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Abstract

The Nash bargaining solution (Nash, 1950, 1953) is the most used game theory tool
for analyzing bargaining problems. Its validity is examined from an equilibrium analysis
using a non-cooperative game such as Nash’s demand game (NDG). Since the NDG has
multiple equilibria, we need an equilibrium selection. In this note, we apply the Harsanyi and
Selten (1988)’s risk-dominance criterion to the NDG. We show that in a wide class of utility
functions, the risk-dominant equilibrium of the NDG coincides with the Nash bargaining
solution.
Keywords: Bargaining theory, Nash bargaining solution, Nash demand game, Risk domi-
nance, Risk aversion
JEL Classification: C78, D1

1. Introduction

The Nash bargaining solution (Nash, 1950) is the most used game theory tool for analyzing
bargaining problems. Its application is enormous such as the analysis of wage negotiations (Grout,
1984; Svejnar, 1986), the formation of trade unions (Abrego et al., 2001), and international
agreements on global warming (Yu et al., 2017).

The validity of the Nash bargaining solution is examined from an equilibrium analysis using a
non-cooperative game such as the demand game introduced by Nash (1953). Since there are
many equilibria in Nash’s demand game (NDG), Nash uses the smoothing approach to narrow
down the equilibria and shows the consistency with the Nash bargaining solution.

Harsanyi and Selten (1988) established a theory of equilibrium selection in a non-cooperative game.
Among their ideas, the risk-dominance criterion has been shown to help explain experimental
data. Harsanyi and Selten (1988) found that in the unanimous bargaining game, which is a
simplified version of the NDG, the risk dominance leads to an outcome of the Nash bargaining
solution. However, the relationship between the risk-dominant equilibrium of the NDG and the
Nash bargaining solution has not been clarified.

This note aims to bridge the gap between the two outstanding achievements in game theory.
We reveal the relationship between the risk-dominant equilibrium of the NDG and the Nash
bargaining solution. We show that the risk-dominant equilibrium in NDG is consistent with
the Nash bargaining solution for a comprehensive class of utility functions. This result is a
generalization of Anbarci and Feltovich (2013), who showed consistency in a particular class of
utility functions.

The paper is organized as follows. Next section explains our setup of the bargaining problem.
Section 3 gives our main results.

∗Waseda University, yoshio.kamijo@gmail.com
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2. Simple bargaining problem

We consider a simple bargaining problem for a fixed amount of divisible goods like money, assets,
and real estate. The pie size is 𝑀 that can be split between two bargainers 1 and 2. Let each
share be 𝑥1, 𝑥2 with 𝑥1 + 𝑥2 = 𝑀. If negotiations break down, each gets 𝑣1 ≧ 0, 𝑣2 ≧ 0 of the
divisible goods. We assume there is room to bargain for the division of 𝑀, that is, 𝑣1 + 𝑣2 < 𝑀.
Let 𝑢𝑖, 𝑖 = 1, 2 be a utility function of bargainer 𝑖, which satisfies the continuity and 𝑢′ > 0. Let
𝑑 = (𝑢1(𝑣1), 𝑢2(𝑣2)) be the pair of utilities when the bargaining breaks down. Then, the set of
possible pair of utilities through bargaining agreement is

𝑍 = {(𝑧1, 𝑧2) ∶ ∃(𝑥1, 𝑥2) with 𝑥1 + 𝑥2 = 𝑀 such that (𝑧1, 𝑧2) ≦ 𝑑}.

The bargaining problem is which point in 𝑍 the bargainers agree on as the bargaining outcome.
Nash bargaining solution is widely accepted as its several normative properties (Nash, 1950,
1953; Rubinstein et al., 1992) and positive interpretations (Nash, 1953; Binmore et al., 1986;
Young, 1993; Rubinstein et al., 1992). The Nash bargaining solution chooses the utility pair
that maximizes the Nash product that is defined as the product of utility differences from
disagreement to agreement among the two bargainers:

𝑁𝑃(𝑥1, 𝑥2) = (𝑢1(𝑥1) − 𝑢1(𝑣1)) × (𝑢2(𝑥2) − 𝑢2(𝑣2)).

Then, the Nash bargaining solution is the solution to the following maximization problem.1

max 𝑁𝑃(𝑥1, 𝑥2)

𝑠.𝑡. 𝑥1 + 𝑥2 = 𝑀, 𝑥1 ≧ 𝑣1, 𝑥2 ≧ 𝑣2.

We assume that there exists a unique maximizer of this problem.

3. Risk dominance and the Nash demand game

In the Nash demand game (NDG), two players simultaneously report their demand 𝑥𝑖 for 𝑖 = 1, 2,
0 ≦ 𝑥𝑖 ≦ 𝑀, and if it matches to the constraint (i.e., 𝑥1 + 𝑥2 ≦ 𝑀), they obtain the demanded
amount. In contrast, if the pair of their demand is not feasible (𝑥1 + 𝑥2 > 𝑀), they obtain their
disagreement outcome 𝑣𝑖 for 𝑖 = 1, 2.

A unanimous bargaining game (UBG) considered in Harsanyi and Selten (1988) is very close to
the NDG but different in that it requires the perfect match of the two demands. That is, they
obtain 𝑥1 and 𝑥2 only when 𝑥1 + 𝑥2 = 𝑀 in the UBG.

These two games have many Nash equilibria. Among them, the efficient one is characterized as
follows: (𝑥1, 𝑥2) with 𝑥1 + 𝑥2 = 𝑀 and 𝑥𝑖 ≧ 𝑣𝑖 for 𝑖 = 1, 2.

Since there still exists an enormous number of efficient Nash equilibria, the efficiency is still
insufficient to select one equilibrium. In this paper, we focus on the problem of choosing one
equilibrium among the efficient equilibria.

Harsanyi (1982) consider the player’s thought process that generates the prior of the opponent’s
choice. The following is the two-player version of such a process.2

1In this paper, an outcome (𝑥∗
1, 𝑥∗

2) that maximizes 𝑁𝑃(𝑥1, 𝑥2) is called the Nash bargaining solution because
we focus on the outcome of the bargaining.

2𝑛-player version of the process is almost the same as the one we explain here. A critical assumption on the
𝑛-player version is that in 𝑖’s belief, 𝑗 believes that all other players choose 𝑥−𝑗 in probability 𝑧, and 𝑦−𝑗 in
probability 1 − 𝑧. Thus, 𝑗 believes in the perfect coordination of the other players. In addition, it is assumed that
after the thought process, all 𝑖 ≠ 𝑗 reach the same prior distribution about 𝑗’s choice. In other words, all players
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• Take arbitrary two efficient equilibrium 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2). Consider a situation
called a 𝑥 ∶ 𝑦 uncertainty, where both players are wondering between equilibria 𝑥 and 𝑦,
and face uncertainty about the opponent’s choice

• Player 𝑖 ∈ {1, 2} thinks that
– player 𝑗 ≠ 𝑖 believes that player 𝑖 chooses 𝑥𝑖 in probability 𝑞, and chooses 𝑦𝑖 in 1 − 𝑞
– given 𝑞, player 𝑗 chooses the best response to the mixed strategy. Here 𝑗’s choice is

not restricted to {𝑥𝑗, 𝑦𝑗} and can choose any strategy from 𝑗’s strategy set. If there
are multiple best responses, 𝑗 chooses the centroid best reply where 𝑗 chooses every
pure-strategy best response in equal probability

– this 𝑞 follows the uniform distribution on [0, 1]
• From such belief, player 𝑖 calculates a prior probability distribution about the choice of

player 𝑗

Player 𝑖 best replies to a prior distribution of the opponent’s behavior, where 𝑖’s choice is not
restricted to {𝑥𝑖, 𝑦𝑗}. The best reply is denoted by 𝑠∗

𝑖 , and we tell that player 𝑖 has a risk
preference to 𝑠∗

𝑖 for the 𝑥 ∶ 𝑦 uncertainty.

Both players consider the above way and determine their risk preference to the situation of the
𝑥 ∶ 𝑦 uncertainty. When every player has a unique risk preference, the results are one of the
following three situations:

• (R1) if (𝑠∗
1, 𝑠∗

2) = 𝑥, 𝑥 risk-dominates 𝑦,
• (R2) if (𝑠∗

1, 𝑠∗
2) = 𝑦, 𝑦 risk-dominates 𝑥,

• (R3) otherwise, we need a tracing procedure of Harsanyi (1975) that starts from an
initial prior (𝑠∗

1, 𝑠∗
2) and determines which equilibrium is achieved as the result of players’

continuous thought process.

Although the above method is complicated, it is well known that there is a convenient way to
detect the risk dominance in a two-by-two game (see Table 1). Suppose that (𝑠1, 𝑠2) and (𝑡1, 𝑡2)
are strict Nash equilibria (i.e., 𝑎𝑠𝑠 > 𝑎𝑡𝑠, 𝑏𝑠𝑠 > 𝑏𝑠𝑡 and 𝑎𝑡𝑡 > 𝑎𝑠𝑡, 𝑏𝑡𝑡 > 𝑏𝑡𝑠 hold true).

P2
𝑠2 𝑡2

P1 𝑠1 𝑎𝑠𝑠, 𝑏𝑠𝑠 𝑎𝑠𝑡, 𝑏𝑠𝑡
𝑡1 𝑎𝑡𝑠, 𝑏𝑡𝑠 𝑎𝑡𝑡, 𝑏𝑡𝑡

Table 1: Two-by-two game

In a two-by-two game, an equilibrium (𝑠1, 𝑠2) risk-dominates another equilibrium (𝑡1, 𝑡2) if and
only if

(𝑎𝑠𝑠 − 𝑎𝑡𝑠)(𝑏𝑠𝑠 − 𝑏𝑠𝑡) > (𝑎𝑡𝑡 − 𝑎𝑠𝑡)(𝑏𝑡𝑡 − 𝑏𝑡𝑠). (1)

Therefore, an equilibrium with a higher product of the deviation loss from the equilibrium
risk-dominates the one with the lower product of the deviation loss.

Fortunately, in the UBG, this simple method to detect risk dominance is functional. Consider
the 𝑥 ∶ 𝑦 restricted normal form game in which their strategy is either 𝑥𝑖 or 𝑦𝑖 for 𝑖 = 1, 2
(see Tables 2 and 3). Then, the risk-dominance relation of the UBG is well captured by the
risk-dominance relation of the 𝑥 ∶ 𝑦 restricted normal form game (we omit the proof of this
statement, but a similar proof will appear in the proof of Theorem 2). Thus, an equilibrium 𝑥
risk-dominates 𝑦 in the UBG if and only if

(𝑢1(𝑥1) − 𝑢1(𝑣1))(𝑢2(𝑥2) − 𝑢2(𝑣2)) > (𝑢1(𝑦1) − 𝑢1(𝑣1))(𝑢2(𝑦2) − 𝑢2(𝑣2)).

other than 𝑗 have a common belief about 𝑗’s behavior.
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This simplification is because, in the UBG, any unmatched strategy pair leads to a bargaining
breakdown.

Here, in the restricted normal form game, the product of the deviation loss of the two players
from 𝑥 is 𝑁𝑃(𝑥1, 𝑥2), and that from 𝑦 is 𝑁𝑃(𝑦1, 𝑦2). Thus, we can say that an equilibrium 𝑥
risk-dominates 𝑦 in the UBG if and only if

𝑁𝑃(𝑥1, 𝑥2) > 𝑁𝑃(𝑦1, 𝑦2).

Therefore, the equilibrium with a higher Nash product risk-dominates another equilibrium.

P2
𝑥2 𝑦2

P1 𝑥1 𝑥1, 𝑥2 𝑣1, 𝑣2
𝑦1 𝑣1, 𝑣2 𝑦1, 𝑦2

Table 2: Outcomes table of UBG

P2
𝑥2 𝑦2

P1 𝑥1 𝑢1(𝑥1), 𝑢2(𝑥2) 𝑢1(𝑣1), 𝑢2(𝑣2)
𝑦1 𝑢1(𝑣1), 𝑢2(𝑣2) 𝑢1(𝑦1), 𝑢2(𝑦2)

Table 3: Payoff table of UBG

Since the risk-dominance relation is a pairwise concept, we can define the maximal point based
on this pairwise relation. Unfortunately, since the pairwise risk-dominance relation may violate
the transitivity, we cannot choose one equilibrium from this criterion in general. However, for a
particular class of games, we may find that one equilibrium risk-dominates any other equilibrium.
If this is true, such an equilibrium should be selected from risk-dominance criterion and called a
risk-dominant equilibrium.

Harsanyi and Selten (1988) have shown that in the UBG, there exists a risk-dominant equilibrium
that risk-dominates any other efficient equilibrium. In addition, that equilibrium is the one that
maximizes the Nash product.

Theorem 1 (Harsanyi and Selten (1988)). Assume there exists a unique maximizer of the Nash
product. In the UBG, an equilibrium (𝑥1, 𝑥2) is a risk-dominant equilibrium if and only if it is
the maximizer of the Nash product.

Proof. Since the risk-dominance relation is connected to the values of the Nash product, the
equilibrium with the highest Nash product risk-dominates any other equilibria.

In the NDG, the situation is more complex compared with the UBG because the outcome of the
strategy pair is one of the following: an efficient agreement, the breakdown of the negotiation,
and an inefficient agreement. Thus, even for the restricted game by two efficient equilibria 𝑥
and 𝑦, the off-diagonal results are asymmetric due to the feasibility of the pairs (see Tables 4
and 5). Nonetheless, we will show that in the class of the NDG, a risk-dominant equilibrium
exists. Furthermore, the risk-dominant equilibrium is the one that maximizes the Nash product.

P2
𝑥2 𝑦2

P1 𝑥1 𝑥1, 𝑥2 𝑣1, 𝑣2
𝑦1 𝑦1, 𝑥2 𝑦1, 𝑦2

Table 4: Outcome table of NDG (𝑥1 >
𝑦1)

P2
𝑥2 𝑦2

P1 𝑥1 𝑢1(𝑥1), 𝑢2(𝑥2) 𝑢1(𝑣1), 𝑢2(𝑣2)
𝑦1 𝑢1(𝑦1), 𝑢2(𝑥2) 𝑢1(𝑦1), 𝑢2(𝑦2)

Table 5: Payoff table of NDG (𝑥1 > 𝑦1)

Theorem 2. Assume there exists a unique maximizer of the Nash product. In the NDG, an
equilibrium (𝑥1, 𝑥2) is a risk-dominant equilibrium if and only if it is the maximizer of the Nash
product.
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Proof. We first show that the simplification result still holds even for the Nash demand game.
In other words, the following claim holds. Take any efficient equilibria 𝑥 and 𝑦.

Claim 1: 𝑥 risk-dominates 𝑦 in the NDG if and only if 𝑥 risk-dominates 𝑦 in the 𝑥 ∶ 𝑦 restricted
normal form game of the NDG.

Without loss of generality, we assume 𝑥1 > 𝑦1, which implies 𝑥2 < 𝑦2 by the assumption of the
efficiency of 𝑥 and 𝑦.

Let us consider the player 2’s best reply to the situation where player 2 chooses 𝑥1 in probability
𝑞 and 𝑦1 in 1 − 𝑞 with 0 < 𝑞 < 1.

It is shown that 2’s best reply is either 𝑥2 or 𝑦2 because for any 𝑧2 < 𝑥2, 𝑧2 assures the bargaining
agreement, implying that 𝑧2 gives a lower expected payoff than 𝑥2; for any 𝑥2 < 𝑧2 < 𝑦2, 𝑧2
leads to the bargaining agreement in probability 1 − 𝑞 which is the same as choice 𝑦2 but the
payoff at the agreement is less than choice 𝑦2, implying that 𝑧2 gives a lower expected payoff
than 𝑦2; for any 𝑧2 > 𝑦2, 𝑧2 always leads to the bargaining breakdown, implying that 𝑧2 gives a
lower expected payoff than 𝑦2.

Since 2’s best reply is either 𝑥2 or 𝑦2, 𝑥2 is the strict best reply if

𝑢2(𝑥2) > 𝑞𝑢2(𝑣2) + (1 − 𝑞)𝑢2(𝑦2) ⟺ 𝑞 > 𝑢2(𝑦2) − 𝑢2(𝑥2)
(𝑢2(𝑦2) − 𝑢2(𝑥2)) + (𝑢2(𝑥2) − 𝑢2(𝑣2))

∶= 𝑝.

Next, we consider 1’s belief about the prior probability distribution of 2’s choice. Since 𝑞 follows
a uniform distribution on [0, 1], player 1 believes that player 2 chooses 𝑥2 in probability 1 − 𝑝
and 𝑦2 in probability 𝑝.

We consider the best reply of player 1 against this prior. Then, it is easily checked that the best
reply of 1 is either 𝑥1 or 𝑦1.

Moreover, 𝑥1 is the strict best reply if

(1 − 𝑝)𝑢1(𝑥1) + 𝑝𝑢1(𝑣1) > 𝑢1(𝑦1) ⟺ 𝑝 < 𝑢1(𝑥1) − 𝑢1(𝑦1)
(𝑢1(𝑥1) − 𝑢1(𝑦1)) + (𝑢1(𝑦1) − 𝑢1(𝑣1))

.

From some calculations, this is equal to3

(𝑢1(𝑥1) − 𝑢1(𝑦1))(𝑢2(𝑥2) − 𝑢2(𝑣2)) > (𝑢1(𝑦1) − 𝑢1(𝑣1))(𝑢2(𝑦2) − 𝑢2(𝑥2)). (2)

Thus, player 1 has risk-preference for 𝑥 if the product of the deviation losses from 𝑥 is larger
than that from 𝑦 (see Table 5).

Similarly, we can show that player 2 also has risk-preference for 𝑥 if condition (2) is satisfied.
Therefore, 𝑥 risk-dominates 𝑦 if (2) is satisfied. Thus, the proof of the claim ends.

3To obtain this result, we set

𝐴 = 𝑢1(𝑥1) − 𝑢1(𝑦1), 𝐵 = 𝑢1(𝑦1) − 𝑢1(𝑣1), 𝐶 = 𝑢2(𝑦2) − 𝑢2(𝑥2), 𝐷 = 𝑢2(𝑥2) − 𝑢2(𝑣2).

Then, we have

𝑝 < 𝑢1(𝑥1) − 𝑢1(𝑦1)
(𝑢1(𝑥1) − 𝑢1(𝑦1)) + (𝑢1(𝑦1) − 𝑢1(𝑣1))

⟺ 𝐶
𝐶 + 𝐷

< 𝐴
𝐴 + 𝐵

⟺ 𝐵𝐶 < 𝐴𝐷.
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Next, we show that the risk-dominance in the 𝑥 ∶ 𝑦 restricted game of the NDG is captured by
comparing their Nash products. The following claim holds true.

Claim 2: In the 𝑥 ∶ 𝑦 restricted game of the NDG, an equilibrium 𝑥 risk-dominates another
equilibrium 𝑦 if and only if 𝑁𝑃(𝑥1, 𝑥2) > 𝑁𝑃(𝑦1, 𝑦2).

Without loss of generality, we consider the case that 𝑥1 > 𝑦1 and 𝑥2 < 𝑦1. Then, we have Table
5.

By Claim 1, in the 𝑥 ∶ 𝑦 restricted game of the NDG, an equilibrium 𝑥 risk-dominates another
equilibrium 𝑦 if and only if

(𝑢1(𝑥1) − 𝑢1(𝑦1))(𝑢2(𝑥2) − 𝑢2(𝑣2)) − (𝑢1(𝑦1) − 𝑢1(𝑣1))(𝑢2(𝑦2) − 𝑢2(𝑥2)) > 0.

We now show that this inequality is equivalent to the inequality in their Nash products. Let
𝑔(𝑧1, 𝑧2) = 𝑢1(𝑧1)𝑢2(𝑧2). Then, the left-hand side is reduced to

(𝑔(𝑥1, 𝑥2) − 𝑔(𝑥1, 𝑣2) − 𝑔(𝑦1, 𝑥2) + 𝑔(𝑦1, 𝑣2)) − (𝑔(𝑦1, 𝑦2) − 𝑔(𝑦1, 𝑥2) − 𝑔(𝑣1, 𝑦2) + 𝑔(𝑣1, 𝑥2))

= (𝑔(𝑥1, 𝑥2) − 𝑔(𝑥1, 𝑣2) + 𝑔(𝑦1, 𝑣2)) − (𝑔(𝑦1, 𝑦2) − 𝑔(𝑣1, 𝑦2) + 𝑔(𝑣1, 𝑥2)).

Rearranging this, we have

= (𝑔(𝑥1, 𝑥2) − 𝑔(𝑥1, 𝑣2) − 𝑔(𝑣1, 𝑥2)) − (𝑔(𝑦1, 𝑦2) − 𝑔(𝑣1, 𝑦2) − 𝑔(𝑦1, 𝑣2)).

Add 𝑔(𝑣1, 𝑣2) in the left parenthesis and subtract it in the right parenthesis, we have

= (𝑔(𝑥1, 𝑥2) − 𝑔(𝑥1, 𝑣2) − 𝑔(𝑣1, 𝑥2) + 𝑔(𝑣1, 𝑣2)) − (𝑔(𝑦1, 𝑦2) − 𝑔(𝑣1, 𝑦2) − 𝑔(𝑦1, 𝑣2) + 𝑔(𝑣1, 𝑣2)).

This is equal to

(𝑢1(𝑥1) − 𝑢1(𝑣1))(𝑢2(𝑥2) − 𝑢2(𝑣2)) − (𝑢1(𝑦1) − 𝑢1(𝑣1))(𝑢2(𝑦2) − 𝑢2(𝑣2))

= 𝑁𝑃(𝑥1, 𝑥2) − 𝑁𝑃(𝑦1, 𝑦2).

Hence, the risk-dominance relation of the restricted game is equivalent to the relation of Nash
products. Thus, the proof of the claim ends.

From Claims 1 and 2, an 𝑥 risk-dominates 𝑦 in the NDG if and only if 𝑁𝑃(𝑥1, 𝑥2) > 𝑁𝑃(𝑦1, 𝑦2).
Thus, an equilibrium with the highest Nash product is the risk-dominant equilibrium of the
NDG.

This theorem states that the coincidence of the Nash bargaining solution and the risk-dominant
equilibrium of the Nash demand game hold for a vast class of utility functions. We do not need
the continuity, differentiability, and increasing-ness of utility functions.

This opens up the validity and the applicability of the Nash bargaining solution to several
domains, such as a reference-dependent utility (Tversky and Kahneman (1979); its application to
the bargaining problem is Kamijo and Yokote (2022)), and other-regarding preferences (Fehr and
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Schmidt (1999) and Bolton and Ockenfels (2000); their applications to the bargaining problem
are found in Anbarci and Feltovich (2013) and Birkeland and Tungodden (2014)).

It is well known that one of the sufficient conditions for the existence and uniqueness of the
Nash product maximizer is 𝑢𝑖 is concave for both 𝑖 = 1, 2. In fact, for the case of concave CARA
or CRRA utility functions,4 Anbarci and Feltovich (2013) have shown the coincidence of the
Nash bargaining solution and the risk-dominant equilibrium of the Nash demand game. Thus,
our result means that the finding of Anbarci and Feltovich (2013) holds for any concave utility
function.

Moreover, this coincidence holds even when the utility function is not concave. Kamijo and
Yokote (2022) show that if the utility function satisfies the log-concavity, there exists a unique
maximizer of the Nash product. Since some convex utility function is log-concave, the coincidence
holds even for risk-loving players. For instance, power-type utility functions 𝑢(𝑥) = 𝑥𝛼 satisfies
log-concavity for any 𝛼 > 0.5 This validates the use of the Nash bargaining solution for the
bargaining in a loss domain (i.e., the bankruptcy problem by O’Neill (1982), Aumann and
Maschler (1985), Thomson (2003)).

Finally, the uniqueness itself is not essential in this statement. If there exist multiple maximizers
of the Nash products, they are equivalent in the sense of risk dominance, and at the same time,
each of them risk-dominates any other equilibrium other than them.

Let 𝐸 denote the set of all efficient Nash equilibria of the Nash demand game. We say that
the set of Nash equilibria 𝐸𝑅 is the set of risk-dominant equilibria if and only if (i) any two
equilibria in 𝐸𝑅 are equivalent in the sense of the risk dominance (the equality holds for the
inequality (1) in a restricted normal form game), and (ii) any equilibrium 𝑥 ∈ 𝐸𝑅 risk-dominates
any other equilibrium 𝑦 ∉ 𝐸𝑅.

The following is the corollary of Theorem 2.

Corollary 1. In the Nash demand game, 𝐸𝑅 is the set of risk-dominant equilibra if and only if
𝐸𝑅 is the set of every equilibrium that maximizes Nash product.
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