of Lemma 1. By Permutation equivalence, for

A = PTBP, (17)

we have

φ (A) = φ (B) . (18)

For a doubly stochastic matrix B, the following real Shur form exists:4

B = S−1US, (19)

where S is a nonsingular matrix, and U is an upper quasitriangular matrix

U =

 U1 U3

0 U2

 . (20)

Since

det [U−λiI] = det [U1−λiI] ·det [U2−λiI] , (21)

the eigenvalues of U are given by the following:5

σ (U) = σ (U1)∪σ (U2) . (22)

We consider cases in which (i) B is reducible and (ii) B is irreducible.

(i) When B is reducible, PTBP = U, or

B = PUPT. (23)

Comparing (19) and (23), we have S−1 = P and S = PT. Since permutation

matrices P and PT are orthogonal, by substituting (23) into (17),

A = PTBP = PPTUPTP = U, (24)

4See, for example, Horn and Johnson (2012, p. 103, Theorem 2.3.4).
5See Marcus and Minc (1964, p. 23, 2.15.1) and Silvester (2000).
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and by (18) and (24), the following equation holds:

φ (A) = φ (U) = φ (B) . (25)

Now, for the Shur form (19), B = S−1US, the “diagonal blocks [of U] are

completely determined by the eigenvalues [of B]” (Horn and Johnson, 2012,

p. 103). Moreover, by Lemma 3 of Perfect and Mirsky (1965),6 if a doubly

stochastic matrix B is reducible, then PTBP(= U) is a direct sum of doubly

stochastic matrices; that is,

U =

 U1 U3

0 U2

=

 U1 0

0 U2

 . (26)

Thus, the matrix U, which is a direct sum of U1 and U2, is determined by the

eigenvalues of B. This implies that there exists a function ψ such that

φ (U) = ψ (σ (B)) . (27)

Also, by (22), the set of eigenvalues of U is the same as those of B:

σ (U) = σ (B) ; (28)

thus, we have

φ (U) = ψ (σ (U)) = ψ (σ (B)) . (29)

By (25),

φ (A) = φ (U) = ψ (σ (U)) = ψ (σ (B)) = φ (B) . (30)

Since A and B are permutation equivalent, σ (A) = σ (B).7 Hence,

φ (A) = ψ (σ (A)) = ψ (σ (B)) = φ (B) ; (31)

6See also Marcus and Minc (1964, p. 123, 5.3.1) for reducible matrix.
7See, for example, Horn and Johnson (2012, p. 58, Corollary 1.3.4 (a)).
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that is, when B is reducible, we must have a function ψ , as the index, such that

ψ : σ (A)→ R.

(ii) When A is irreducible, σ (A) = σ (B) also holds because A and B are permuta-

tion equivalent. Hence, the following equation also holds:

φ (A) = ψ (σ (A)) = ψ (σ (B)) = φ (B) . (32)

In general, A can be reducible or irreducible. Therefore, if φ satisfies Permutation

equivalence, then there exists a function ψ : σ (·)→ R such that

φ (A) = ψ (σ (A)) . (33)

�

Lemma 2. If a function ψ : σ (·)→R satisfies Decomposability of independent factors

and Continuity, then it is represented by

ψ (λ1, ...,λn) = K log

(∣∣∣∣∣ n

∑
i=1

λ
α
i

∣∣∣∣∣
)
, (34)

where λi ∈ σ (A), K ∈ R, and ∑
n
i=1 λ α

i ∈ R∗.

Proof of Lemma 2. By Decomposability of independent factors,

ψ (σ (A⊗B)) = ψ (σ (A))+ψ (σ (B)) . (35)

First, we consider Rn as the product of the lower product spaces:

Rn = Rp×Rq, (36)

where p ∈ N, q ∈ N, and p+ q = n. Every x ∈ Rn can be represented as x =
[
xp,xq

]
,

with xp ∈ Rp, xq ∈ Rq, and if y ∈ Rn, y =
[
yp,yq

]
, yp ∈ Rp, yp ∈ Rp, then

x+y =
[
xp,xq

]
+
[
yp,yq

]
=
[
xp +yp,xq +yq

]
. (37)
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By Theorem 5.5.1 of Kuczma (2009, p. 138–139), if ξ : Rn→R is an additive function

and Rn has decomposition (36), then there exist additive functions ξp : Rp → R and

ξq : Rq→ R such that8

ξ (x) = ξ
(
xp,xq

)
= ξp (xp)+ξq

(
xq
)
. (38)

Put ζp (xp)= logξp (xp) and ζq (xp)= logξq (xp). Then, Continuity yields, by Theorem

5.5.2 of Kuczma (2009, p. 139),

ζp (xp)+ζq
(
xq
)
= logξp (xp)+ logξq

(
xq
)

= log
(
ξp (xp)×ξq

(
xq
))

. (39)

Since ξp and ξq are additive functions,

log
(
ξp (xp)×ξq

(
xq
))

= logξ
(
xp⊗xq

)
= ζ

(
xp⊗xq

)
, (40)

where ζ : Rp×q → R, which is a composition of logarithmic and additive functions.9

Summarizing the above, we have the following claim.

Claim 1. If a function ξ : Rp+q→ R is additive and continuous, then ζ : Rp×q→ R is

a composite of logarithmic and additive functions:

ζ
(
xp⊗xq

)
= log

(
x1y1 + x1y2 + x2y1 + ...+ xpyq

)
, (41)

where xp = [x1,x2, ...,xp] and yq = [y1,y2, ...,yq].

8For example, for xp = [p1, p2, p3], xq = [q1,q2],

ξ (p1, p2, p3,q1,q2) = ξp (p1, p2, p3)+ξq (q1,q2) .

9For example, for xp = [p1, p2, p3], xq = [q1,q2],

ζp (p1, p2, p3)+ζq (q1,q2) = log(p1 + p2 + p3)+ log(q1 +q2)

= log((p1 + p2 + p3)× (q1 +q2))

= log(p1q1 + p1q2 + p2q1 + p2q2 + p3q1 + p3q2)

= ζ (p1q1, p1q2, p2q1, p2q2, p3q1, p3q2) .



MOBILITY MEASURES FOR THE RESPONSIBILITY CUT 14

Now, since eigenvalues of A⊗B are λiµ j,10 we have the following functional equa-

tion:11

Fnm (λ1µ1,λ1µ2,λ2µ1,λ2µ2, ...,λnµm) = Fn (λ1, ...,λn)+Fm (µ1, ...,µm) , (42)

where Fnm : Rn×m→ R, Fn : Rn→ R, and Fm : Rm→ R.

Moreover, for tnm = [t1, ..., tnm], put G(tnm) = F
(
etnm
)
. By (42), for arbitrary un =

[u1, ...,un] and vm = [v1, ...,vm],

Gn (un)+Gm (vm) = Fn (eun)+Fm (evm)

= Fnm (eunevm)

= Fnm
(
eun+vm

)
= Gnm (un +vm) . (43)

That is, Gnm is additive. Here, Gnm corresponds to ξ and Fnm corresponds to ζ in the

previous argument. Hence, by Claim 1, Fnm is a composite of logarithmic and additive

functions. We obtain, for ∑
n
i=1 ∑

m
j=1 λiµ j > 0, ∑

n
i=1 λi > 0, ∑

m
j=1 µ j > 0, and K,α ∈R,12

K log

(
n

∑
i=1

m

∑
j=1

λ
α
i µ

α
j

)
= K log

(
n

∑
i=1

λ
α
i

)
+K log

(
m

∑
j=1

µ
α
j

)
. (44)

For ∑
n
i=1 λi = 1,

Fn (1) = log(1) = 0. (45)

10See, for example, Mac Duffee (1933, p. 84, Corollary 43.81), Marcus and Minc (1964, p. 24, 2.15.11),
and Horn and Johnson (1991, p. 245, Theorem 4.2.12).
11The functional equation (42) is not recognized as one of the Cauchy equations, “because of the
operation of multiplication occurring in the argument” (Kuczma, 2009, p. 343). See also Aczél (1966,
p. 37). Lemma 2 can be regarded as an extension of Theorem 5.5.1, 5.5.2, 13.1.2, and 13.1.5 of Kuczma
(2009, pp. 139–140, 344, 348).
12We need two arbitrary constants because it involves two operations.
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Furthermore, for λi =−1/n for all i = 1, ...,n, by (42),

Fnn (1/nn,1/nn, ...,1/nn) = Fn (−1/n,−1/n, ...,−1/n)+Fn (−1/n,−1/n, ...,−1/n) .

(46)

Since

Fnn (1/nn,1/nn, ...,1/nn) = log(1/nn+1/nn+ · · ·+1/nn) = log(1) = 0, (47)

we obtain

Fn (−1/n,−1/n, ...,−1/n) = 0. (48)

Thus, for ∑
n
i=1 λi < 0 and µ j =−1/m for all j = 1, ...,m,

KFn

(∣∣∣∣∣ n

∑
i=1

λ
α
i

∣∣∣∣∣
)

= KFnm

(
−

n

∑
i=1

λ
α
i µ

α
j

)

= KFn

(
n

∑
i=1

λ
α
i

)
+Fm (−1/m,−1/m, ...,−1/m)

= KFn

(
n

∑
i=1

λ
α
i

)
. (49)

Therefore, for ∑
n
i=1 ∑

m
j=1 λiµ j ∈ R∗, ∑

n
i=1 λi ∈ R∗, and ∑

m
j=1 µ j ∈ R∗,

K log

(∣∣∣∣∣ n

∑
i=1

m

∑
j=1

λ
α
i µ

α
j

∣∣∣∣∣
)

= K log

(∣∣∣∣∣ n

∑
i=1

λ
α
i

∣∣∣∣∣
)

= K log

(∣∣∣∣∣ m

∑
j=1

µ
α
j

∣∣∣∣∣
)
, (50)

which completes the proof. �

Proof of Theorem 1. From Lemma 1 and 2, for ∑
n
i=1 λi ∈ R∗ and ∑

m
j=1 µ j ∈ R∗, there

exists an additive function F : Rn×m→ R such that

K log(|λ α
1 µ

α
1 +λ

α
1 µ

α
2 +λ

α
2 µ

α
1 + · · ·+λ

α
n µ

α
m |) =K log(|λ α

1 + · · ·+λ
α
n |)

+K log(|µα
1 + · · ·µα

m |) . (51)
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By Symmetry, the index values of the diagonal and antidiagonal matrices must be the

same. From Proposition 2 (i) (ii), the absolute value of every eigenvalue of them is 1,

but the sign of an eigenvalue of antidiagonal matrices can be negative. To ensure that

the values of indices are constant regardless of the sign of each eigenvalue, we have

K log
(
|λ1|α + · · ·+ |λn|α

)
, (52)

for any K,α ∈ R. �

Theorem 2. If the mobility index is represented by (15), then it satisfies (i) Decom-

posability of independent factors, (ii) Permutation equivalence, (iii) Symmetry, and (iv)

Continuity.

Proof of Theorem 2. We show that the index (15) satisfies each axiom.

(i) Let A and B be two matrices where λi ∈ σ (A) and µ j ∈ σ (B). The eigenvalues

of the Kronecker product of A and B is λiµ j. Thus, K log
(

∑
n
i=1 ∑

m
j=1

∣∣λiµ j
∣∣α)=

K log
(
∑

n
i=1 |λi|α

)
+K log

(
∑

m
j=1

∣∣µ j
∣∣α), and we have φ (A⊗B) = φ (A)+(B).

(ii) Since A is permutation equivalent to B, we have σ (A) = σ
(
PTBP

)
.13 Thus,

we obtain φ (A) = φ
(
PTBP

)
.

(iii) From Proposition 2 (i) (ii), for any diagonal and antidiagonal matrix, the abso-

lute values of the eigenvalues are 1. Hence, the index values of diagonal and

antidiagonal matrices with the same dimensions are the same.

(iv) By “the facts that the (complex) roots of a polynomial depend continuously on

the coefficients of the polynomial and that the eigenvalues of a matrix depend

continuously on the entries of the matrix” (Uherka and Sergott, 1977), λi is

continuous on ai, j ∈ A.14 The continuity of φ follows from the continuity of

logarithmic functions. �

13See, for example, Horn and Johnson (2012, p. 58, Corollary 1.3.4 (a)).
14See, for example, Franklin (1968, p. 191–192, Theorem 1) for the proof using Rouché’s theorem,
and see also Horn and Johnson (2012, p. 122, Theorem 2.4.9.2) for the proof using Shur’s unitary
triangularization theorem. Uherka and Sergott (1977) provide an elementary proof.
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Theorem 3. For the mobility index represented by (15), (i) if K ≤ 0, then it satisfies

Equalization of life chances and Maximum invariance to dimensions, and (ii) if K ≥ 0,

then it satisfies Minimum invariance to dimensions.

Proof of Theorem 3. We show that the index (15) satisfies each statement.

(i) From Proposition 2 (iii), if all elements of the transition matrix are the same,

only one eigenvalue is 1 and the other eigenvalues are 0, so that the index value

is K log1 = 0. In other cases, since K ≤ 0, the index value is negative; thus, it

satisfies Equalization of life chances. Moreover, the maximum value is always

0 for any dimensions; hence, it satisfies Maximum invariance to dimensions.

(ii) Since K ≥ 0, the index value is always nonnegative, and the minimum value is

0; thus, it satisfies Minimum invariance to dimensions. �

Theorem 4. If the mobility index satisfies Decomposability of independent factors,

Permutation equivalence, Symmetry, Continuity, and Maximum (resp. Minimum) in-

variance to dimensions, then it is represented by a function φ : A → R such that

K log

(
n

∑
i=1
|λi|α

)
, (53)

where λi ∈ σ (A), and A ∈A , α ∈ R, and K ≤ 0 (resp. K ≥ 0).

Proof of Theorem 4. According to Theorem 1, the functional form (53) is derived from

the first four axioms. From Proposition 1, |λi| ≤ 1 for all i = 1, ...,n and one of which

is always 1. Thus, log
(
∑

n
i=1 |λi|α

)
is minimized at 0 when only one eigenvalue is 1 and

the other eigenvalues are 0, and, from Proposition 2 (iii), that is the case when all the

elements of the transition matrix are the same. This index value 0 does not depend on

n. Thus, by Maximum (resp. Minimum) invariance to dimensions, we have K ≤ 0 (resp.

K ≥ 0). �

From the results of this section, we have the following factor–decomposable mobility

index that satisfies Axioms 1–6.
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Definition 1 (index I).

K log

(
n

∑
i=1
|λi|α

)
, (54)

where K,α ∈ R. We refer to it as “index I (−)” if K ≤ 0 and “index I (+)” if K ≥ 0.

Example 4. We consider the 2×2 transition matrix:

A =

 1− p p

p 1− p

 (55)

where p is real-valued and 0≤ p≤ 1. The values of the mobility index φ (A) obtained

using index I (−) when K = 1 and the base is e are plotted in Figure 1.

p

φ (A)

0.693

1
20 1

α = 1
α = 2
α = 4

FIGURE 1. The values of the mobility index I (−) in the two-
dimensional case.

We can observe that the index value is a maximum when each element of the transi-

tion matrix is the same (i.e., ∀i, j = 1,2, ai, j = 1/2). Moreover, it is always nonpositive;

that is, the smaller value of this index represents the more “inequality” of opportunity.

Furthermore, the sensitivity of the index to deviations from the maximum varies ac-

cording to the parameter α .

3.3. Incompatibility. We state a difficulty in our requirements as a corollary of Theo-

rem 4.
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Corollary 1. Maximum invariance to dimensions and Minimum invariance to dimen-

sions are incompatible for the index satisfying Decomposability of independent factors,

Permutation equivalence, Symmetry, Continuity, and K 6= 0.

Proof of Corollary 1. According to Theorem 4, if the mobility index satisfies Decom-

posability of independent factors, Permutation equivalence, Symmetry, Continuity, and

Maximum (resp. Minimum) invariance to dimensions, then we have the index (53) with

K ≤ 0 (resp. K ≥ 0). Since K 6= 0, the index can either satisfy Maximum invariance to

dimensions when K < 0 or Minimum invariance to dimensions when K > 0. �

Given the incompatibility between Maximum and Minimum invariance to dimen-

sions, we provide an index as a counterpart to index I (−).

Theorem 5. If, and only if, the mobility index satisfies (i) Decomposability of in-

dependent factors, (ii) Permutation equivalence, (iii) Symmetry, (iv) Continuity, (v)

Equalization of life chances, and (vi) Minimum invariance to dimensions, then it is

represented by a function φ : A → R such that

K log

(
n

∑
i=1
|λi|α /n

)
, (56)

where λi ∈ σ (A), A ∈A , α ∈ R, and K ≤ 0.

Proof of Theorem 5 (Sufficiency). Equalization of life chances requires the index value

is maximum when all elements of the transition matrix are the same. From Proposition

2 (iii), That is the case when only one eigenvalue is 1 and the other eigenvalues are 0.

From Proposition 2 (i) (ii), if the transition matrix is diagonal or antidiagonal, all

absolute values of the eigenvalues are 1. From Proposition 1, |λi| ≤ 1 for any doubly

stochastic matrix, the index values of these cases are extreme values. Minimum invari-

ance to dimensions requires such cases to be minimum and constant with respect to

n.
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From Theorem 1, for i = 1, ...,n and j = 1, ...,m, we have

K log

(
n

∑
i=1

m

∑
j=1

∣∣λiµ j
∣∣α)=K log

(
n

∑
i=1
|λi|α

)
+K log

(
m

∑
j=1

∣∣µ j
∣∣α) . (57)

Now we consider the case in which λi = µ j = 1 for every i, j, so that

K log(nm) = K log(n)+K log(m) . (58)

The only condition under which K log(nm) =K log(n) =K log(m) is held is n=m= 1.

Since equation 58 itself generally holds, we consider the following operation.

Subtracting (58) from (57) each side, we have

K log

(
n

∑
i=1

m

∑
j=1

∣∣λiµ j
∣∣α /nm

)
=K log

(
n

∑
i=1
|λi|α /n

)
+K log

(
m

∑
j=1

∣∣µ j
∣∣α /m

)
. (59)

Thus, we obtain

K log

(
n

∑
i=1
|λi|α /n

)
(60)

as an index, the value of which is K logn/n = 0 when λi = 1 for every i.

We recall that Equalization of life chances requires the index value to be maximum

when all the elements of the transition matrix are the same, and that is the case when the

only one eigenvalue is 1 and the other eigenvalues are 0. Then, we have log(1/n)< 0.

Therefore, we obtain K ≤ 0. �

Proof of Theorem 6 (Necessity). We show that the index (56) satisfies each axiom.

(i) It follows from (59).

(ii) The same argument as Theorem 2 (ii) applies.

(iii) The same argument as Theorem 2 (iii) applies.

(iv) From Theorem 2 (iv), index I is a continuous function of the elements of the

transition matrix. Since n is a constant, the index (56) is also continuous.

(v) From Proposition (2) (iii), when all the elements of the transition matrix are the

same, then only one eigenvalue is 1 and the other eigenvalues are 0, we have
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K log
(
∑

n
i=1 |λi|α /n

)
= K log(1/n). In other cases, ∑

n
i=1 |λi|α > 1; therefore,

we have maximum value under the given condition: K ≤ 0.

(vi) Since |λi| ≤ 1, we have K log
((
|λ1|α + · · ·+ |λn|α

)
/n
)
=K log((1+ · · ·+1)/n)=

K log(n/n) = K log1 = 0, and this is the minimum value which is constant

regardless of n. �

Now, we have the second factor–decomposable mobility index that satisfies Axioms

1–5 and 7 as follows.

Definition 2 (index II).

K log

(
n

∑
i=1
|λi|α /n

)
, (61)

where n ∈ N, α ∈ R, and K ≤ 0.

Example 5. For the transition matrix (55), the values of the mobility index φ(A) ob-

tained using index II when K = 1 and the base is e are plotted in Figure 2. The graphical

representation is almost the same as Figure 1, only shifted upward.

p

φ (A)

0.693

1
2

0 1

α = 1
α = 2
α = 4

FIGURE 2. The values of the mobility index II in the two-dimensional case.

The logical relationships between the axioms and indices we provided is summarized

in Figure 3.
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ELC index I (−) Axioms 1–4,Max

index I Axioms 1–4

index I (+) Axioms 1–4,Min

index II Axioms 1–4,ELC,Min

Thm 3 Thm 3

Thm 4

× Cor 1
Thm 2

Thm 1

Thm 3

Thm 4

Thm 5

Thm 5

FIGURE 3. Logical implications between indices and axioms.
Axiom 1: Decomposability of independent factors
Axiom 2: Permutation equivalence
Axiom 3: Symmetry
Axiom 4: Continuity
Axiom 5: Equalization of life chances (ELC)
Axiom 6: Maximum invariance to dimensions (Max)
Axiom 7: Minimum invariance to dimensions (Min)

4. CONCLUDING REMARKS

We provided a fundamental framework to evaluate social mobility for the measure-

ment of equality of opportunity, with emphasis on the additive decomposability prop-

erty. Normative mobility indices for the responsibility cut were proposed and character-

ized axiomatically. We conclude by providing an interpretation of the incompatibility

stated in Corollary 1, and by suggesting future studies to measure and evaluate mobility.

The incompatibility may be counterintuitve for indices because the index values vary

according to the number of social ranking categories despite the social situation being

the same. As our indices measure the dispersion of probabilities in a transition matrix,

more categories provide more information on dispersion. This results in a larger index

value for a larger number of categories. Our theorems and proofs show that each

index is maximum or minimum invariant to dimensions only because its values are

always zero at the maximum or minimum; hence, the invariance cannot be guaranteed

in most cases. Moreover, if “universal” invariance is required, the following crucial

disadvantage occurs. Consider reducing the number of categories of the transition
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matrix of the society. As the number of categories decreases, eventually any mobility

pattern is described by the 1× 1 transition matrix: [1]. Therefore, in our setting,

fulfilling the conditions of invariance to dimensions is nothing more than deriving an

index of no significance such that every index value is identical. In general, there is no

comparability between the transition matrices with different number of categories; we

must compare the transition matrices with the same number of categories.

The other inconvenience of our indices may stem from the axiom Decomposability

of independent factors, which can be applied to situations in which responsibility and

non-responsibility factors are independently distinguishable. By this strict requirement,

although ideally demanded in political philosophy, there is difficulty in using our de-

composability property for data analysis. In future studies, as sources of inequality

have been estimated in recent empirical literature (e.g., Brunori et al., 2023), sources

of mobility are also expected to be studied empirically. Certainly, more theoretical

examinations are needed to evaluate social mobility while incorporating the notion of

responsibility–sensitive egalitarianism.
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