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Optimal Schooling for Economic Growth 

 

Kazuyuki Sasakura* 

 

Abstract: It goes without saying that education matters to promote economic growth. 

To examine the importance of education or schooling in economic growth, the Uzawa-

Lucas model is the most popular in economics. It regards the accumulation of human 

capital through schooling (i.e., going to school) as the engine of economic growth. The 

current paper uses a generalized version of the Uzawa-Lucas model and studies the 

relationship between schooling-related parameters and economic growth. It is 

concluded that the growth rate of a macroeconomy becomes higher if workers become 

more patient, population grows faster, the rate of human capital depreciation 

becomes smaller, or the potentially maximum growth rate of human capital becomes 

bigger. These results may be expected intuitively. But the effect of the schooling-time 

elasticity of the growth rate of human capital (i.e., the exponent of the learning 

function) is not clear. It is shown that it depends on some conditions on schooling 

time. 

Key words: Education, Schooling, Economic Growth, Generalized Uzawa-Lucas 

Model 

JEL classification: E13, O41, O43 

 

1. Introduction 

Since Adam Smith (1776) emphasized the positive effect of education on the 

productivity of workers, education has been regarded as one of the sources of 

economic growth. Many macroeconomists supported Smith’s idea by macro data, and 

Barro and Lee (2015) reconfirmed empirically that education or schooling mattered 

to promote economic growth in both advanced and developing countries.  

When it comes to theoretical considerations which this paper is concerned about, 

it is Uzawa (1965) who constructed a model for the first time to examine the 

importance of education in economic growth. Then, after a long break, Lucas (1988) 

modified Uzawa’s model to explain why growth rates across countries differed so 

much. He regarded the accumulation of human capital through schooling (i.e., going 

to school) as the fundamental factor of economic growth. A crucial part of the Uzawa 

model is a labor efficiency function which makes it possible that there exists a 
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persistent growth in a two-sector model of production and education. In the Lucas 

model too, an indispensable part is a learning function which is the counterpart of 

Uzawa’s labor efficiency function. The Uzawa model with a labor efficiency function 

and the Lucas model with a learning function have much in common both 

economically and mathematically. Hence the name Uzawa-Lucas model. The Uzawa-

Lucas model has been extensively used to analyze the relationship between 

education and economic growth. 

Unlike in the Uzawa model, however, there is an external effect in the production 

sector of the Lucas model. The growth rate is depressed due to the effect. Such a 

situation corresponds, Lucas (1988) argues, to actual economies. As for examples 

with an external effect in the production sector as in Lucas (1988), Mulligan and 

Sala-i-Martin (1993) calculate the steady state and simulate transitional paths 

toward it. Xie (1994) shows that when the external effect is relatively strong, there 

exists a continuum of equilibrium paths starting from the same initial condition 

against Lucas’s conjecture. Gómez (2003) derives a fiscal policy which leads to the 

first-best optimum equilibrium. Hiraguchi (2009) obtains a closed-form solution by 

applying the method of Boucekkine and Ruiz-Tamarit (2008). Finally, as for other 

examples, Chamley (1993) and Kuwahara (2017) prove the existence of multiple 

steady states in the Uzawa-Lucas model with an external effect in the education 

sector. 

As for examples without an external effect, on the other hand, Caballé and Santos 

(1993) show that every positive initial condition converges to some steady state. Faig 

(1995) introduces government consumption as well as private consumption and 

analyzes the response to technology and government spending shocks. Ortigueira 

(1998) examines the implications of tax policies. Boucekkine and Ruiz-Tamarit 

(2008) and Chilarescu (2011) pursue rigorously transitional dynamics toward a 

unique steady state by virtue of closed-form solutions. Canton (2002) (in discrete 

time) and Tsuboi (2018) (in usual continuous time) analyze the stochastic Uzawa-

Lucas model with uncertainty in the education sector. And among them is Lucas 

(1990) too who proposes the best structure of income taxation using the CES 

production function and the utility function with leisure. 

This paper focuses on the model by Lucas (1990) and Caballé and Santos (1993) 

mentioned above since they are a generalization of the original Uzawa-Lucas model 

and there remains much to be considered for a better understanding of the role of 

schooling in economic growth. The remainder of the paper is organized as follows. 

Section 2 introduces the model in a general form. Sections 3 and 4 specifies it to 
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obtain clear results on the relationship between various parameters in the model 

and economic growth. Section 5 is a conclusion.  

 

2. The Generalized Uzawa-Lucas Model 

In the model by Lucas (1990) and Caballé and Santos (1993), there are 𝑁 

workers at time 𝑡 whose number grows at a constatnt rate 𝑛:1 

 

�̇� = 𝑛𝑁, 𝑁(0) > 0. 

 

Each worker is endowed with one unit of time and makes a decision between working 

for income and going to school for accumullation of human capital. Let 𝑢 be the time 

used for working. Then, 1 − 𝑢 is the time used for schooling. The evolution of human 

capital (or skill level) ℎ per worker is governed by the learning function 

 

                
ℎ̇

ℎ
= 𝐺(1 − 𝑢) − 𝜃, 𝐺′ > 0, 𝐺′′ ≤ 0, 𝜃 ≥ 0, ℎ(0) > 0,             (1) 

 

where 𝜃 is the rate of human capital depreciation. 

The production of output 𝑌 is described by a neoclassical production function 

 

𝑌 = 𝐹(𝐾, ℎ𝑢𝑁), 

 

where 𝐾  is physical capital as a whole and ℎ𝑢𝑁 represents effective labor as a 

whole. Define per capita output as 𝑦 = 𝑌/𝑁 and capital per unit of effective labor as 

𝑥 = 𝐾/ℎ𝑁. Then, the aggregate production function can be written per capita as 

follows: 

 

                          𝑦 = ℎ𝑢𝑓 (
𝑥

𝑢
), 𝑓 (

𝑥

𝑢
) = 𝐹 (

𝑥

𝑢
, 1).                      (2) 

 

Let 𝑠 be the gross rate of saving. Then, the physical capital accumulation equation 

can be written per unit of effective labor as 

 

 
1 The following formulation is à la Uzawa (1965). 
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              �̇� = 𝑠𝑢𝑓 (
𝑥

𝑢
) − [𝑛 + 𝜋 + 𝐺(1 − 𝑢) − 𝜃]𝑥, 𝜋 ≥ 0, 𝑥(0) > 0,           (3) 

 

where 𝜋 is the rate of physical capital depreciation and 𝑥(0) = 𝐾(0)/ℎ(0)𝑁(0).  

 

 

Figure 1. Division of Time between Working and Schooling 

 

The instantaneous utility of each worker is described by the CRRA utility 

function 

 

[(1−𝑠)𝑦]1−𝜎

1−𝜎
, 𝜎 > 0, 

 

where (1 − 𝑠)𝑦  is per capita consumption and the inverse of 𝜎  represents the 

intertemporal elasticity of substitution between consumptions. The purpose of 

workers is to maximize the sum of utilities discounted by the rate of time preference 

𝜌  

 

𝑈 = ∫
[(1 − 𝑠)𝑦]1−𝜎

1 − 𝜎

∞

0

𝑒−(𝜌−𝑛)𝑡𝑑𝑡 

 

subject to equations (1) and (3) as well as the constraint 

 

  (1 − 𝜎)𝐺(1) < 𝜌 − 𝑛 + (1 − 𝜎)𝜃 < (1 − 𝜎)𝐺(0) + 𝐺′(0).           (4) 
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Inequality (4) is necessary for 𝑢 to lie between 0 and 1. Figure 1 outlines the model 

under consideration.2 

It is shown by Lucas (1990) and Caballé and Santos (1993) that in this economy 

there exist steady states, designated by a superscript ∗, which satisfy the following 

conditions: 

 

                  𝜌 − 𝑛 = (1 − 𝜎)[𝐺(1 − 𝑢∗) − 𝜃] + 𝑢∗𝐺′(1 − 𝑢∗),               (5) 

                        𝑓′ (
𝑥∗

𝑢∗) − 𝜋 = 𝜌 + 𝜎[𝐺(1 − 𝑢∗) − 𝜃],                    (6) 

                      𝑠∗𝑓 (
𝑥∗

𝑢∗) =
𝑥∗

𝑢∗ [𝑛 + 𝜋 + 𝐺(1 − 𝑢∗) − 𝜃].                    (7) 

 

Equation (5) represents the arbitrage condition for wages. Simply speaking, if the 

left-hand side exceeds the right-hand side, it is advantageous for a worker to work 

more for current wages by inceasing working time 𝑢. On the other hand, if the right-

hand side exceeds the left-hand side, it is advantageous for a worker to go to school 

more for future wages by increasing schooling time 1 − 𝑢. Equation (5) must hold in 

steady state. Equation (6) comes from the Euler equation which represents the 

arbitrage condition between current and future consumption. Equation (7) is 

obtained by setting �̇� = 0 in equation (3).  

It is easy to see that a steady-state value 𝑢∗ of working time is derived from 

equation (5) alone. At the same time an optimal schooling time 1 − 𝑢∗ is obtained. 

Next, a steady-state value 𝑥∗ of capital per unit of effective labor is derived from 

equation (5) given the value of 𝑢∗. Remember here that the number 𝑁 of workers is 

exogenous at each momnet of time. Then, equation (6) determines a steady-state 

value of the ratio of physical capital to human capital 𝐾∗/(ℎ∗𝑁), not their levels. 

Finally, a steady-state value 𝑠∗ of the gross saving rate is calculated from equation 

(7) given the values of 𝑢∗ and 𝑥∗. Thus, a steady state (or a balanced growth path) 

in this model is characterized by a unique set of 𝑢∗, 𝐾∗/(ℎ∗𝑁), and 𝑠∗.3 

 
2 (1 − 𝑢)𝑁 in Figure 1 represents the total amount of workers’ time devoted to schooling, 

while in Uzawa’s (1965) model it is interpreted as the total number of workers employed 

in the education sector, teachers in a word. For details see Sasakura (2022). 
3 If the economy is on an optimal path and the initial value of 𝑥, 𝑥(0)(= 𝐾(0)/ℎ(0)𝑁(0)), 

is equal to 𝑥∗ , the levels of physical and human capital at time 𝑡  can be written 

respectively as 𝐾(0)𝑒[𝑛+𝐺(1−𝑢∗)−𝜃]𝑡 and ℎ(0)𝑒[𝐺(1−𝑢∗)−𝜃]𝑡. For a steady-state value of 𝑈, 

𝑈∗, and the effects of initial conditions of per capita capital stocks ℎ(0) and 𝑘(0)(=
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3. Specifications and Some Results (1) 

 

 

Figure 2. Learning Function 

 

As is apparent, the steady-state growth rate in this economy is the sum of the 

(endogenous) steady-state growth rate of human capital and the (exogenous) growth 

rate of population (i.e., the number of workers). In what follows, for simplicity, let 

the growth rate refer to the steady-state growth rate in the economy, and let us 

examine the features of the growth rate by specifying the learning function (1) as 

 

                      
ℎ̇

ℎ
= 𝛿(1 − 𝑢)𝛼 − 𝜃, 𝛿 > 0, 0 < 𝛼 ≤ 1,                   (8) 

 

where 𝐺(1 − 𝑢) = 𝛿(1 − 𝑢)𝛼, 𝛿 is the potentially maximum growth rate of human 

capital,4 and 𝛼 is the schooling-time elasticity of the growth rate of human capital.5 

Figure 2 describes the relationship between schooling time 1 − 𝑢  and the 

corresponding growth rate ℎ̇/ℎ of human capital under a reasonable assumption 

that 𝛿 − 𝜃 > 0.  

 

𝐾(0)/𝑁(0)) on it, see Appendix. 
4 Correctly speaking, the potentially maximum growth rate of human capital should be 

𝛿 − 𝜃 for 𝑢 = 0, but for convenience it refers to 𝛿 alone in what follows. 
5 Lucas (1990) deals with the case of 𝜃 = 0. Caballé and Santos (1993) take into account 

the case of 𝜃 > 0 too, but they just give an example of the learning function with 𝛼 = 1 

as in Lucas (1988). 
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As said in the previous section, an optimal schooling time is calculated by 

equation (4) alone. Then, write 𝑔(𝑢) = (1 − 𝜎)[𝐺(1 − 𝑢) − 𝜃] + 𝑢𝐺′(1 − 𝑢) , which 

corresponds to the right-hand side of equation (5). In the case of  𝐺(1 − 𝑢) =

𝛿(1 − 𝑢)𝛼 for 0 < 𝑢 < 1, 

 

               𝑔(𝑢) = 𝛿(1 − 𝑢)𝛼−1[𝛼𝑢 + (1 − 𝜎)(1 − 𝑢)] − (1 − 𝜎)𝜃,             (9) 

𝑔′(𝑢) = 𝛿𝛼(1 − 𝑢)𝛼−2[𝜎(1 − 𝑢) + (1 − 𝛼)𝑢] > 0, 

𝑔′′(𝑢) = 𝛿𝛼(1 − 𝛼)(1 − 𝑢)𝛼−3[1 + 𝜎(1 − 𝑢) + (1 − 𝛼)𝑢] > 0, 

 

𝑔(0) = (1 − 𝜎)(𝛿 − 𝜃), 𝑔(1) = ∞, 𝑔′(0) = 𝛿𝛼𝜎 > 0, and 𝑔′(1) = ∞. And constraint (4) 

becomes 

 

   (1 − 𝜎)(𝛿 − 𝜃) < 𝜌 − 𝑛 < ∞.                      (10) 

 

Figure 3 shows how a unique steady-state value of workig time (as well as schooling 

time) can be found on the basis of the above information. The graph of 𝑔(𝑢) is an 

upward sloping curve starting from the intercept 𝑔(0) = (1 − 𝜎)(𝛿 − 𝜃) and tending 

to infinity from the left of the vertical line 𝑢 = 1. The value of 𝑢∗ is that of the 

horizontal axis at the interception of the graph of 𝑔(𝑢) and the horizontal line 𝜌 −

𝑛 . Thus, inequality (1 − 𝜎)(𝛿 − 𝜃) < 𝜌 − 𝑛  in (10) gurantees that 𝑢∗ > 0 , which 

implies that workers are engaged in producing goods without fail in steady state. On 

the other hand, inequality 𝜌 − 𝑛 < ∞ in (10) gurantees that 𝑢∗ < 1, which implies 

that workers goes to school without fail in steady state. 

 

 

Figure 3. Optimal Schooling Time 1 − 𝑢∗ 
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   It is seen from Figure 3 that a decrease in 𝜌 − 𝑛 leads to a downward shift of the 

horizontal line 𝜌 − 𝑛 which in turn causes an increase in optimal schooling time 1 −

𝑢∗. Since the growth rate is an increasing function of schooling time as in Figure 2, 

the following results are established.  

 

Result 1. The more patient workers are (i.e., the smaller 𝜌 is), the higher the growth 

rate is. 

Result 2. The faster population grows (i.e., the larger 𝑛 is), the higher the growth 

rate is. 

 

An increase in the rate 𝜃 of human capital depreciation shifts the graph of 𝑔(𝑢) 

down for 1 − 𝜎 > 0 or up for 1 − 𝜎 < 0. The graph does not move for 1 − 𝜎 = 0. As 

is known from equation (8), the steady-state growth rate of human capital is the 

difference between 𝛿(1 − 𝑢∗)𝛼 and 𝜃. Since in the case of 1 − 𝜎 ≥ 0 schooling time 

1 − 𝑢∗ decreases or remains unchanged in response to an increase in 𝜃, the growth 

rate becomes lower. In the case of 1 − 𝜎 < 0, however, the two terms in equation (8) 

increase. So the effect on the growth rate of human capital cannot be seen at once. 

But simple calculations show that it is negative in the case of 1 − 𝜎 < 0 too.6 Hence 

the following result. 

 

Result 3. The smaller the rate of human capital depreciation is (i.e., the smaller 𝜃 

is), the higher the growth rate is. 

 

How about the effect of the potentially maximum growth rate 𝛿 of human capital 

on the growth rate? First notice that 𝑔′(𝑢) is always an increasing function of 𝛿. 

Next notice that when 𝛿 rises the intercept of 𝑔(𝑢), (1 − 𝜎)(𝛿 − 𝜃), goes up for 1 −

𝜎 > 0 and stays at the origin for 1 − 𝜎 = 0. Then, it is easy to know that a rise in 𝛿 

leads to an increase in schooling time which in turn brings about a higher growth 

rate of human capital for 1 − 𝜎 ≥ 0. If 1 − 𝜎 < 0, the intercept goes down in response 

to a rise in 𝛿. This makes the effect ambiguous. In fact, by total differentiation of 

equation 𝑔(𝑢) = 𝜌 − 𝑛  the following results on the relationship between 𝛿  and 

 

6 Differentiating equation 𝑔(𝑢) = 𝜌 − 𝑛 totally gives 
𝑑𝑢∗

𝑑𝜃
=

1−𝜎

𝛿𝛼(1−𝑢∗)𝛼−2[𝜎(1−𝑢∗)+(1−𝛼)𝑢∗]
< 0 

for 1 − 𝜎 < 0 . Using it, it is shown that 𝑑 (
ℎ∗̇

ℎ∗) /𝑑𝜃 = −𝛿𝛼(1 − 𝑢∗)𝛼−1 𝑑𝑢∗

𝑑𝜃
− 1 =

−
(1−𝑢∗)+(1−𝛼)𝑢∗

𝜎(1−𝑢∗)+(1−𝛼)𝑢∗ < 0. 
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schooling time 1 − 𝑢∗ can be established.7 

 

Result 4. If 1 − 𝜎 < 0, 

(1) the greater the potentially maximum growth rate of human capital is (i.e., the 

greater 𝛿 is), the longer the schooling time is for 𝑢∗ >
−(1−𝜎)

𝛼−(1−𝜎)
 or 1 − 𝑢∗ <

𝛼

𝛼−(1−𝜎)
, 

(2) the potentially maximum growth rate of human capital does not affect the 

schooling time for 𝑢∗ =
−(1−𝜎)

𝛼−(1−𝜎)
 or 1 − 𝑢∗ =

𝛼

𝛼−(1−𝜎)
, 

(3) the greater the potentially maximum growth rate of human capital is (i.e., the 

greater 𝛿 is), the shorter the schooling time is for 𝑢∗ <
−(1−𝜎)

𝛼−(1−𝜎)
 or 1 − 𝑢∗ >

𝛼

𝛼−(1−𝜎)
. 

 

As is seen from equation (8), the effect of 𝛿 on the growth rate of human capital 

appears in the product of two terms 𝛿 and (1 − 𝑢∗)𝛼. Thus, in the case of (1) and (2) 

above, the effect of 𝛿 on the growth rate of human capital is the same as in the case 

of 1 − 𝜎 ≥ 0. In the case of (3), however, the two terms change in the opposite 

directions. So the effect cannot be seen at once. But some calculations reveal that the 

effect is positive in the case of (3) too.8 Finally the considerations so far can be 

summarized as follows. 

 

Result 5. The greater the potentially maximum growth rate of human capital is (i.e., 

the greater 𝛿 is), the higher the growth rate is. 

 

In order to calculate the gross rate 𝑠∗ of saving in equation (7) explicitly, specify 

the production function as 𝑌 = 𝐾𝛽(ℎ𝑢𝑁)1−𝛽 or 𝑓 (
𝑥

𝑢
) = (

𝑥

𝑢
)

𝛽
, 0 < 𝛽 < 1. Tables 1 and 

2 illustrate numerical examples of Result 5, in which 𝜎 = 2, 𝛼 =
1

2
, 𝛽 =

1

3
,  𝜌 − 𝑛 =

0.05 , and 𝜌 + 𝜋 = 0.11 . Table 1 corresponds to Result 4 (1), where 𝛿  and the 

schooling time move in the same direction. On the other hand, Table 2 corresponds 

 

7 Differentiating equation 𝑔(𝑢) = 𝜌 − 𝑛 totally gives 
𝑑𝑢∗

𝑑𝛿
= −

(1−𝑢∗){(1−𝜎)+[𝛼−(1−𝜎)]𝑢∗}

𝛿𝛼[𝜎(1−𝑢∗)+(1−𝛼)𝑢∗]
⋚ 0 

for 𝑢∗ ⋛
−(1−𝜎)

𝛼−(1−𝜎)
 or 1 − 𝑢∗ ⋚

𝛼

𝛼−(1−𝜎)
. 

8 Using the result of the previous footnote, it is shown that 𝑑 (
ℎ∗̇

ℎ∗) /𝑑𝛿 = (1 − 𝑢∗)𝛼−1 −

𝛿𝛼(1 − 𝑢∗)𝛼−1 𝑑𝑢∗

𝑑𝛿
=

(1−𝑢∗)𝛼

𝜎(1−𝑢∗)+(1−𝛼)𝑢∗ > 0 for 𝑢∗ <
−(1−𝜎)

𝛼−(1−𝜎)
 or 1 − 𝑢∗ >

𝛼

𝛼−(1−𝜎)
. 



10 

 

to Result 4 (3), where 𝛿 and the schooling time move in the opposite directions.9 

But in either table 𝛿 and the growth rate move in the same direction as Result 5 

shows.10, 11  

 

 

Table 1. Numerical Examples for 𝑢∗ >
−(1−𝜎)

𝛼−(1−𝜎)
=

2

3
 or 1 − 𝑢∗ <

𝛼

𝛼−(1−𝜎)
=

1

3
 

Source: Author’s calculations. 

 

 

Table 2. Numerical Examples for 𝑢∗ <
−(1−𝜎)

𝛼−(1−𝜎)
=

2

3
 or 1 − 𝑢∗ >

𝛼

𝛼−(1−𝜎)
=

1

3
 

Source: Author’s calculations. 

 

 
9 As Dinerstein et al. (2022) explain, estimates of the rate of human capital depreciation 

vary considerably among the models used. They estimate the skill depreciation rate of 

teachers in Greece as 0.043. 
10 Numerical examples of Result 3 are also obtained by comparing Tables 1 and 2. For 

example, the growth rate increases from 0.04 to 0.06 if the rate 𝜃 of human capital 

depreciation falls from 0.05 to 0.01 for 𝛿 = 0.15.  
11 This paper focuses on steady states in the model, as is usual in the literrature. But 

Caballé and Santos (1993) show that there exist three kinds of transitional dynamics, 

the normal, paradoxical, and exogenous growth cases. According to them, the numerical 

examples in this paper belongs to the normal case because 𝜎 = 2 >
1

3
= 𝛽. In such a case, 

for example, a sudden increase in the steady-state physical capital moves the economy 

toward a new steady state with higher amount of both physical and human capital than 

a previous one. As in Footnote 3 let an initial condition of a previous steady state be 

𝑥(0)(= 𝐾(0)/ℎ(0)𝑁(0))  and that of a new steady state be 𝑥′(0)(= 𝐾′(0)/ℎ′(0)𝑁(0)) . 

Then, the normal case implies that 𝐾(0) < 𝐾′(0), ℎ(0) < ℎ′(0), and 𝑥(0) = 𝑥′(0). 
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4. Specifications and Some Results (2) 

This section examines the effect of the schooling-time elasticity 𝛼 of the growth 

rate of human capital on the growth rate (of the economy as a whole). To do so, 

calculate the derivative of 𝑔(𝑢) with respect to 𝛼. Then, 

 

            
𝑑𝑔(𝑢)

𝑑𝛼
= 𝛿(1 − 𝑢)𝛼−1{[(1 − 𝜎) − (1 − 𝜎 − 𝛼)𝑢]log(1 − 𝑢) + 𝑢}.        (11) 

 

In order to know the sign of the above derivative, write  

 

𝑎(𝑢) = [(1 − 𝜎) − (1 − 𝜎 − 𝛼)𝑢]log(1 − 𝑢) + 𝑢, 

 

which is part of the right-hand side of equation (11), and differentiate it once and 

twice with respect to 𝑢. Then, 

 

𝑎′(𝑢) = −(1 − 𝜎 − 𝛼) log(1 − 𝑢) −
𝛼

1−𝑢
+ 𝛼 + 𝜎, 

𝑎′′(𝑢) =
1−𝜎−𝛼

1−𝑢
−

𝛼

(1−𝑢)2.12 

 

It is easy to check that 𝑎′(0) = 𝜎. And further calculations give the following two 

kinds of facts about the slope of the graph of 𝑎′(𝑢) (i.e., the sign of 𝑎′′(𝑢)): 

 

Case 1. When 0 < 𝛼 <
1

2
 and 0 < 𝜎 < 1 − 2𝛼, 

𝑎′′(𝑢) {
> 0
= 0
< 0

   

where �̅� =
1−𝜎−2𝛼

1−𝜎−𝛼
. 

Case 2. When 0 < 𝛼 <
1

2
 and 1 − 2𝛼 ≤ 𝜎, or  

1

2
≤ 𝛼 ≤ 1 and 𝜎 > 0, 𝑎′′(𝑢) < 0. 

 

It can also be checked that 𝑎′′(1) = −∞  in either case. Using these 

considerations, the graphs of 𝑎′(𝑢) are drawn according to Cases 1 and 2 as Figure 

 

12 The third derivative becomes 𝑎′′′(𝑢) =
(1−𝜎−3𝛼)−(1−𝜎−𝛼)𝑢

(1−𝑢)3 , the sign of which can be 

negative, zero, or positive depending on the magnitudes of 𝜎 and 𝛼.  

for  0 < 𝑢 < �̅� 

for  �̅� < 𝑢 < 1 

for  𝑢 = �̅� 
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4 (1) and (2), respectively. Using Figure 4 as well as the facts that 𝑎(0) = 0 and 

𝑎(1) = −∞, the graphs of 𝑎(𝑢) are drawn according to Cases 1 and 2 as Figure 5 (1) 

and (2), respectively. Finally, on the basis of Figure 5 the following result about 

equation (11) is obtained. 

 

Result 6. There always exists 𝑢𝛼 such that 

𝑑𝑔(𝑢)

𝑑𝛼
= 𝛿(1 − 𝑢)𝛼−1𝑎(𝑢) {

> 0
= 0
< 0

   

 

 

Figure 4. Graphs of 𝑎′(𝑢) 

 

for  0 < 𝑢 < 𝑢𝛼 

for  𝑢𝛼 < 𝑢 < 1 

for  𝑢 = 𝑢𝛼 
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Figure 5. Graphs of 𝑎(𝑢) 

 

Now I am in a position to confirm the effect of the schooling-time elasticity 𝛼 of 

the growth rate of human capital on the growth rate (of the economy). Figure 6 

represents the response of the steady-state value of 𝑢 to a rise in the elasticity 𝛼. 

The steady-state value of 𝑢 increases in Panel (1), while it remains unchanged in 

Panel (2). In other words, the schooling time decreases in the former, while it does 

not change in the latter. On the other hand, it is apparent from Figure 2 that given 

𝑢∗ the growth rate of human capital decreases in response to a rise in 𝛼. Therefore, 

it can be said at once that in both cases the growth rate decreases when 𝛼 rises. 

How about the case of Panel (3) in which the schooling time increases? A rise in 𝛼 

decreases the growth rate of human capital given 𝑢∗, whereas an increase in the 

schooling time moves it in the opposite direction. By a visual inspection only the 

effect of 𝛼  on the growth rate of human capital cannot be seen. But some 

calculations reveal that the effect is positive after all.13 Hence the following result. 

 

Result 7. When an initial steady-state value of 𝑢 is smaller than (greater than or 

equal to) 𝑢𝛼 defined in Result 6, an increase in the schooling-time elasticity 𝛼 of 

the growth rate of human capital leads to an increase (a decrease) in the growth rate. 

 

13  Differentiating equation 𝑔(𝑢) = 𝜌 − 𝑛  totally gives 
𝑑𝑢∗

𝑑𝛼
= −

(1−𝑢)𝑎(𝑢)

𝛼[𝜎(1−𝑢∗)+(1−𝛼)𝑢∗]
< 0  for 

𝑢∗ < 𝑢𝛼. Using it, it is shown that 𝑑 (
ℎ∗̇

ℎ∗) /𝑑𝛼 =
𝑑𝑢∗

𝑑𝛼
𝛿(1 − 𝑢∗)𝛼 log(1 − 𝑢∗) > 0. 
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For example, when 𝜎 = 2 and 𝛼 =
1

2
 as in Tables 1 and 2, 𝑎(𝑢) = (−1 +

3

2
𝑢)log(1 −

𝑢) + 𝑢 . Thus, 𝑢𝛼 = 0.91  by solving 𝑎(𝑢) = 0 . Since 𝑢∗ < 𝑢𝛼  for all examples in 

Tables 1 and 2, Result 7 implies that an increase in 𝛼 from 
1

2
 causes each growth 

rate to rise ceteris paribus. 
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Figure 6. Response of the Steady-State Value 𝑢∗ to a Rise in the Elasticity 𝛼 

 

5. Conclusion 

By specifying the learning function in the endogenous growth model of Lucas 

(1990) and Caballé and Santos (1993), this paper examined how the growth rate of 

the economy is affected by changes in various parameters in the model. It is schooling 

time or education that matters in the analysis. It is concluded that the growth rate 

becomes higher if workers become more patient, population grows faster, the rate of 

human capital depreciation becomes smaller, or the potentially maximum growth 

rate of human capital becomes bigger. These results may be intuitively expected, 

though they cannot always be established easily due to the existence of conflicting 

effects. When it comes to the effect of the schooling-time elasticity of the growth rate 

of human capital (i.e., the exponent of the learning function), it depends on the 

magnitudes of an initial steady-state value of schooling time 1 − 𝑢∗ and its critical 

value 1 − 𝑢𝛼. That is, if the former exceeds (does not exceed) the latter, an increase 

in the schooling-time elasticity leads to an increase (a decrease) in the growth rate. 

   Finally two limitations should be mentioned. First, needless to speak, the results 

of this paper is based on a particlur form of a learning function. It is an open question 

whether other learning functions support them or not. Second, it is not obvious how 

these theoretical results are related to empirical facts. Actually it seems, according 

to Savvides and Stengos (2009), that there is a nonlinear relationship between 

human capital and economic growth. I.e., for countries with low levels of human 

capital (measured by mean years of schooling) the effect on economic growth is 
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negative, while it becomes positive at middle levels. For countries with high human 

capital, the positive effect becomes weak. The model of this paper cannot explain all 

of them. Numerical examples in Tables in 1 and 2 may correspond respectively to 

middle-level and low-level countries to some extent.  
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Appendix 

Let 𝑘  denote per capita capital stock 
𝐾

𝑁
. Then, the steady-state utility is 

calculated as follows.  

 

                       𝑈∗ = ∫
[(1 − 𝑠∗)𝑦∗]1−𝜎

1 − 𝜎

∞

0

𝑒−(𝜌−𝑛)𝑡𝑑𝑡 

                             = ∫
[(1 − 𝑠∗)ℎ(0)𝑒[𝐺(1−𝑢∗)−𝜃]𝑡𝑢∗𝑓 (

𝑥∗

𝑢∗)]
1−𝜎

1 − 𝜎

∞

0

𝑒−(𝜌−𝑛)𝑡𝑑𝑡

= ∫
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑠∗𝑢∗𝑓 (
𝑥∗

𝑢∗)] ℎ(0)}
1−𝜎

1 − 𝜎

∞

0

𝑒−{𝜌−𝑛−(1−𝜎)[𝐺(1−𝑢∗)−𝜃]}𝑡𝑑𝑡

=
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗[𝑛 + 𝜋 + 𝐺(1 − 𝑢∗) − 𝜃]] ℎ(0)}
1−𝜎

1 − 𝜎
∫ 𝑒−𝑢∗𝐺′(1−𝑢∗)𝑡𝑑𝑡

∞

0

 

                              =
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗[𝜌 + 𝜋 + 𝜎[𝐺(1 − 𝑢∗) − 𝜃] − 𝑢∗𝐺′(1 − 𝑢∗)]] ℎ(0)}
1−𝜎

(1 − 𝜎)𝑢∗𝐺′(1 − 𝑢∗)
 

                               =
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗ (𝑓′ (
𝑥∗

𝑢∗) − 𝑢∗𝐺′(1 − 𝑢∗))] ℎ(0)}
1−𝜎

(1 − 𝜎)𝑢∗𝐺′(1 − 𝑢∗)
 

                              =
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗𝑓′ (
𝑥∗

𝑢∗)] ℎ(0) + 𝑢∗𝐺′(1 − 𝑢∗)𝑘(0)}
1−𝜎

(1 − 𝜎)𝑢∗𝐺′(1 − 𝑢∗)
 

 

because of equations (2), (4), (5), and (6), and the assumption that 𝑥∗ =
𝐾(0)

ℎ(0)𝑁(0)
=

𝑘(0)

ℎ(0)
. 
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Thus, the effects of initial conditions of per capita capital stocks on the steady-

state utility are calculated as 

 

𝜕𝑈∗

𝜕ℎ(0)
=

𝑓(
𝑥∗

𝑢∗)−
𝑥∗

𝑢∗𝑓′(
𝑥∗

𝑢∗)

𝐺′(1−𝑢∗)
{[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗𝑓′ (
𝑥∗

𝑢∗)] ℎ(0) + 𝑢∗𝐺′(1 − 𝑢∗)𝑘(0)}
−𝜎

, 

𝜕𝑈∗

𝜕𝑘(0)
= {[𝑢∗𝑓 (

𝑥∗

𝑢∗) − 𝑥∗𝑓′ (
𝑥∗

𝑢∗)] ℎ(0) + 𝑢∗𝐺′(1 − 𝑢∗)𝑘(0)}
−𝜎

. 

 

𝜕𝑈∗

𝜕ℎ(0)
 and 

𝜕𝑈∗

𝜕𝑘(0)
 correspond respectively to 𝑣∗ and 𝑞∗ in Uzawa (1965) in which 𝜎 =

0. 
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