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Abstract: This study considers a binary election in which imperfectly informed voters have 

partially conflicting interests. There is an unambiguously correct alternative in some states, 

while voters disagree on the better alternative in other states. The true state is unknown to 

anybody, but each voter receives a private signal about the state. This study identifies the cir-

cumstances in which the probability that a society utilizing the majority rule reaches the correct 

decisions does not converge to 1, thus showing the failure of an asymptotic Condorcet Jury 

Theorem. Moreover, we show that the voting behavior never reflects voters’ private infor-

mation in the large elections. 
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1. Introduction 
Classical asymptotic Condorcet Jury Theorem (CJT) states that a group of voters utilizing a 
majority rule identifies the correct alternative with arbitrary precision as the size of the group 
tends to infinity. The original CJT considered a binary election in which there is an unambigu-
ously correct alternative (i.e., the alternative that serves the interests of all voters), but voters 
are unaware of the identity of it. Each voter, not knowing which alternative is correct, has some 
imperfect information about the merit of the alternatives.  
 An important premise for the CJT to hold is that a group of voters have common inter-
ests in the following sense. Voters never disagree on the better alternative once the underlying 
uncertainty is resolved (Austen-Smith & Banks, 1996; Gerardi, 2000; Wit, 2000). For instance, 
consider the jury setup. A group of jurors, not knowing whether the defendant is guilty or in-
nocent, may disagree about whether to convict or not simply because each juror has different 
information. However, once the uncertainty about the defendant is resolved, they never disa-
gree on the correct decision, i.e., convicting the guilty and acquitting the innocent. 
 However, many real-world elections in which large number of voters participate, such 
as national elections or referendums, do not fit the common-value setting. In real-world elec-
tions, voters may disagree even in the absence of uncertainty, in which case there is no longer 
any unambiguously correct alternative. This study considers a binary election in which voters 
may or may not agree on the better alternative, depending on the state, and shows the following: 
the probability that the group of voters identifies the correct alternative under majority rule 
does not converge to 1 even when the number of voters tends to infinity if a prior probability 
that voters disagree is large enough. Thus, this study provides circumstances in which the as-
ymptotic CJT fails to hold. 
 As an example of our binary elections, consider elections in which two candidates who 
differ in their ideological positions and qualities (or valence) compete for a single office and 
voters care about both their ideological positions and qualities. If the qualities of the candidates 
differ significantly, then voters would unanimously prefer the higher-quality one, which is an 
unambiguously correct alternative in this case. By contrast, if the difference in the qualities is 
small, voters would prefer the candidate whose ideological positions are closer to their ideal 
point, implying that there is no unambiguously correct alternative. The qualities are often pri-
vate information, while the ideological positions are not, so voters cannot tell whether the elec-
tions are matter of truth or taste. We call this type of preference heterogeneity as partially con-
flicting interests (Schulte 2012; Odora, 2023). 
 To be more precise, this study considers the following setup. A group of imperfectly 
informed voters must choose one of two alternatives (denoted by 𝐴 and 𝐵) by the majority 
rule, where the alternatives correspond to the candidates in the previous example. There is an 
unknown state; in the words of the previous example, the state corresponds to the quality of 
the candidate 𝐵 minus that of the candidate 𝐴. The voters’ payoff depends on the collective 
decision, the state, and a binary preference parameter (labeled 𝒜 and ℬ). The preference pa-
rameter captures voters’ preferred alternatives in the event that there is no correct alternative 
and therefore it is interpreted as the ideal point. In particular, both type 𝒜 and type ℬ voters 
agree on the better alternative when the state is extreme value (i.e., the absolute value of quality 
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difference is large). By contrast, when the state is intermediate value (i.e., the quality difference 
is around zero) type 𝒜 (type ℬ) voters prefer 𝐴 (𝐵). Each voter receives a binary signal, 
correlated with the true state. This study focuses on the symmetric equilibria, in which (1) all 
voters use the same strategies and (2) both types of voters use the same strategies.  

In this setup, this study investigates whether the group of voters collectively identifies 
correct alternatives with arbitrary precision when the number of voters goes to infinity. This 
study shows that the correct alternative is not identified asymptotically when the prior proba-
bility that voters disagree on the better alternatives is large enough (Theorem 3). Moreover, in 
large elections, an equilibrium voting behavior is based on their preference type, rather than 
their signals (Theorem 2). In other words, any sequence of symmetric equilibrium converges 
to a partisan voting equilibrium, which is the pure strategy in which type 𝒜 (ℬ) voters vote 
for 𝐴 (𝐵). This is true irrespective of the size of the state in which voters disagree. 

1.1. Related Literature 
Early literature on CJT investigated the statistical property of the likelihood that the majority 
of voters vote correctly, presuming (1) the common value setting and (2) a sincere voting, 
where sincere voting means that each voter votes as if she alone could determine the collective 
outcome (see, e.g., Berend & Paroush, 1998 and references therein). An important exception is 
Miller (1986) who considered a binary election in which voters disagree on the better alterna-
tive, but Miller maintained the sincere voting assumption. 

Austen-Smith and Banks (1996) shows that the sincere voting assumption may be in-
consistent with equilibrium behavior even when voters have completely identical preference, 
which left us with the questions about the validity of CJT in a strategic environment. Since 
then, a game theoretic version of CJT has been reestablished by allowing mixed strategy equi-
librium (Wit, 2000; McLennan, 1998, Gerardi, 2000). However, many game theoretic literature 
on CJT maintained the common-value assumptions, where this assumption means that voters 
never disagree once the uncertainty is resolved (Austen-Smith & Banks 1996; McLennan, 
1998; Gerardi, 2000; Wit, 2000). 

Exceptions are Feddersen and Pesendorfer (1997) (henceforth FP) and Bhattacharya 
(2013), both of which considered the game theoretic version of CJT assuming that voters have 
heterogenous preferences. In Bhattacharya (2013), voters have a binary preference type, and 
the interests of each type are diametrically opposed in a sense that both types of voters always 
disagree on better alternatives once the uncertainty is resolved. He shows that a monotonicity 
of preference is crucial in order for the voting mechanism to approximate the outcome that 
would have been chosen if the true state were common knowledge. In particular, he shows that 
information aggregation is guaranteed only when voters’ preference satisfies the Strong Pref-
erence Monotonicity (SPM), where SPM requires voters to respond in the same direction to-
wards the change in likelihood of the state. Voters’ preferences in the model of this study satisfy 
the SPM because the expected payoff difference increases as the belief put heavier weight to-
wards the high state. However, this study shows that the information aggregation may fail even 
if voters’ preferences satisfy SPM. 
 FP considered the voters whose preferences are heterogenous, and these preferences 
satisfy the SPM, like this study. In contrast to this study, FP shows in a fairly general setting 
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that information is aggregated asymptotically even when preferences are heterogenous. Thus, 
this study proposes the tractable model that produces the failure of information aggregation 
even when voters have FP-like preference heterogeneity, satisfying SPM.  
 The remainder of this paper is organized as follows. Section 2 describes the model, and 
Section 3 introduces the symmetric equilibrium. Section 4, 5, and 6 state the results, and Sec-
tion 7 concludes. The appendices contain proofs omitted in texts. 

2. The Model 
A set of voters, {1,2, . . , 𝑛} (𝑛 ≥ 3 odd), makes a collective decision 𝑜 ∈ {𝐴, 𝐵} by a major-
ity rule. Each voter simultaneously votes for one of two alternatives, 𝐴 or 𝐵, where absten-
tions are not allowed and there is no cost of voting. The collective decision 𝑜 will be 𝐴 if 𝐴 
gets majority of votes and 𝐵 if otherwise. There is an unknown state 𝜃, which is uniformly 
distributed on Θ = (0,1) , where Θ  is partitioned into three subsets Θ! = (0, 𝜋) , Θ" =
(𝜋, 1 − 𝜋), and Θ# = (1 − 𝜋, 1), with 𝜋 ∈ (0, 1 2⁄ ). The underlying state is unknown to an-
ybody. Each voter has a binary preference type 𝑡$ ∈ {𝒜,ℬ}, and voters’ payoff depends on the 
collective decision 𝑜 ∈ {𝐴, 𝐵} , the state 𝜃 ∈ Θ , and preference type 𝑡$ ∈ {𝒜,ℬ} . Let 
𝑢%!(𝑜; 𝜃) be the payoff of voter, and 𝑢%!(𝜃) ≔ 𝑢%!(𝐵; 𝜃) − 𝑢%!(𝐴; 𝜃) denote the payoff dif-
ference of a type 𝑡$ voter between alternative 𝐵 and alternative 𝐴 in state 𝜃. To capture the 
partially conflicting interests, we suppose that  
 

𝑢ℬ(𝜃) = 𝜃 − 𝜋, 
and  
 

𝑢𝒜(𝜃) = 𝜃 − (1 − 𝜋). 
 
With this utility function, type 𝒜 voters and type ℬ voters have common interests when 𝜃 
lies in Θ# ∪ Θ!, while they have conflicting interests when 𝜃 lies in Θ". To see this, observe 
that  
 

>
𝑢ℬ(𝜃), 𝑢𝒜(𝜃) < 0, 𝑖𝑓	𝜃 ∈ Θ!

	
𝑢ℬ(𝜃), 𝑢𝒜(𝜃) > 0, 𝑖𝑓	𝜃 ∈ Θ#

	, 

 
and 
 

𝑢𝒜(𝜃) < 0 < 𝑢ℬ(𝜃), 𝑖𝑓	𝜃 ∈ Θ" . 
 
The preference types are private information, independent across individuals and are identi-
cally distributed as Pr(𝑡$ = ℬ) = 1 2⁄ . Before voting, each voter receives conditionally inde-
pendent, identically distributed private signal 𝑠$ ∈ {0,1}, satisfying Pr(𝑠$ = 1|𝜃) = 𝜃. That 
is, conditional on the true state being 𝜃, each voter gets 1-signal with probability 𝜃 and 0-
signal with remaining probability 1 − 𝜃. 
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3. Symmetric Strategy 

A voting strategy of a voter, 𝜇 = I𝜇ℬ,), 𝜇ℬ,*, 𝜇𝒜,), 𝜇𝒜,*J, specifies a probability of voting for 
alternative 𝐵 for each realization of preference type and signal (𝑡$ , 𝑠$) ∈ {𝒜,ℬ} × {0,1}. A 
strategy profile is symmetric if (1) all voters use the same strategies and (2) the probability of 
following the own signal is the same between type 𝒜 and type ℬ. The latter condition means 
that the probability of following the signal that conflict or matches with their type is the same 
between type 𝒜 and type ℬ voters. That is, we require 𝜇𝒜,) = 1 − 𝜇ℬ,* and 𝜇ℬ,) = 1 −
𝜇𝒜,*. 

When choosing which alternative to vote for, any voter must consider the event in which 
his/her vote is pivotal, i.e., exactly (𝑛 − 1) 2⁄  voters voted for 𝐵. Let 𝜏(𝜃) denote the prob-
ability that any voter votes for the alternative 𝐵 in state 𝜃. Then the probability that any voter 
becomes pivotal in state 𝜃 is given by  

 

ℙ+(𝑝𝑖𝑣|𝜃) = P
𝑛 − 1

(𝑛 − 1) 2⁄ Q R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄ . 

 
Consider a type ℬ voter holding signal 𝑠. Given that other voters are following symmetric 
strategy profile 𝜇, voting for 𝐵 gives him/her higher expected payoff than voting for 𝐴 if 
and only if 𝔼+[𝑢ℬ(𝜃)|𝑝𝑖𝑣, 𝑠; 𝜇] ≥ 0, where 𝔼+[𝑢ℬ(𝜃)|𝑝𝑖𝑣, 𝑠; 𝜇] denotes the expected payoff 
difference when there are 𝑛 voters. Observe that 

 

𝔼+[𝑢ℬ(𝜃)|𝑝𝑖𝑣, 𝑠; 𝜇] ≥ 0 ⇔ X 𝜃𝑓(𝜃|𝑠, 𝑝𝑖𝑣; 𝜇)
)

*
𝑑𝜃 ≥ 𝜋 ⇔ 𝔼+[𝜃|𝑠, 𝑝𝑖𝑣; 𝜇] ≥ 𝜋, 

 
where 𝑓(𝜃|𝑠, 𝑝𝑖𝑣; 𝜇) is a posterior density of 𝜃 conditional on being pivotal and receiving 
signal 𝑠 and 𝔼+[𝜃|𝑠, 𝑝𝑖𝑣; 𝜇] denotes a posterior mean of the state. Similarly, voting for 𝐵 
gives higher expected payoff to a type 𝒜 voter with signal 𝑠 if and only if  
 

X 𝜃𝑓(𝜃|𝑠, 𝑝𝑖𝑣; 𝜇)
)

*
𝑑𝜃 ≥ 1 − 𝜋 ⇔ 𝔼+[𝜃|𝑝𝑖𝑣, 𝑠; 𝜇] ≥ 1 − 𝜋. 

 
Note that posterior distribution of the state, conditional only on the signal 𝑠, is again Beta 
distribution with parameters 1 + 𝕀12)  and 1 + 𝕀12* , where 𝕀12)  and 𝕀12*  are indicator 
functions taking value of one if 𝑠 = 1 and 𝑠 = 0, respectively, and zero if otherwise. There-
fore, the posterior mean of the state conditional on being pivotal and receiving signal 𝑠 is 
given by 
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𝔼+[𝜃|𝑝𝑖𝑣, 𝑠; 𝜇] =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ∫ 𝜃/R𝜏(𝜃)I1 − 𝜏(𝜃)JS

(+-)) /⁄)
* 𝑑𝜃

∫ 𝜃R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄)

* 𝑑𝜃
, 𝑖𝑓	𝑠 = 1

	
	

∫ 𝜃(1 − 𝜃)R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄)

* 𝑑𝜃

∫ (1 − 𝜃)R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄)

* 𝑑𝜃
, 𝑖𝑓	𝑠 = 0

. 

 
 
LEMMA 1:  
In any symmetric voting equilibrium 𝜇∗, we have 𝜇ℬ,)∗ = 1 − 𝜇𝒜,*∗ = 1, or equivalently, prob-
ability of following the signal that matches with their types is 1.  
 
PROOF:  
Case 1: Probability of following the signal that conflicts with the type is positive. 
Suppose we have 𝜇𝒜,)∗ = 1 − 𝜇ℬ,*∗ > 0 in the symmetric equilibrium. That is, type 𝒜 voter 
with 1-signal follows their signal (i.e., voting for 𝐵) with positive probability and type ℬ 
voter with 0-signal follows their signal (i.e., voting for 𝐴) with the same positive probability. 
Then, it follows that  
 

1 − 𝜋 ≤ X 𝜃𝑓(𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃, 

and 
 

𝜋 ≥ X 𝜃𝑓(𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃, 

implying that 
 

𝜋 < X 𝜃𝑓(𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃, 

and 
 

1 − 𝜋 > X 𝜃𝑓(𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃, 

 
thus, proving the Lemma 1. 
 
Case 2: Probability of following the signal that conflicts with the type is zero. 
Suppose instead we have 𝜇𝒜,)∗ = 1 − 𝜇ℬ,*∗ = 0, so that type 𝒜 voter with 1-signal follows 
their signal (i.e., voting for 𝐵) with probability zero and type ℬ voter with 0-signal follows 
their signal (i.e., voting for 𝐴) with probability zero. Then, it follows that 
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1 − 𝜋 ≥ X 𝜃𝑓(𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃, 

and 
 

𝜋 ≤ X 𝜃𝑓(𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃. 

 
Thus, it suffices to prove the following:  
 

X 𝜃𝑓(𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃 > X 𝜃𝑓(𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇∗)

)

*
𝑑𝜃. 

 
Note that the family of conditional densities of the signal {𝑓(𝑠|𝜃)}4 satisfies the strict Mon-
otone Likelihood Ratio Property (Milgrom, 1981, p. 383). Given that the prior distribution of 
𝜃 is now 𝑓(𝜃|𝑝𝑖𝑣; 𝜇∗), posterior distribution resulting from 𝑠 = 1 first order stochastically 
dominates the posterior distribution resulting from 𝑠 = 0 (Proposition 2 in Milgrom, 1981, 
p.383), thus proving the Lemma 1.                                         ∎ 
 
Due to Lemma 1, we can simply denote by 𝜇∗ = 𝜇𝒜,)∗ = 1 − 𝜇ℬ,*∗  the symmetric voting equi-
librium, which is the probability of following the conflicting signals.  
 

4. Equilibrium Analysis: Pure Strategies 
 
In an equilibrium with 𝜇∗ = 1, all voters vote according to their signals, i.e., vote for 𝐴 if 
they receive signal 𝑠 = 0 and for 𝐵 otherwise. In an equilibrium with 𝜇∗ = 1, all voters vote 
according to their preference type, i.e., vote for 𝐴 if they are type 𝒜 and for 𝐵 otherwise. I 
refer to the former equilibrium as an informative voting equilibrium, and the latter one as a 
partisan voting equilibrium. 
  
PROPOSITION 1: 
Fix any 𝜋. Informative voting profile cannot be an equilibrium for every sufficiently large 𝑛. 
 
PROOF: 
Given that other voters are following the informative voting profile, any voter can infer from a 
pivotal event that there are exactly (𝑛 − 1) 2⁄  1-signals among 𝑛 − 1 voters. Therefore, a 
type 𝒜 voter who privately observes 1-signal knows in the pivotal event that the number of 
1-signals among 𝑛 voters are now (𝑛 − 1) 2⁄ + 1. In order for the informative voting profile 
to be an equilibrium, following the signal 𝑠 = 1 must be beneficial for this type 𝒜 voter. 
Thus, the following must be satisfied: 
 

X 𝜃𝑓(𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇∗)
)

*
𝑑𝜃 ≥ 1 − 𝜋, 
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which is equivalent to 
 

𝑛 − 1
2 + 2
𝑛 + 2cddeddf

	
→) /⁄ 		(+→7)

≥ 1 − 𝜋. 

 
Notice that the left-hand side this inequality is a mean of Beta distribution with parameters 
(𝑛 − 1) 2⁄ + 2 and (𝑛 − 1) 2⁄ + 1. However, since this converges to 1 2⁄ , this inequality 
cannot be true for every sufficiently large 𝑛, proving the proposition.                   ∎ 
 

Proposition 1 says that the informative voting cannot be an equilibrium even if 𝜋 =
1 2⁄ − 𝜀 so that the prior probability that voters disagree on the better alternative is arbitrarily 
small but positive. Note that informative voting becomes equilibrium for any 𝑛 when 𝜋 =
1 2⁄  so that the voters never disagree (Austen-Smith & Banks, 1996).  

Next proposition provides the necessary and sufficient condition for the existence of 
the partisan equilibrium. 
 
PROPOSTION 2: 
Fix any 𝑛. Partisan voting profile becomes an equilibrium if and only if 𝜋 ≤ 1 3⁄ .  
 
PROOF: 
When other voters are following partisan voting profile, a pivotal event conveys no information 
about the underlying state. Thus, the only information that any voter can rely on is his/her 
private signal. In order for the partisan voting profile to be an equilibrium, voting for 𝐴 must 
be a best response for type 𝒜 voter holding 1-signal: 
 

X 𝜃𝑓(𝜃|𝑠 = 1)
)

*
𝑑𝜃 ≤ 1 − 𝜋	 ⇔ 	𝜋 ≤ 1 3⁄ , 

 
thus, proving the Proposition 2                                                	 ∎	
	
In partisan voting equilibrium no information is conveyed by being pivotal, and therefore vot-
ers must rely only on their private information. The partisan voting, however, tells them to 
ignore it, which can be beneficial only when the size of the disagreement is large enough. 
 

5. Equilibrium Analysis: Mixed Strategies 
 
This section investigates the existence of the symmetric equilibrium in mixed strategy and its 
asymptotic properties. To highlight a dependence on 𝑛, we let 𝜇+∗  denote the symmetric equi-
librium when there are 𝑛 voters. The following theorem provides the necessary and sufficient 
condition for the existence of mixed strategy symmetric equilibrium. 
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THEOREM 1: 
(1) If 𝜋 ≤ 1 3⁄  then for any 𝑛 there does not exist mixed strategy symmetric voting equilib-

rium. 
(2) If 1 3⁄ < 𝜋, then there exists a symmetric voting equilibrium 𝜇+∗  with 𝜇+∗ ∈ (0,1) for 

every sufficiently large 𝑛. Furthermore, such symmetric equilibrium in mixed strategy, if 
it exists, is unique. 

 
PROOF: 
See Appendix A.  
 
Theorem 1 asserts that the symmetric voting equilibrium which is neither the partisan voting 
nor the informative voting exists only when 1 3⁄ < 𝜋 so that the prior probability of disagree-
ment is small. In contrast, if 𝜋 ≤ 1 3⁄  so that such probability is large enough, then the only 
symmetric equilibrium is the partisan equilibrium. 
 Next theorem asserts that any symmetric equilibrium, including mixed strategy one, 
eventually converges to the partisan voting equilibrium. 
 
THEOREM 2: 
Suppose 1 3⁄ < 𝜋 so that, for every sufficiently large 𝑛, the unique symmetric voting equilib-
rium 𝜇+∗  is in mixed strategy, 𝜇+∗ ∈ (0,1). Then, the sequence of such equilibrium converges 
to the Partisan voting equilibrium. In other words, 
 

lim
+→7

𝜇+∗ = 0. 

 
PROOF: 
See Appendix B.  
 
Theorem 2, together with the first part of the Theorem 1, imply that in large elections voting 
behavior is determined solely by voters’ preferences rather than information, which is formally 
stated in the next corollary. Note that this is true for any 𝜋. 
 
COROLLARY 1: 
Any sequence of symmetric voting equilibrium converges to the partisan voting equilibrium. 
 

6. Asymptotic Condorcet Jury Theorem 
Now we are ready to examine the validity of the Condorcet Jury Theorem. Let us begin by 
formal definition of a probability that the society reaches the correct decision under majority 
voting. Recall that in our context the correct alternative exists only when the true state 𝜃 lies 
in Θ! or Θ#. 
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DEFINITION 1: 
A sequence of symmetric voting equilibrium (𝜇+∗ )+ asymptotically identifies the correct alter-
natives if the following two properties are satisfied: 
1. Fix any 𝜃 ∈ 𝛩# = (1 − 𝜋, 1). The probability of an alternative 𝐵 being chosen, condi-

tional on the true state being 𝜃, converges to 1 as 𝑛 → ∞. 
2. Fix any 𝜃 ∈ 𝛩! = (1 − 𝜋, 1). The probability of an alternative 𝐴 being chosen, condi-

tional on the true state being 𝜃, converges to 1 as 𝑛 → ∞. 
 
Next theorem asserts that CJT is not true if the size of disagreement is large enough. 
 
THEOREM 3: 
If 𝜋 ≤ 1 3⁄ , then there is no sequence of symmetric equilibrium that asymptotically identifies 
the correct alternatives. 
 
PROOF:  
Theorem 3 immediately follows from the Proposition 1, Proposition 2, and Theorem 1.     ∎ 
 

7. Conclusion 
Most of the game-theoretic literature on Condorcet voting presumes that the voters are engag-
ing in the world of “guilty or innocent” (Austen-Smith & Banks, 1996; Gerardi, 2000; Wit 
2000). Although voters are unaware of which alternative is correct, they know that there always 
is the correct alternative, and hence they can reach an agreement once the uncertainty is re-
solved. 

In contrast, this study considered a binary election in which voters have partially con-
flicting interests (Schulte, 2012; Odora, 2023). Specifically, there is a correct alternative for all 
voters is some states, so the collective decisions are matter of truth, such as guilty or innocent. 
In other states, however, voters disagree on the better alternative and therefore the elections are 
matter of taste. This study investigated whether a group of voters using the majority rule can 
reach the correct decisions asymptotically when the size of the group tends to infinity, which 
is the classical statement known as Condorcet Jury Theorem (CJT). This study shows that if 
the prior probability that voters disagree is large enough, then the information aggregation 
through voting does not work, i.e., CJT does not hold. Moreover, this study shows that the 
voting behavior does not reflect signals and it is solely determined by the preference type in 
the large elections, as long as the prior probability of disagreement is positive. 

A question unanswered yet is whether a pre-voting communication helps identify the 
correct alternatives when the voters have partially conflicting interests. Schulte (2012) exam-
ined a deliberative committee with partially conflicting interests, but her primary interest lies 
in the mechanism of the deliberation in small committees, and therefore she did not consider 
the asymptotic efficiency. Odora (2023), who extend our model to incorporate the deliberation 
stage, shows that it is generically impossible for all voters to tell their signals truthfully in the 
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deliberation stage, but the validity of the CJT is still remain unanswered.  
 
Declaration of Interest 
None. 
 

Appendix A: Proof of Theorem 1 
The symmetric strategy 𝜇 ∈ (0,1) is an equilibrium if and only if any voter whose signal con-
flicts with their type is indifferent between the two alternatives, conditional on being pivotal. 
In other words, both type 𝒜 voter with 1-signal and type ℬ voter with 0-signal are indif-
ferent between voting for 𝐴 and voting for 𝐵. That is, 𝜇 ∈ (0,1) is an equilibrium if and 
only if the followings are satisfied: 
 

𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇] = 1 − 𝜋. 
 

𝔼+[𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇] = 𝜋. 
 
We define two functions of symmetric strategy 𝜇 ∈ [0,1], Γ)+(𝜇) and Γ*+(𝜇) by  Γ)+(𝜇) =
𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇] and Γ*+(𝜇) = 𝔼+[𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇], respectively. Then proving or disprov-
ing the existence of symmetric equilibrium amounts to showing the existence of a solution 𝜇∗, 
satisfying both Γ)+(𝜇∗) = 1 − 𝜋 and Γ*+(𝜇∗) = 𝜋 at the same time.  
 First part of the Theorem 1 (i.e., necessity) immediately follows from the fact that 
Γ)+(𝜇) is strictly decreasing in 𝜇 and the observation that Γ)+(0) = 2 3⁄ . 
 Next, we shall prove the second part, i.e., sufficiency. Suppose 1 3⁄ < 𝜋. We start from 
the following lemma, showing the symmetry between type 𝒜 voter holding 1-signal and type 
ℬ voter holding 0-signal. 

 
LEMMA A.1:  
For any 𝑛 and 𝜇, we have 𝛤)+(𝜇) + 𝛤*+(𝜇) = 1. 
 
PROOF: 
By definition, we observe that 
 

𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇] =
∫ 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

, 

 
and 
 

𝔼+[𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇]	
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=
1

∫ (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

pX 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)

*
𝑑𝜃q − X 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)

*
𝑑𝜃r. 

 
Furthermore, posterior mean of the state, conditional only on being pivotal, 𝔼+[𝜃|𝑝𝑖𝑣; 𝜇], is 
given by 
 

𝔼+[𝜃|𝑝𝑖𝑣; 𝜇] =
∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

=
∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃 + ∫ (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)
* 𝑑𝜃

. 

 
Therefore, it follows that 
 

𝔼+[𝜃|𝑝𝑖𝑣; 𝜇] =
∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃 + ∫ (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)
* 𝑑𝜃

𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇]	

+
∫ (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃 + ∫ (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)
* 𝑑𝜃

𝔼+[𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇] (𝐴. 1) 

 
Now, observe that  
 

ℙ+(𝑝𝑖𝑣|𝜃; 𝜇) = P
𝑛 − 1

(𝑛 − 1) 2⁄ Q R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄ , 

 
where 
 

𝜏(𝜃) =
1
2 +

𝜇
2
(2𝜃 − 1), 

 
implying the following identity 
 

X 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)

*
𝑑𝜃 = X (1 − 𝜃)ℙ+(𝑝𝑖𝑣|1 − 𝜃; 𝜇)

)

*
𝑑𝜃 = X (1 − 𝜃)ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)

*
𝑑𝜃. 

 
Thus, combining this identity with eq. (A.1) yields 𝔼+[𝜃|𝑝𝑖𝑣; 𝜇] = 1 2⁄ , and therefore eq. 
(A.1) can be rewritten as 
 

1
2 =

1
2𝔼+

[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇] +
1
2𝔼+

[𝜃|𝑠 = 0, 𝑝𝑖𝑣; 𝜇], 

 
which completes the proof of Lemma A.1.                                        ∎  
 

The Lemma A.1 allows us to focus on the equation Γ)+(𝜇∗) = 1 − 𝜋. We use the Inter-
mediate Value Theorem to show the existence of the solution 𝜇∗ ∈ (0,1) to this equation. To 
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do this, we first establish that Γ)+(∙) is continuous on the interval [0,1]. To see this, for arbi-
trary 𝜇 ∈ [0,1] and arbitrary sequence (𝜇8)8 in [0,1] with 𝜇8 → 𝜇	, we observe that 

 

lim
8→7

X 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)
)

*
𝑑𝜃 = X P lim

8→7
𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)Q

)

*
𝑑𝜃 = X 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)

*
𝑑𝜃, 

 
and 
 

lim
8→7

X 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)
)

*
𝑑𝜃 = X P lim

8→7
𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)Q

)

*
𝑑𝜃 = X 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)

)

*
𝑑𝜃, 

 
where we used the Arzela’s Bounded Convergence Theorem to exchange the integration and 
the pointwise convergence of the sequence of the functions (see, e.g., Silva, 2010). Thus, we 
have  
 

lim
8→7

Γ)+(𝜇8) = lim
8→7

∫ 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇8)
)
* 𝑑𝜃

=
∫ 𝜃/ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

∫ 𝜃ℙ+(𝑝𝑖𝑣|𝜃; 𝜇)
)
* 𝑑𝜃

= Γ)+(𝜇)	, 

 
which proves the continuity of Γ)+(∙). 

Furthermore, we have Γ)+(0) = 2 3⁄  and Γ)+(1) = (𝑛 + 3) I2(𝑛 + 2)J⁄ , where 
Γ)+(1) converges to 1 2⁄  as 𝑛 → ∞, implying that we have Γ)+(0) < 1 − 𝜋 < Γ)+(1) for 
every sufficiently large 𝑛. Thus, it follows from the Intermediate Value Theorem that there 
exists a solution 𝜇+∗ ∈ (0,1) such that Γ)+(𝜇+∗ ) = 1 − 𝜋 for every sufficiently large 𝑛.    ∎ 

Appendix B: Proof of Theorem 2 

We will prove Theorem 2 by contradiction; thus, assume that the sequence of symmetric voting 

equilibrium (𝜇+∗ )+  does not converge to 0. Then, there exists 𝜀 > 0 and a subsequence 

(𝜇9∗ )9 such that 𝜇9∗ ≥ 𝜀 > 0 for every 𝑚. We define the function of symmetric strategy, 

Γ)+(𝜇), by Γ)+(𝜇) = 𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜇]. For this 𝜀, we have the following Lemma B.1 

 

LEMMA B.1:  

lim
+→7

Γ)+(𝜀) =
1
2 

 

Lemma B.1 implies that for sufficiently large 𝑚, 

 

Γ)9(𝜀) < 1 − 𝜋 = Γ)9(𝜇9∗ ). 
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However, since Γ)9(∙)  is strictly decreasing, we must have 𝜇9∗ > 𝜀  whenever Γ)9(𝜀) <

Γ)9(𝜇9∗ ). Thus, we see that 𝜇9∗ > 𝜀 for sufficiently large 𝑚, which contradicts the definition 

of the subsequence (𝜇9∗ )9. 

What remains is to show the Lemma B.1. 

Proof of Lemma B.1 
To show that  
 

lim
+→7

𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜀] =
1
2	, 

 
we use the Laplace Approximation Methods, which is an asymptotic approximation for the 
posterior mean (Tierney & Kadane, 1986; Bernardo & Smith, 1994; Robert, 2007). In general, 
posterior mean given a vector of observation 𝒙 = (𝑥), . . , 𝑥+), 𝔼(𝜃|𝑥), can be written as 
 

𝔼(𝜃|𝒙) =
∫ 𝑏"(𝜃) exp{−𝑛 ∙ ℎ"(𝜃)}
)
* 𝑑𝜃

∫ 𝑏:(𝜃) exp{−𝑛 ∙ ℎ:(𝜃)}
)
* 𝑑𝜃

. 

 
In our context, our posterior mean 𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜀] can be written in this manner by letting  
 

−𝑛 ∙ ℎ"(𝜃) = log 𝜃/R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄ , 

 

−𝑛 ∙ ℎ:(𝜃) = log 𝜃R𝜏(𝜃)I1 − 𝜏(𝜃)JS
(+-)) /⁄ , 

 
and 𝑏"(𝜃) = 𝑏:(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 
 

𝜏(𝜃) =
1
2 +

𝜀
2
(2𝜃 − 1) 

 
is the probability that any voter vote for alternative 𝐵 in state 𝜃 when voters follow symmet-
ric strategy 𝜀.  

In general, in the words of Tierney and Kadane (1986), the posterior mean, which can 
be expressed in the form of 
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∫ 𝑏"(𝜃) exp{−𝑛 ∙ ℎ"(𝜃)}
)
* 𝑑𝜃

∫ 𝑏:(𝜃) exp{−𝑛 ∙ ℎ:(𝜃)}
)
* 𝑑𝜃

	, 

 
is said to be written in fully exponential form if 𝑏"(𝜃) = 𝑏:(𝜃). We immediately see that our 
posterior mean, 𝔼9[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜀], is written in fully exponential form. 
 Next, define 𝜃" and 𝜃: by 
 

−ℎ"(𝜃") = sup
4
{−ℎ"(𝜃)}, 

 
−ℎ:(𝜃:) = sup

4
{−ℎ:(𝜃)}, 

 
and define 𝜎"/ and 𝜎:/ such that 
 

𝜎"/ = Rℎ";;(𝜃)|424"S
-). 

 
𝜎:/ = Rℎ:;;(𝜃)|424#S

-). 
 
Then Tierney and Kadane (1986)1 have shown that if the posterior mean, 𝔼(𝜃|𝒙), is written 
in fully exponential form,  
 

𝔼(𝜃|𝒙) =
𝑏"(𝜃")
𝑏:(𝜃:)

∙
𝜎"/

𝜎:/
∙ exp�−𝑛Iℎ"(𝜃") − ℎ:(𝜃:)J� + 𝑂(𝑛-/). 

 
In our context,  

𝔼+[𝜃|𝑠 = 1, 𝑝𝑖𝑣; 𝜀] =
𝜎"/

𝜎:/
∙ exp�−𝑛Iℎ"(𝜃") − ℎ:(𝜃:)J� + 𝑂(𝑛-/). 

 
Next lemma concludes the proof for Theorem 2. 
 
LEMMA B.2: 

𝜎"/

𝜎:/
∙ exp�−𝑛Iℎ"(𝜃") − ℎ:(𝜃:)J� →

1
2	
(𝑛 → ∞). 

 
PROOF: 
In our context, −ℎ"(𝜃) and −ℎ:(𝜃) are defined by 
 

−ℎ"(𝜃) =
log 𝜃/R𝜏(𝜃)I1 − 𝜏(𝜃)JS

(+-)) /⁄

𝑛 , 

 
1 See also Bernardo and Smith (1994) Chapter 5.5.1, and Robert (2007) Chapter 6.2.3. 
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and 
 

−ℎ:(𝜃) =
log 𝜃R𝜏(𝜃)I1 − 𝜏(𝜃)JS

(+-)) /⁄

𝑛 	, 

 
implying that 𝜃" and 𝜃: are given by  
 

𝜃" =
𝜀/(𝑛 + 3) + {8(𝑛 + 1)𝜀/ + 𝜀<(𝑛 − 1)/}) /⁄

4(𝑛 + 1)𝜀/ , (𝐵. 1) 

 
and  
 

𝜃: =
𝜀/(𝑛 + 1) + {4𝑛𝜀/ + 𝜀<(𝑛 − 1)/}) /⁄

4𝑛𝜀/ . (𝐵. 2) 

 
Notice that both 𝜃"  and 𝜃:  converge to 1 2⁄  as 𝑛 → ∞, implying that both 𝜏(𝜃") and 
𝜏(𝜃:) converges to 1 2⁄ . 
 We first establish that 𝜎"/ 𝜎:/⁄  converges to 1 as 𝑛 → ∞. To see this, observe that 
 

𝜎"/

𝜎:/
=
[ℎ";;(𝜃")]-)

[ℎ:;;(𝜃:)]-)
=
ℎ:;;(𝜃:)
ℎ";;(𝜃")

=

1
𝜃:/
+ 𝑛 − 12 P 𝜀

𝜏(𝜃:)
Q
/
+ 𝑛 − 12 P 𝜀

1 − 𝜏(𝜃:)
Q
/

1
𝜃"/

+ 𝑛 − 12 P 𝜀
𝜏(𝜃")

Q
/
+ 𝑛 − 12 P 𝜀

1 − 𝜏(𝜃")
Q
/	

	

=

2
𝑛 − 1 ∙

1
𝜃:/
+ P 𝜀

𝜏(𝜃:)
Q
/
+ P 𝜀

1 − 𝜏(𝜃:)
Q
/

2
𝑛 − 1 ∙

1
𝜃"/

+ P 𝜀
𝜏(𝜃")

Q
/
+ P 𝜀

1 − 𝜏(𝜃")
Q
/	

	
→ 1	(𝑛 → ∞),	 

 
where convergence to 1 follows from the observation that both 𝜏(𝜃") and 𝜏(𝜃:) converges 
to 1 2⁄ .  
 Next, we shall prove that exp�−𝑛Iℎ"(𝜃") − ℎ:(𝜃:)J� converges to 1 2⁄ . First, ob-
serve that  
 

exp�−𝑛Iℎ"(𝜃") − ℎ:(𝜃:)J�	
	

= exp �log �𝜃"/R𝜏(𝜃")I1 − 𝜏(𝜃")JS
(+-)) /⁄ �− log �𝜃:R𝜏(𝜃:)I1 − 𝜏(𝜃:)JS

(+-)) /⁄ ��	
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= exp >log >𝜃" ∙
𝜃"
𝜃:

∙ �
𝜏(𝜃")I1 − 𝜏(𝜃")J
𝜏(𝜃:)I1 − 𝜏(𝜃:)J

�
(+-)) /⁄

��	

	

= 𝜃" ∙
𝜃"
𝜃:

∙ �
𝜏(𝜃")I1 − 𝜏(𝜃")J
𝜏(𝜃:)I1 − 𝜏(𝜃:)J

�
(+-)) /⁄

	

	 

= 𝜃" ∙
𝜃"
𝜃:

∙ �
𝜃"(1 − 𝜃")
𝜃:(1 − 𝜃:)

�
(+-)) /⁄

, 

 
where the last equality follows from the observations that 𝜃" 𝜃:⁄ = 𝜏(𝜃") 𝜏(𝜃:)⁄  and 
(1 − 𝜃") (1 − 𝜃:)⁄ = I1 − 𝜏(𝜃")J I1 − 𝜏(𝜃:)J� . Since we know that both 𝜃" and 𝜃: con-
verge to 1 2⁄ , it suffices to show that  
 

lim
+→7

�
𝜃"(1 − 𝜃")
𝜃:(1 − 𝜃:)

�
(+-)) /⁄

= 1. 

 
To highlight the dependence on 𝑛, we denote 𝑎+ = 𝜃" and 𝑏+ = 𝜃:, where 𝜃" and 𝜃: are 
given in the eq. (B.1) and eq. (B.2), respectively. Then, we must show that  
 

lim
+→7

�
𝑎+(1 − 𝑎+)
𝑏+(1 − 𝑏+)

�
(+-)) /⁄

= 1. 

 
It follows from the continuity of the exponential functions that this is equivalent to  
 

lim
+→7

log �
𝑎+(1 − 𝑎+)
𝑏+(1 − 𝑏+)

�
(+-)) /⁄

= log 1, 

 
so we will prove this. The idea is to use the definition of the derivative of some function 
log𝜙(𝑥) at 𝑥 = 0. We see that reparametrizing to 𝑡 = 2 (𝑛 − 1)⁄  yields 
 

log �
𝑎+(1 − 𝑎+)
𝑏+(1 − 𝑏+)

�
(+-)) /⁄

=
log �𝑎+(1 − 𝑎+)𝑏+(1 − 𝑏+)

�

2 (𝑛 − 1)⁄ 		

	

= 	
log �

𝑎)=/ %⁄ I1 − 𝑎)=/ %⁄ J
𝑏)=/ %⁄ I1 − 𝑏)=/ %⁄ J

�

𝑡 	, 

 
and we observe that the numerator of the last expression can be written as 
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log �
𝑎)=/ %⁄ I1 − 𝑎)=/ %⁄ J
𝑏)=/ %⁄ I1 − 𝑏)=/ %⁄ J

�	

= log >	P
𝑡 + 2
1 − 𝑡Q

/

∙
𝜀/I1 + 2𝑡(𝑡 + 2)J − 2𝑡(𝑡 + 1) + �4𝑡(𝑡 + 1)𝜀/ + 𝜀<

𝜀/I2 + 𝑡(𝑡 + 4)J − 𝑡(𝑡 + 2) + 2�𝑡(𝑡 + 2)𝜀/ + 𝜀<
	� − log 2 . (𝐵. 3)	

 
If we set  

𝜙(𝑥) = P
𝑥 + 2
1 − 𝑥Q

/

∙
𝜀/I1 + 2𝑥(𝑥 + 2)J − 2𝑥(𝑥 + 1) + �4𝑥(𝑥 + 1)𝜀/ + 𝜀<

𝜀/I2 + 𝑥(𝑥 + 4)J − 𝑥(𝑥 + 2) + 2�𝑥(𝑥 + 2)𝜀/ + 𝜀<
	, 

 
then the right-hand side of eq. (B.3) can be rewritten as log𝜙(𝑡 + 0) − log𝜙(0), thus we have 
 

log �
𝑎+(1 − 𝑎+)
𝑏+(1 − 𝑏+)

�
(+-)) /⁄

=	
log �

𝑎)=/ %⁄ I1 − 𝑎)=/ %⁄ J
𝑏)=/ %⁄ I1 − 𝑏)=/ %⁄ J

�

𝑡 =
log𝜙(𝑡 + 0) − log𝜙(0)

𝑡 . 

 
Therefore, we see that  
 

lim
+→7

log �
𝑎+(1 − 𝑎+)
𝑏+(1 − 𝑏+)

�
(+-)) /⁄

	

	

= lim
%→*

log �
𝑎)=/ %⁄ I1 − 𝑎)=/ %⁄ J
𝑏)=/ %⁄ I1 − 𝑏)=/ %⁄ J

�

𝑡 	

	 

= lim
%→*

log𝜙(𝑡 + 0) − log𝜙(0)
𝑡 =

𝑑
𝑑𝑥
[log𝜙(𝑥)]�

>2*
	. 

 
Finally, tedious calculation yields that the value of the derivative of log𝜙(𝑥) at 𝑥 = 0 equals 
to 0, which is log 1: 
 

𝑑
𝑑𝑥
[log𝜙(𝑥)]�

>2*
= 0 = log 1	, 

 
which proves the Lemma B.2.                                                  ∎ 
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