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Abstract

Interval games are an extension of cooperative coalitional games in which players are assumed to
face payoff uncertainty as represented by a closed interval. In this study, we examine two interval-
game versions of Shapley values (i.e., the interval Shapley value and the interval Shapley-like value),
and characterize them using an axiomatic approach. For the interval Shapley value, we show that the
existing axiomatization can be generalized to a wider subclass of interval games called size monotonic
games. For the interval Shapley-like value, we show that a standard axiomatization using Young’s strong
monotonicity holds on the whole class of interval games.
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1 Introduction

This paper examines interval cooperative games in which players face payoff uncertainty. Characteristic
functions thus assign a closed interval rather than a real number that would be assigned in traditional
coalitional games. Interval games were introduced by Branzei et al. [7] and various solution concepts have
subsequently been proposed and examined by Alparslan Gök et al. [5], Liang and Li [11], Meng et al. [12],
and Shino et al. [16], among others.1

In this paper, we revisit existing solution concepts for interval games and investigate their properties
using an axiomatic approach. More particularly, we focus on the interval Shapley value (ISV) developed
by Alparslan Gök et al. [4] and the interval Shapley-like value (ISLV) by Han et al. [9], both of which are
based on the Shapley value [14] for classical coalitional games. For the ISV, we show that the domain of
interval games covered by existing axiomatizations can be widened substantially. For the ISLV, we show
that a standard axiomatization using the strong monotonicity by Young [17] holds for all interval games.

The remainder of the paper is as organized as follows. Section 2 briefly reviews the models and solution
concepts. The main results are presented in Section 3. Section 4 concludes.

∗This work is supported by JSPS Core-to-Core Program, A. Advanced Research Networks.
†Waseda Institute of Political Economy, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo, Japan 169-8050
‡(Corresponding author) School of International Liberal Studies (SILS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku,

Tokyo, Japan 169-8050; junnosuke.shino@waseda.jp
1For more details on the literature, including applications of interval games, see Alparslan Gök [1], Branzei et al. [6], and

Ishihara and Shino [10].
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2 Models and Solution Concepts

2.1 Coalitional games and interval games

An n-person coalitional game or a transferable utility game is a pair (N,v), where N = {1,2, . . . ,n} is a set
of players and v : 2N → R is a characteristic function that associates a real number v(S) ∈ R with each set
S ⊂ N , with the condition that v(∅) = 0. For a coalition S, let |S | be the number of players in S. A number
v(S) is called the worth of S. We refer to S and N as a coalition and grand coalition, respectively. Let CG
be the set of all coalitional games with player set N .

Similar to an n-person coalitional game (N,v), an n-person interval game is defined as a pair (N,w),
where N is a set of players and w is a characteristic function of type 2N → I (R) with w(∅) = [0,0],
where I (R) is the set of all closed and bounded intervals in R. Therefore, an interval game differs from
a coalitional form game in that w assigns a closed interval to each coalition (instead of a real number).
Interval w(S) is called the worth set of S and the minimum and the maximum of w(S) are denoted by
w(S) and w(S), respectively, that is, w(S) = [w(S),w(S)]. An interval game (N,w) considers a situation
in which the players face “interval uncertainty,” in that they know that a coalition S could have w(S) as the
minimal reward and w(S) as the maximal reward, but they do not know which of these will be realized. Let
IG be the set of all interval games with player set N . For simplicity, we denote n-person interval games
(N,w) by w.

We provide some interval calculus notations. For a positive number a and a closed interval I = [I, I], we
define aI = [aI, aI]. Let I = [I, I] and J = [J, J] be two closed intervals. First, when (I+ I)/2 = (J+ J)/2,
which means that the medians of the two intervals are identical, we denote this by I ∼ J. Second, if I ≥ J
and I ≥ J, we denote it by I ≥ J. Third, if (I + I)/2 ≥ J + J/2, then we denote it by I ≿ J. The sum
of I and J, denoted by I + J, is given as I + J = [I + J, I + J]. For subtraction between intervals, on the
other hand, there are different definitions. First, following Alparslan Gök et al. [3], the partial subtraction
operator denoted by “−” is defined as I − J = [I − J, I − J]. Note that the partial subtraction operator is
only defined for an ordered interval pair, i.e., (I, J) ∈ I (R) × I (R) satisfying J − J ≤ I − I. Alternatively,
Moore’s [13] subtraction operator which we denote by “ −⃝” is given by: I −⃝J = [I − J, I − J]. In contrast to
the partial subtraction operator, Moore’s operator can be defined for any interval pairs (I, J) ∈ I (R) × I (R).

Players i and j are symmetric if w(S ∪ {i}) = w(S ∪ { j}) for every S ⊂ N \ {i, j}. i is a dummy player
if w(S ∪ {i}) = w(S) + w({i}) for every S ∈ 2N\{i }. For different interval games w′,w′′ ∈ IG, the sum of
the interval games w′ + w′′ ∈ IG is also an interval game itself, defined by (w′ + w′′)(S) = w′(S) + w′′(S)
for every S ∈ 2N . w ∈ IG is called size monotonic if w(S) − w(S) ≤ w(T ) − w(T ) for every S,T ∈ 2N

with S ⊂ T . Let SMIG be the set of all size monotonic interval games. For S ∈ 2N \{∅} and IS ∈ I (R), the
unanimous interval game ISuS is defined as:

ISuS (T ) =
 IS if T ⊃ S

[0,0] otherwise.

Let K IG be the set of all interval games that can be expressed as a sum of unanimous interval games. The
following remark and example indicate that K IG covers only a small range of interval games.

Remark 2.1 It holds that K IG ⊂ SMIG.2

2Alparslan Gök. [2] and Alparslan Gök et al.[4] noted this property without proof. Our proof is available on request.
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Example 2.1 For an arbitrary three-person coalitional game v ∈ CG and for positive real numbers ϵ and
δ, we define the three-person interval game wv,ϵ,δ as follows: w(∅) = [0,0], w({1}) = [v({1})−ϵ,v({1})+ϵ],
w({2}) = [v({2}) − ϵ,v({2}) + ϵ], w({3}) = [v({3}) − ϵ,v({3}) + ϵ], w({1,2}) = [v({1,2}) − δ,v({1,2}) + δ],
w({1,3}) = [v({1,3})− δ,v({1,3})+ δ], w({2,3}) = [v({2,3})− δ,v({2,3})+ δ], w({1,2,3}) = [v({1,2,3})−
3ϵ,v({1,2,3}) + 3ϵ]. wv,ϵ,δ corresponds to the situation in which the degree of uncertainty depends only
on the number of coalitions, and the uncertainty regarding the worth of the grand coalition is three times
larger than that of the singleton coalition. Note that wv,ϵ,δ ∈ SMIG when ϵ ≤ δ ≤ 3ϵ , but wv,ϵ,δ ∈ K IG
only when δ = 2ϵ .

2.2 Solution concepts

Let a subset of IG be K . A (single-valued) interval solution on K is a function f that associates a single
n-dimensional interval vector f (w) ∈ I (R)n with each game w ∈ K . This study focuses on two existing
interval solutions, i.e., the ISV and ISLV, and investigates their axiomatic characterization. Whereas the
ISLV is an interval solution on IG, the ISV is an interval solution on SMIG, i.e., a subclass of IG, because
it is defined by using the partial subtraction operator.

For w ∈ SMIG, the ISV, denoted by Ψ(w) =
(
Ψ1(w), ...,Ψn (w)

)
, is defined as:

For i ∈ N, Ψi (w) =
∑

S∈2N \{i }

|S |!(|N | − |S | − 1)!
|N |! {w(S ∪ {i}) − w(S)}.

For w ∈ IG, the ISLV, denoted by Φ(w) =
(
Φ1(w), ...,Φn (w)

)
, is defined as:

For i ∈ N, Φi (w) =
∑

S∈2N \{i }

|S |!(|N | − |S | − 1)!
|N |! {w(S ∪ {i}) −⃝w(S)}.

It is worth noting the following regarding the relationship between the ISV and the ISLV:

Lemma 2.1 For any w ∈ SMIG and i ∈ N, Ψi (w) ⊂ Φi (w).3

3 Main Results

This section reviews existing axiomatizations of the ISV and ISLV and investigates their properties further
using a new axiomatic approach. First, following the analysis of strong monotonicity in coalitional games
by Peleg and Sudhölter [15], we define the following:

D (w) = {S ⊂ N | there exists T ⊂ S with w(T ) , [0,0]}
Dm (w) = {S ∈ D (w) | ∄T ∈ D (w) with T ⊊ S}

S0(w) =
∩
{S | S ∈ Dm (w)}

Dm (w) is the set of minimal coalitions in D(w). Note that at least one player in S0(w) is not included in
T . Then, w(T ) = [0,0].

3The proof is available on request.
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3.1 Results for the interval Shapley value

For the ISV, we consider the following axioms.

• Axiom 1: Efficiency [EF] *,
∑
i∈N

f i (w) = w(N )+-
(
∀w ∈ IG

)
• Axiom 2: Symmetry [SYM](

f i (w) = f j (w)
) (

if w(S ∪ {i}) = w(S ∪ { j}) ∀S ∈ 2N\{i, j })
• Axiom 3: Dummy Player Property [DP](

f i (w) = w({i})
) (

if w(S ∪ {i}) = w(S) + w({i}) ∀S ∈ 2N\{i })
• Axiom 4: Additivity [AD](

f i (w′ + w′′) = f i (w′) + f i (w′′)
) (
∀w′,w′′ ∈ IG

) (
∀i ∈ N

)
• Axiom 5: Strong Monotonicity w.r.t. the Partial Operator [SM-P](

f i (w) ≥ f i (w′)
) (

if w(S ∪ {i}) − w(S) ≥ w′(S ∪ {i}) − w′(S) ∀S ∈ 2N\{i })
The existing axiomatizations for the ISV have been implemented only for KIG games. Namely, Al-

parslan Gök et al. [4] showed that, within KIG games, the ISV is the unique solution that satisfies EF,
SYM, DP, and AD. Similarly, Alparslan Gök [2] showed that, within KIG games, the ISV is the unique
solution that satisfies EF, SYM, and SM-P.

For the ISV, our main results are Theorem 3.1 and Theorem 3.2 below. Note that because the ISV
is defined on SMIG, each theorem shows that its associated axiomatization is implemented on the largest
possible domain of the interval games.

Theorem 3.1 For any w ∈ SMIG, the ISV is the unique solution that satisfies EF, SYM, DP, and AD.

Theorem 3.2 For any w ∈ SMIG, the ISV is the unique solution that satisfies EF, SYM, and SM-P.

Proof of Theorem 3.1. Alparslan Gök et al.[4] showed that the ISV satisfies EF, SYM, DP, and AD on
SMIG. Therefore, it suffices to show its uniqueness. The following Lemmas 3.1 to 3.5 are necessary to
show the uniqueness, and all proofs are from Shino et al. [16].

Lemma 3.1 For a coalition R, we define a coalitional form game vR ∈ G as:

vR (S) =
 1 if R ⊂ S

0 otherwise.

Then, for any w ∈ IG, there uniquely exists 2(2n − 1) real numbers (cR , cR : R ⊂ N ) that satisfy

vw =
∑
R⊂N

cRvR , vw =
∑
R⊂N

cRvR where
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cR =
∑
T ⊂R

(−1) |R |− |T |vw (T ), cR =
∑
T ⊂R

(−1) |R |− |T |vw (T ).

Lemma 3.2 For any coalition R ⊂ N, w +
∑

R:cR>cR

[−cR , − cR]vR =
∑

R:cR ≤cR

[cR , cR]vR .

Lemma 3.3 Suppose that a solution for SMIG f satisfies EF, SYM, and DP. Then, for the interval game
[c, c]vR (Note : c ≤ c),

f i ([c, c]vR) =
 [c, c]/|R| if i ∈ R

[0, 0] otherwise.

Proof. See Alparslan Gök et al.[4].

Lemma 3.4 Let ϕ be the Shapley value for coalitional games. Then, it holds that ϕi (vw ) =
∑

R∋i (cR/|R|)
and ϕi (vw ) =

∑
R∋i (cR/|R|).

Lemma 3.5 Let ϕ be the Shapley value for coalitional games. Then, the ISV for w ∈ SMIG is Ψi (w) =
[ϕi (vw ), ϕi (vw )] and ϕi (vw ) ≤ ϕi (vw ).

Proof of Theorem 3.1. (cont.) Suppose that solution f satisfies EF, SYM, DP, and AD. Then, it suffices
to show that f = ψ. For an interval game w ∈ SMIG, from Lemma 3.1, Lemma 3.2, and AD, it follows
that f i (w) +

∑
R:cR>cR

f i ([−cR , − cR]vR) =
∑

R:cR ≤cR
f i ([cR , cR]vR). From Lemma 3.3, it also holds

that f i (w) +
∑

R∋i:cR>cR
([−cR , − cR]/|R|) = ∑R∋i:cR ≤cR

([cR , cR]/|R|). Now, from Lemma 3.4,

∑
R∋i:cR ≤cR

cR
|R| −

∑
R∋i:cR>cR

−cR
|R| =

∑
R∋i

cR
|R| = ϕi (vw )

∑
R∋i:cR ≤cR

cR
|R| −

∑
R∋i:cR>cR

−cR
|R| =

∑
R∋i

cR
|R| = ϕi (vw ).

Therefore, from Lemma3.5, we can subtract the interval
∑

R∋i:cR>cR
([−cR , −cR]/|R|) from the interval∑

R∋i:cR ≤cR
([cR , cR]/|R|), and it follows that:

f i (w) =
∑

R∋i:cR ≤cR

[cR , cR]

|R| −
∑

R∋i:cR>cR

[−cR , − cR]

|R| = [ϕi (vw ), ϕi (vw )].

Therefore, from Lemma 3.5, f i (w) = Ψi (w). □

Next, we prove Theorem 3.2.
Proof of Theorem 3.2. For SMIG, Alparslan Gök et al.[4] showed that the ISV satisfies EF and SYM, and
Alparslan Gök.[2] showed that it satisfies SM-P. Therefore, it suffices to show its uniqueness, i.e., a solution
f for w ∈ SMIG satisfying EF, SYM, and SM-P must be identical to Ψ.

Following Peleg and Sudhölter.[15], we use mathematical induction regarding |D (w) |. If |D (w) | = 0,
then f i (w) = [0,0] for every i ∈ N by EF and SYM. Because Ψi (w) = [0,0] for every i, f (w) = Ψ(w).
Now, assume that f (w) = Ψ(w) for any w ∈ SMIG satisfying |D (w) | ≤ k and consider any w ∈ SMIG
satisfying |D (w) | = k + 1. For S ∈ Dm (w), we define wS ∈ IG as wS (T ) = w(S ∩ T ) for all T ⊂ N and
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let w′ ∈ IG be defined by w′ = w − wS . Because S ∈ Dm (w), the following holds:

wS (T ) =
 w(S) if T ⊃ S

[0,0] otherwise
w′(T ) =

 w(T ) − w(S) if T ⊃ S
w(T ) otherwise

Note that if T ⊃ S, then w(T ) − w(S) is an interval because w ∈ SMIG.
w′(T ∪ {i}) − w′(T ) = w(T ∪ {i}) − w(T ) holds for all T ⊂ N because for every i ∈ N\S the following

is true:

w′(T ∪ {i}) =
 w(T ∪ {i}) − w(S) if T ⊃ S

w(T ∪ {i}) otherwise.

First, because f satisfies SM-P, (i) f i (w′) = f i (w) for all i ∈ N\S. Second, because |D (w′) | ≤ k,
and from the assumptions, (ii) f i (w′) = Ψi (w′) for all i ∈ N\S. Finally, because Ψ satisfies SM-P, (iii)
Ψi (w′) = Ψi (w) for all i ∈ N\S. From (i)–(iii), it holds that f i (w) = Ψi (w) for every i ∈ N\S. As this
holds for every S ∈ Dm (w), we have:

f i (w) = Ψi (w) ∀i ∈ N\S0(w). (1)

As w(T ) = [0, 0] for every T satisfying S0(w)\T , ∅, w(S∪{i}) = w(S∪{ j}) = [0, 0] for every i, j ∈ S0(w)
and all S ∈ 2N\{i, j }. Furthermore, f i (w) = f j (w) and Ψi (w) = Ψj (w) hold because f and Ψ satisfy SYM.
Therefore, from EF and (1), we have:

f i (w) = Ψi (w) ∀i ∈ S0(w). (2)

(1) and (2) imply that f (w) = Ψ(w). □

3.2 Results for the interval Shapley-like value

For the ISLV, in addition to SYM and AD, the following axioms are considered.

• Axiom 6: Indifference Efficiency [IEFF]

*,
∑
i∈N

f i (w) ∼ w(N )+-
(
∀w ∈ IG

)
• Axiom 7: Indifference Null Player Property [INP]

∃t ∈ R with t ≥ 0 s.t.
(

f i (w) = [−t, t]
) (

if w(S ∪ {i}) = w(S) ∀S ∈ 2N\{i })
• Axiom 8: Strong Monotonicity w.r.t. Moore’s operator [SM-M](

f i (w) ≿ f i (w′)
) (

if w(S ∪ {i}) −⃝w(S) ≿ w′(S ∪ {i}) −⃝w′(S) ∀S ∈ 2N\{i })
Gallardo and Jiménez-Losada[8] showed that, in any interval game w, the ISLV is the unique solution that
satisfies IEFF, SYM, INP, and AD.

Newly introduced in our study, Axiom SM-M is a natural extension of strong monotonicity using
Moore’s subtraction operator. The main result for the ISLV is as follows:
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Theorem 3.3 For any w ∈ IG, the ISLV is the unique solution that satisfies IEFF, SYM, and SM-M.

We prove Theorem 3.3 by using the following Lemma 3.6 to Lemma 3.8.

Lemma 3.6 For intervals I1,I2 and J, (I1 −⃝J) −⃝(I2 −⃝J) ∼ I1 −⃝I2.

Proof. Since I1 −⃝J = [I1 − J, I1 − J] and I2 −⃝J = [I2 − J, I2 − J], the median of (I1 −⃝J) −⃝(I2 −⃝J) =
[I1 − J − I2 + J, I1 − J − I2 + J] is (I1 − J − I2 + J + I1 − J − I2 + J)/2 = (I1 − I2 + I1 − I2)/2. Also, the
median of I1 −⃝I2 = [I1 − I2, I1 − I2] is (I1 − I2 + I1 − I2)/2. □

Lemma 3.7 For positive numbers a1,a2 and intervals I1,I2,J1,J2, if I1 ≿ J1 and I2 ≿ J2, then a1I1 + a2I2 ≿

a1 J1 + a2 J2.

Proof. If I1 ≿ J1,I2 ≿ J2, then (I1 + I1)/2 ≥ (J1 + J1)/2 and (I2 + I2)/2 ≥ (J2 + J2)/2, implying that
(a1I1 + a2I2 + a1I1 + a2I2)/2 ≥ (a1 J1 + a2 J2 + a1 J1 + a2 J2)/2. Therefore a1I1 + a2I2 ≿ a1 J1 + a2 J2. □

Lemma 3.8 The ISLV satisfies IEFF, SYM, and SM-M.

Proof. As Han et al. [9] showed that the ISLV satisfies IEFF and SYM, it suffices to show that the ISLV
satisfies SM-M. For S ∈ 2N\{i }, if w(S ∪ {i}) −⃝w(S) ≿ w′(S ∪ {i}) −⃝w′(S), then:∑

S∈2N \{i }

|S |!(|N | − |S | − 1)!
|N |! {w(S ∪ {i}) −⃝w(S)} ≿

∑
S∈2N \{i }

|S |!(|N | − |S | − 1)!
|N |! {w′(S ∪ {i}) −⃝w′(S)}

is true by Lemma 3.7. Therefore, Φi (w) ≿ Φi (w′). □

Proof of Theorem 3.3. Suppose a solution f satisfies IEFF, SYM, and SM-M. Then, we show that
f i (w) ∼ Φi (w) for every i ∈ N by mathematical induction regarding |D (w) |. If |D (w) | = 0, then
f i (w) = [0, 0] for every i ∈ N by IEFF and SYM. As Φi (w) = [0, 0], f i (w) ∼ Φi (w) for every i ∈ N .
Assume that for any w ∈ IG satisfying |D (w) | ≤ k, f i (w) ∼ Φi (w) holds for every i ∈ N and consider
w ∈ IG satisfying |D (w) | = k + 1. For S ∈ Dm (w), we define wS ∈ IG as wS (T ) = w(S ∩ T ) for all
T ⊂ N . As S ∈ Dm (w),

wS (T ) =
 w(S) if T ⊃ S

[0,0] otherwise

holds. We define w′ ∈ IG as follows:

w′(T ) =


w(T ) −⃝w(S) if T ⊋ S

[0,0] if T = S
w(T ) otherwise.

Note that for every i ∈ N\S, the following holds:

w′(T ∪ {i}) =


w(T ∪ {i}) −⃝w(S) if T ⊋ S
w(T ∪ {i}) −⃝w(T ) if T = S

w(T ∪ {i}) otherwise.

Therefore, from Lemma 3.6, w′(T ∪ {i}) −⃝w′(T ) ∼ w(T ∪ {i}) −⃝w(T ) for all T ⊂ N .
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First, as f satisfies SM-M, (i) f i (w′) ∼ f i (w) for all i ∈ N\S. Second, as |D (w′) | ≤ k and from
the assumptions, (ii) f i (w′) ∼ Φi (w′) for all i ∈ N\S. Finally, because Φ satisfies SM-M from Lemma
3.8, (iii) Φi (w′) ∼ Φi (w) for all i ∈ N\S. From (i)–(iii), it holds that f i (w) ∼ Φi (w) for every i ∈ N\S.
Because this holds for every S ∈ Dm (w),

f i (w) ∼ Φi (w) ∀i ∈ N\S0(w). (3)

As w(T ) = [0, 0] for every T satisfying S0(w)\T , ∅, w(S∪{i}) = w(S∪{ j}) = [0, 0] for every i, j ∈ S0(w)
and all S ∈ 2N\{i, j }. Furthermore, as f satisfies SYM, f i (w) = f j (w) and Φ also satisfies SYM by Lemma
3.8, it holds that Φi (w) = Φ j (w). Therefore, from IEFF and (3),

f i (w) ∼ Φi (w) ∀i ∈ S0(w). (4)

(3) and (4) implies f i (w) ∼ Φi (w) for every i ∈ N . □

4 Conclusion

In this study, we investigate two interval-game versions of the Shapley value, i.e., the ISV and ISLV and
characterize them with a new axiomatic approach. For the ISV, we show that the existing axiomatization
can be generalized to a wider subclass of interval games called size monotonic games. For the ISLV, we
show that a standard axiomatization using Young’s strong monotonicity holds on the whole class of interval
games. It should be noted that those results can be derived by focusing on |D(w) |, following Peleg and
Sudhölter.[15], rather than on games expressed as a sum of unanimous interval games (KIG). Furthermore,
although the existing axiomatizations employ different approaches, we axiomatize the ISV and ISLV in a
unified way in the proofs. Regarding further research, Shino et al. [16] proposed a third interval-game
version of the Shapley value, called Shapley mapping. It has been characterized by some axiomatizations
in [16] but not yet by one that includes strong monotonicity. It would be worthwhile investigating this topic
in future.
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