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Abstract

We develop a new theory, termed the behavioral bargaining theory (henceforth, BBT),
that explains various observed behaviors in bargaining experiments in a unified manner. The
key idea is to modify Nash’s (1950) model by endowing the players’ utility functions with
a new concept, named entitlement, that represents the amount of money the player feels
entitled to receive. We first apply BBT to explain the equality bias that is widely observed
in the laboratory. We argue that our explanation of the bias in terms of entitlements is
more easily interpretable than the extant explanation in terms of risk attitudes. Then, we
demonstrate that BBT can also explain other behavioral patterns beyond the equality bias
by suitably setting entitlements. Finally, we provide empirical support to BBT by using
experimental data from Takeuchi et al. (2022), where entitlements of players can be inferred
from the experimental design.
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1. Introduction

Bargaining is one of the most pervasive forms of economic transactions. It is often conducted
between two parties with opposing interests, e.g., employers and employees, buyers and sellers,
or developers and landowners, in pursuit of an agreed-upon outcome. In his seminal paper
in 1950, Nash developed a model for analyzing bargaining problems in a unified manner and
introduced the Nash solution (Nash, 1950). His model has become a cornerstone for the analysis
of bargaining both in theory and in applications.

Although Nash’s model stands out in its generality and elegance of axiomatic approach, its
relevance to real-world problems has long been questioned.1 Skepticism has even been hardened
as experimental data deviating from the Nash solution’s predictions has accumulated. To
overcome this limitation, this paper develops a new bargaining theory, termed the behavioral
bargaining theory (henceforth, BBT), that can explain the subjects’ behavioral patterns in a
unified manner.

Critics often argue that the Nash solution fails to explain the players’ behaviors because it does
not consider psychological factors, such as fairness or an “aspiration level” (Luce and Raiffa,
1989). Inspired by this criticism, we modify Nash’s model by endowing utility functions with
a new term that captures psychological factors, which we call entitlement. Conceptually, our
formulation of utility functions is similar to that of reference-based preferences advanced by
Tversky and Kahneman (1979) and Kőszegi and Rabin (2006). While the reference point is
typically interpreted as some standard against which things are compared, we grant it a more
concrete interpretation: it is interpreted as the amount of money that the player feels entitled to
receive. The key step of BBT is to calculate the Nash solution under entitlement-dependent
utility functions while inferring entitlements from past data or experimental design.

To demonstrate how the new theory explains actual behaviors, we first focus on the most
well-known deviation of the Nash solution from reality, namely, the equality bias: subjects tend
to choose a bargaining outcome away from the Nash solution toward 50–50 sharing (Anbarci and
Feltovich, 2013, 2018; Birkeland and Tungodden, 2014; Hoffman and Spitzer, 1982; Nydegger and
Owen, 1974; Roth, 1995). Within the framework of Nash’s original model, this bias is explained
in terms of risk attitudes. Existing studies have revealed that if players are risk-loving, then the
Nash solution shifts toward equal sharing.2 We strengthen this claim to the following theorem,
termed the equality bias theorem: if the players’ utility functions exhibit increasing absolute risk
aversion (shortly, IARA), then the equality bias occurs; if utilities exhibit decreasing absolute
risk aversion (shortly, DARA), then the inequality bias occurs. Therefore, the key driving force
behind the shift toward an equal split of a pie is not the players’ risk attitudes but rather how
risk attitudes change in response to the amount of money.3

BBT explains the equality bias differently from Nash’s original model by incorporating psycho-
logical factors, most notably the 50–50 norm or the equal split norm. This norm induces players
to regard equitable sharing as a reference point for bargaining, and its existence has been verified
in various contexts (Andreoni and Bernheim, 2009). Setting the players’ entitlements to be the
equal split of the total pie and assuming linear utilities, we derive the allocation of the Nash
solution and call it the egalitarian neutral Nash allocation (abbreviated as ENNA). Our second
theorem states that equal sharing arises as a result of this solution. We further demonstrate that
ENNA is consistent with bargaining outcomes in past experimental data (Anbarci and Feltovich,
2018). Comparing the explanation of the bias from Nash’ original model with that from BBT,

1For example, in the classical textbook of game theory by Luce and Raiffa (1989), they devote one chapter
(Section 6.6) to criticizing the Nash solution.

2See, for example, Exercise 15.21 of Maschler et al. (2013).
3We remark that there exists a concave and IARA utility function, which exhibits risk-aversion but the

bargaining outcome shifts toward the equal split.
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we argue that the latter offers a more easily interpretable result.

Next, we turn our attention to other behavioral patterns beyond the equality bias. BBT is
flexible enough to explain existing experimental data in a unified manner. Specifically, we
take up three experiments. The first experiment is when players have no entitlements in mind,
namely, when the bargaining outcome is designed to be a “windfall gain”; subjects are just
offered a bargaining pie and notified of a disagreement outcome without being exposed to any
other information. We show that when utility functions exhibit IARA (resp. DARA), the Nash
solution exhibits the equality (resp. inequality) bias. This result suggests that, under IARA
utilities, our model is consistent with existing experimental findings. The second experiment is
the opposite case, namely when the entitlements coincide with the disagreement payoffs. When
subjects need to earn the disagreement payoffs on their own through a costly task, they are
induced to regard the payoff as their entitlement. We prove that, regardless of the assumption
on risk attitudes, the Nash solution coincides with the equal split of the surplus (i.e., the total
bargaining pie minus the disagreement payoffs). This result also finds empirical support. The
third experiment is bargaining over a loss. Bargaining is often conducted not over a profit
but over a loss, as in the case of the seminal bankruptcy problem (O’Neill, 1982; Aumann and
Maschler, 1985). In our model with entitlements, a loss can be represented as receiving less
money than the subject’s entitlement. It turns out that the Nash solution’s outcome under
IARA utilities is consistent with the dictation of existing normative allocation rules. In contrast,
the outcome under DARA utilities is rather counter-intuitive: the player with fewer entitlements
may receive a larger pie, which we call the entitlement paradox. We draw insights from this
theoretical result for experimental outcomes in the literature.

The important feature of entitlements is that they can be inferred from past data or experimental
design. This contrasts sharply with other parameters, such as the disagreement points or utility
functions, that are typically unobservable. To exploit this advantage, we apply BBT to a
previous experiment where the subjects’ entitlements can be inferred and statistically test its
explanatory power. We borrow experimental data from Takeuchi et al. (2022), who conducted
experiments of bargaining in which the subjects first engage with costly tasks, and then the total
bargaining pie is determined based on their effort levels. We infer the subjects’ entitlements
from two different sources. The first source is observed data. We perform maximum likelihood
estimation to identify the parameters of entitlements such that the theoretical prediction of BBT
achieves the best data fitting. The second source is post-experiment questionnaires that elicit
the subjects’ entitlements. We observe that the entitlements estimated from these two different
sources exhibit a remarkable similarity. The analysis also highlights the advantage of BBT: by
extracting essential components in bargaining situations (i.e., players’ entitlements), the theory
offers a versatile and easy-to-use tool for interpreting bargaining behaviors.

The paper is organized as follows. In the next section, we briefly explain the setting of a
simple bargaining problem. The explanation of the equality bias from the traditional approach
is in Section 3. In Section 4, we introduce reference-dependent utility and entitlements, the
fundamental concepts of our new bargaining theory. As the first application of BBT, we discuss
an equal split norm and bargaining outcomes affected by the norm in Section 5. In Section 6,
we explain other applications of BBT, which include the bargaining for the manna from heaven,
the bargaining based on the earned disagreement payoff, and the bargaining for a loss. Section 7
deals with data-fitting, and Section 8 concludes the paper.

2. Model

A bargaining problem consists of players, a potential profit of agreement, and a disagreement
outcome. There are two players 1 and 2. They bargain over a fixed amount 𝑀 of some divisible
good in pursuit of an agreed-upon outcome (𝑥1, 𝑥2) with 𝑥1 + 𝑥2 = 𝑀. If the bargaining breaks
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down, each gets 𝑣1 ≧ 0, 𝑣2 ≧ 0 of the divisible good. A disagreement outcome is 𝑣 = (𝑣1, 𝑣2).
Let 𝑢𝑖 (𝑖 = 1, 2) denote 𝑖’s utility function and 𝑑 = (𝑑1, 𝑑2) = (𝑢1(𝑣1), 𝑢2(𝑣2)) denote the utility
profile at the disagreement outcome. The set of possible pairs of utilities through bargaining is
given by

𝑍 = {(𝑧1, 𝑧2) ∶ ∃(𝑥1, 𝑥2) with 𝑥1 + 𝑥2 = 𝑀 such that
(𝑧1, 𝑧2) = (𝑢1(𝑥1), 𝑢2(𝑥2)) and (𝑧1, 𝑧2) ≥ 𝑑}.

We denote a bargaining problem by (𝑀, 𝑣) without referring to players, which are clear from
the context.

A bargaining solution is a function that chooses an element in 𝑍 for any bargaining problem.
One of the most eminent solutions is the Nash solution, which has several normative properties
and positive interpretations (Binmore et al., 1986; Young, 1993; Rubinstein et al., 1992). The
Nash solution chooses a utility pair that maximizes the product of the players’ utility differences
between an agreed-upon outcome and the disagreement outcome (this product is called the Nash
product). Formally, the Nash solution chooses a solution to the following problem:

max (𝑢1(𝑥1) − 𝑢1(𝑣1)) × (𝑢2(𝑥2) − 𝑢2(𝑣2))

𝑠.𝑡. 𝑥1 + 𝑥2 = 𝑀, 𝑥1 ≧ 𝑣1, 𝑥2 ≧ 𝑣2.

Letting (𝑥∗
1, 𝑥∗

2) denote a solution to the above problem,4 the Nash solution is written as

𝑁𝑆(𝑍, 𝑑) = (𝑢1(𝑥∗
1), 𝑢2(𝑥∗

2)).

Although this solution is defined on a utility basis, we are more interested in the allocation
(𝑥∗

1, 𝑥∗
2). We refer to the pair as the Nash allocation and write

𝑁𝐴(𝑀, 𝑣) = (𝑥∗
1, 𝑥∗

2).

The neutral Nash solution is the Nash solution when the players’ utility functions are risk-neutral.
The allocation under the neutral Nash solution, called the neutral Nash allocation, is defined by

𝑁𝑁𝐴(𝑀, 𝑣) = (𝑣1 + 𝑀 − 𝑣1 − 𝑣2
2

, 𝑣2 + 𝑀 − 𝑣1 − 𝑣2
2

).

The neutral Nash solution is often used in the literature in order to abstract away the effect of
utility functions on the bargaining outcome. This solution is also known as the equal difference
solution in bargaining theory and the equal surplus solution (or the standard solution) in
cooperative game theory.

An important reference point of bargaining outcomes is the equal split allocation defined by

𝐸𝐴(𝑀, 𝑣) = (𝑀/2, 𝑀/2).

We briefly explain why we focus on the above three allocations (NA, NNA, and EA). Our goal is
to examine whether observed bargaining outcomes can be explained as the outcome of the Nash
solution. As is the case in experiments, we assume that 𝑣𝑖 (𝑖 = 1, 2) and 𝑀 are observable, but 𝑢𝑖
(𝑖 = 1, 2) are unobservable; thus, NA cannot be directly computed. To overcome this difficulty,
we instead compute NNA and EA (which can be done only by using observable information),
and then identify the positional relationship between these allocations and NA. It will turn out

4We later impose assumptions that guarantee the uniqueness of (𝑥∗
1, 𝑥∗

2)
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that there is indeed a clear-cut relationship if utility functions satisfy certain assumptions.

Suppose that 𝑢𝑖 is defined over some large interval [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]; usually we set 𝑥𝑚𝑖𝑛 = 0 and
𝑥𝑚𝑎𝑥 = ∞. For 𝑖 = 1, 2, 𝑢𝑖 is assumed to satisfy the following:

A1. 𝑢𝑖(0) = 0 and 𝑢𝑖(𝑥𝑖) > 0, 𝑢′
𝑖(𝑥𝑖) > 0 ∀𝑥𝑖 > 0.

A2. (Increasing fear of ruin) (𝑢′
𝑖(𝑥𝑖))2 > 𝑢𝑖(𝑥𝑖)𝑢″

𝑖 (𝑥𝑖) ∀𝑥𝑖 > 0.

The second is weaker than risk aversion because 𝑢″
𝑖 (𝑥𝑖) < 0 and A1 imply A2.5 This generalization

is important when we allow for risk-loving agents.

We explain the intended meaning of A2.6 Aumann and Kurz (1977) refer to 𝑢(𝑥)/𝑢′(𝑥) as fear
of ruin. Consider a person who is going to bet all his money 𝑥 against a small profit ℎ with
probability 1 − 𝑞. Let 𝑞(ℎ) denote the value of 𝑞 with which she is indifferent between taking
this gamble and keeping her current wealth. Then, the smaller the 𝑞(ℎ) is, the more she fears
ruin. Extending this argument to a local behavior of the probability per dollar, we define fear of
ruin as the inverse of limℎ→0 𝑞(ℎ)/ℎ.
Formally,7 𝑢(𝑥) = (1 − 𝑞(ℎ))𝑢(𝑥 + ℎ) + 𝑞(ℎ)𝑢(0) implies 𝑞(ℎ) = (𝑢(𝑥 + ℎ) − 𝑢(𝑥))/𝑢(𝑥 + ℎ),
which in turn implies

lim
ℎ→0

𝑞(ℎ)
ℎ

= lim
ℎ→0

(𝑢(𝑥 + ℎ) − 𝑢(𝑥))/ℎ
𝑢(𝑥 + ℎ)

= 𝑢′(𝑥)
𝑢(𝑥)

The inverse of this value, 𝑢(𝑥)/𝑢′(𝑥), is her fear of ruin. Notice that A2 requires this value to
be increasing because

(𝑢(𝑥)/𝑢′(𝑥))′ = (𝑢′(𝑥))2 − 𝑢(𝑥)𝑢″(𝑥)
(𝑢′(𝑥))2 > 0 ⟺ (𝑢′(𝑥))2 − 𝑢(𝑥)𝑢″(𝑥) > 0.

Increasing fear of ruin is also equivalent to log-concavity of 𝑢(𝑥) because

𝑑2 log(𝑢(𝑥))
𝑑𝑥2 = 𝑑

𝑑𝑥
(𝑢′(𝑥)

𝑢(𝑥)
) = 𝑢″(𝑥)𝑢(𝑥) − (𝑢′(𝑥))2

(𝑢(𝑥))2 .

The Arrow-Pratt coefficient at wealth level 𝑥 is defined by

𝑟(𝑥) = −𝑢″(𝑥)
𝑢′(𝑥)

= − 𝑑
𝑑𝑥

log 𝑢′(𝑥).

This measure is closely related to the person’s local risk attitude at 𝑥. The larger 𝑟(𝑥) is, the
larger its certainty equivalent and willingness to pay for an insurance (Pratt (1964), Theorem 1
p 128). In addition, any utility function can be derived from its Arrow-Pratt coefficient 𝑟(⋅) as
follows: by integrating 𝑟(⋅) we have log 𝑢′(𝑥), and then by taking the exponential of this and
integrating again we have a positive affine transformation of 𝑢(𝑥).

Finally, we define a global property of risk attitude. A utility function 𝑢 exhibits:

• increasing absolute risk averse (IARA) if 𝑟′(𝑥) > 0 for all 𝑥 (i.e., the Arrow-Pratt coefficient
is increasing as wealth increases).

• decreasing absolute risk averse (DARA) if 𝑟′(𝑥) < 0 for all 𝑥.

• constant absolute risk aversion (CARA) if 𝑟′(𝑥) = 0 for all 𝑥.
5Svejnar (1986) showed that risk aversion is a sufficient condition for the increasing fear of ruin.
6For simplicity, we write 𝑢(𝑥) rather than 𝑢𝑖(𝑥𝑖).
7Here, we use A1 to guarantee 𝑢(𝑥) ≠ 0 and 𝑢′(𝑥) ≠ 0.
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It is well known that 𝑢(𝑥) = 𝑥𝛼 is IARA if 𝛼 > 1, CARA if 𝛼 = 1, and DARA if 0 < 𝛼 < 1.
Using the terminology of log-concavity and log-convexity, IARA (resp. DARA) is equivalent to
log-concavity (resp. log-convexity) of 𝑢′(𝑥) because 𝑟′(𝑥) = − 𝑑2

𝑑𝑥2 log 𝑢′(𝑥).

3. Explanation of the equality bias from canonical utility functions

As noted in Section 2, our goal is to identify the positional relationship between the Nash
allocation and other benchmark allocations. To this end, we conduct a comparative statics
analysis of the Nash solution when the total amount 𝑀 changes.

First, we briefly summarize the basic properties of the Nash allocation (𝑥∗
1, 𝑥∗

2).

P1. When 𝑀 = 𝑣1 + 𝑣2, 𝑥∗
1 = 𝑣1, 𝑥∗

2 = 𝑣2.

P2. When 𝑀 > 𝑣1 + 𝑣2, 𝑥∗
1 > 𝑣1, 𝑥∗

2 > 𝑣2.

These two properties are obvious from the definition of the Nash solution being a maximizer of
the Nash product. An important implication of P2 is that the Nash allocation is always obtained
as an interior solution. Thus, FOC of the Nash product induces the following property:

P3. It holds that
𝑢′

1(𝑥∗
1)[𝑢2(𝑥∗

2) − 𝑢2(𝑣2)] = 𝑢′
2(𝑥∗

2)[𝑢1(𝑥∗
1) − 𝑢1(𝑣1)].

With these basic properties at hand, we prove the following three technical properties (their
proofs are in the Appendix).

P4. Let 𝐴 = [𝑢1(𝑥∗
1) − 𝑢1(𝑣1)], 𝐵 = [𝑢2(𝑥∗

2) − 𝑢2(𝑣2)]. If 𝑀 > 0, we have

𝑢′
1(𝑥∗

1)𝑢′
2(𝑥∗

2) − 𝑢″
2(𝑥∗

2)𝐴 > 0, 𝑢′
1(𝑥∗

1)𝑢′
2(𝑥∗

2) − 𝑢″
1(𝑥∗

1)𝐵 > 0

P5. For any (𝑀, 𝑣) with 𝑀 ≧ 𝑣1 +𝑣2, under the assumptions of A1 and A2, the Nash allocation
(𝑥∗

1, 𝑥∗
2) is uniquely determined. In addition, 𝑥∗

𝑖 is continuous in 𝑣1, 𝑣2 and 𝑀.

The following property is related to a locus of the bargaining allocation (𝑥∗
1, 𝑥∗

2) when 𝑀 increases
with keeping 𝑣 fixed.

P6. The locus of (𝑥∗
1, 𝑥∗

2) when 𝑀 increases with keeping 𝑣 fixed is an ascending right curve
starting at (𝑣1, 𝑣2), and the slope of the locus is give by

𝑑𝑥∗
2

𝑑𝑥∗
1

= 𝑢1(𝑥∗
1)𝑢2(𝑥∗

2) − 𝑢″
1(𝑥∗

1)𝐵
𝑢1(𝑥∗

1)𝑢2(𝑥∗
2) − 𝑢″

2(𝑥∗
2)𝐴

, (1)

where 𝐴 = 𝑢1(𝑥∗
1) − 𝑢1(𝑣1) and 𝐵 = 𝑢2(𝑥∗

2) − 𝑢2(𝑣2).

We are now ready to present an important lemma on the comparative statics of the Nash
allocation; more specifically, it clarifies how the Nash allocation (𝑥∗

1, 𝑥∗
2) changes as the size of

the bargaining pie 𝑀 changes while fixing (𝑣1, 𝑣2).

Lemma 1. Given A1 and A2, the following holds:

𝑑𝑥∗
2

𝑑𝑥∗
1

⪋ 1 ⟺ 𝑟1(𝑥∗
1) ⪋ 𝑟2(𝑥∗

2)

Proof. Let 𝐴 and 𝐵 be defined as in P6. By (1) of P6, it is obvious that 𝑢″
1(𝑥∗

1)𝐵 ⪌ 𝑢″
2(𝑥∗

2)𝐴 ⟺
𝑑𝑥∗

2
𝑑𝑥∗

1
⪋ 1. Therefore, it suffices to prove

𝑢″
1(𝑥∗

1)𝐵 ⪌ 𝑢″
2(𝑥∗

2)𝐴 ⟺ 𝑟1(𝑥∗
1) ⪋ 𝑟2(𝑥∗

2).
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By the definition of 𝑖’s Arrow-Pratt coefficient, 𝑢″
1(𝑥𝑖) = −𝑟𝑖(𝑥𝑖)𝑢′

𝑖(𝑥𝑖). Thus,

𝑢″
1(𝑥∗

1)𝐵 − 𝑢″
2(𝑥∗

2)𝐴 = −𝑟1(𝑥∗
1)𝑢′

1(𝑥∗
1)𝐵 + 𝑟2(𝑥∗

2)𝑢′
2(𝑥∗

2)𝐴.

By P3, 𝑢′
1(𝑥∗

1)𝐵 = 𝑢′
2(𝑥∗

2)𝐴 holds and, by A1 and P4, this value is positive. Let 𝑢′
1(𝑥∗

1)𝐵 =
𝑢′

2(𝑥∗
2)𝐴 = 𝐶 > 0. Then, we obtain

−𝑟1(𝑥∗
1)𝑢′

1(𝑥∗
1)𝐵 + 𝑟2(𝑥∗

2)𝑢′
2(𝑥∗

2)𝐴 = (𝑟2(𝑥∗
2) − 𝑟1(𝑥∗

1))𝐶.

Since 𝐶 is positive, the sign of 𝑢″
1(𝑥∗

1)𝐵 − 𝑢″
2(𝑥∗

2)𝐴 is the same as that of 𝑟2(𝑥∗
2) − 𝑟1(𝑥∗

1).

This lemma says that if player 1 is more risk tolerant (resp., risk averse) than player 2 at some
point on the locus, the former gets more (resp., less) than the latter from the small increase
Δ𝑀 in the bargaining pie.

Building on Lemma 1, we identify the relationship between risk attitude and the (in)equality
bias of the Nash allocation, where the bias is evaluated in relation to EA and NNA. Before
presenting this result, let us assume for analytical simplicity that 𝑢 = 𝑢1 = 𝑢2 and 𝑣1 < 𝑣2; in
other words, we assume that utilities are identical and that player 1 is in a weaker bargaining
position than player 2 in terms of the disagreement outcome.8 Under this assumption, one easily
verifies that

𝑁𝑁𝐴1(𝑀, 𝑣) = 𝑀 + 𝑣1 − 𝑣2
2

< 𝑀
2

= 𝐸𝐴1(𝑀, 𝑣)

holds true.

Theorem 1 (Equality bias theorem). Suppose 𝑢 = 𝑢1 = 𝑢2 and 𝑣1 < 𝑣2. The following
statements hold.

1 (Equality bias). If 𝑢 exhibits IARA, then

𝑁𝑁𝐴1(𝑀, 𝑣) < 𝑥∗
1(𝑀, 𝑣) < 𝐸𝐴1(𝑀, 𝑣)

2 (No bias). If 𝑢 exhibits CARA, then

𝑁𝑁𝐴1(𝑀, 𝑣) = 𝑥∗
1(𝑀, 𝑣)

3 (Inequality bias). If 𝑢 exhibits DARA, then

𝑥∗
1(𝑀, 𝑣) < 𝑁𝑁𝐴1(𝑀, 𝑣) < 𝐸𝐴1(𝑀, 𝑣)

Proof. We first prove the second statement. If 𝑢 exhibits CARA, then for any (𝑥∗
1, 𝑥∗

2) on the
locus, 𝑟1(𝑥∗

1) = 𝑟2(𝑥∗
2) holds, which means that 𝑑𝑥∗

2
𝑑𝑥∗

1
= 1 by Lemma 1. Thus, the locus in this

case becomes a 45-degree line starting from the point (𝑣1, 𝑣2), and thus, it coincides with the
locus of NNA.

Next, we prove the first statement. Suppose that 𝑢 exhibits IARA. Take any (𝑥∗
1, 𝑥∗

2) on the
locus that is sufficiently close to (𝑣1, 𝑣2). Then, 𝑥∗

1 < 𝑥∗
2 holds from continuity of the locus (by

P5). IARA of 𝑢 implies that 𝑟1(𝑥∗
1) < 𝑟2(𝑥∗

2), which together with Lemma 1 implies that 𝑑𝑥∗
2

𝑑𝑥∗
1

< 1.
Therefore, as long as 𝑥∗

1 < 𝑥∗
2, we have 𝑑𝑥∗

2
𝑑𝑥∗

1
< 1. In addition, as 𝑥∗

1 approaches 𝑥∗
2, 𝑑𝑥∗

2
𝑑𝑥∗

1
also

8One might argue that the assumption of utilities being identical is restrictive, because two bargainers often
have different risk attitudes; for example, in the context of bargaining between a firm and a labor union, the
former is typically risk-neutral, while the latter is risk-averse (McDonald and Solow, 1981). However, we note
that such a case with different risk attitudes is inside our scope, because the difference could arise from different
points on the same utility function.
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approaches 1. It follows that 𝑥∗
1 is never larger than 𝑥∗

2, which implies 𝑥∗
1(𝑀, 𝑣) < 𝐸𝐴1(𝑀, 𝑣).

Since 𝑥∗
1 < 𝑥∗

2 always holds on this locus, the locus of NA is located in the lower region of that
of NNA, meaning that 𝑁𝑁𝐴1(𝑀, 𝑣) < 𝑥∗

1(𝑀, 𝑣).

The proof of the third statement is similar to that of the first statement. Take any (𝑥∗
1, 𝑥∗

2) on
the locus that is sufficiently close to (𝑣1, 𝑣2). Then, 𝑑𝑥∗

2
𝑑𝑥∗

1
> 1 holds by DARA of 𝑢 and Lemma

1. Thus, the difference between 𝑥∗
2 and 𝑥∗

1 becomes larger on the locus and thus 𝑥∗
2 > 𝑥∗

1 holds
true for any point on the locus. Since 𝑑𝑥∗

2
𝑑𝑥∗

1
> 1 holds true for any point on the locus, the locus is

located in the upper region of that of NNA, meaning that 𝑥∗
1(𝑀, 𝑣) < 𝑁𝑁𝐴∗

1(𝑀, 𝑣).

The global property on the risk attitude has a crucial role on determining which kinds of bias
exists in a bargaining problem. Especially, if utilities are assumed to exhibit DARA, the initial
inequality between the bargainers becomes widens through bargaining. It is commonly believed
that the utility function of a firm is DARA because it becomes more risk tolerant as its size
becomes larger. If this presumption is valid, our results indicate that their bargaining amplifies
the inequality between the strong and the weak.

Our results also have implications for the interpretation of bargaining outcomes in the experi-
mental literature. Existing studies typically interpret equitable agreements among asymmetric
players as a result of norms, entitlement, fairness considerations, etc. However, this theorem
suggests that the bias towards the equal split is explained by Nash bargaining theory without
these behavioral factors. In later sections, we will discuss this point in more detail.

To better understand the size of the bias, we apply Theorem 1 to particular forms of utility
functions. We define

𝑢𝑖(𝑥𝑖) = {
𝑥1−𝑏𝑖
1−𝑏𝑖

if 𝑏𝑖 ≠ 1,
log(𝑥𝑖) if 𝑏𝑖 = 1

Note that this function depends on parameter 𝑏𝑖.9 It is known that this utility function is DARA
and risk-averse when 𝑏𝑖 > 0, 𝑢𝑖(𝑥𝑖) = 𝑥𝑖 when 𝑏𝑖 = 0, and IARA and risk-loving when 𝑏𝑖 < 0.
The trajectory of the Nash allocations under this utility function is depicted in Figure 1. This
shows that the shape of utility functions has a significant impact on the bargaining outcome.
Thus, if we specify utility functions to be 𝑢𝑖(𝑥𝑖) = 𝑥𝑖 ignoring the true form, we might obtain a
wrong conclusion.

Finally, we present some extensions of Theorem 1. 𝑢1 is said to be more risk averse than 𝑢2 if
there exists a positive concave function 𝜓 such that 𝑢1(𝑥) = 𝜓(𝑢2(𝑥)) for all 𝑥.10

Corollary 1. Suppose 𝑣1 < 𝑣2. The following statements hold true.

1 (Equality bias). If 𝑢1 and 𝑢2 satisfies IARA and 𝑢2 is more risk-averse than 𝑢1,

𝑁𝑁𝐴1(𝑀, 𝑣) < 𝑥∗
1(𝑀, 𝑣) < 𝐸𝐴1(𝑀, 𝑣)

2 (Inequality bias). If 𝑢1 and 𝑢2 satisfies DARA and 𝑢1 is more risk-averse than 𝑢2,

𝑥∗
1(𝑀, 𝑣) < 𝑁𝑁𝐴1(𝑀, 𝑣)

In the literature on axiomatic bargaining theory, it is well known that being risk-averse puts the
person in a worse bargaining position (Roth, 1979; Rausser and Simon, 2016). Incorporating
these results into our framework will allow us to gain some insight into the negotiations that
occur when one player is risk-averse and the other is risk-loving.

9This utility function is known to exhibit constant relative risk averse.
10A function 𝜓 is positive if 𝜓(𝑥) > 0 for all 𝑥.
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Figure 1: The size of bias

Corollary 2. Suppose 𝑣1 = 𝑣2 = 0. If 𝑢1 is risk-averse in the sense that 𝑢″ < 0 for all 𝑥1 and
𝑢2 is risk-loving in the sense that 𝑢″ > 0 for all 𝑥2, then 𝑥∗

1(𝑀, 𝑣) < 𝑥∗
2(𝑀, 𝑣) for all 𝑀 > 0.

It is well known that people become risk-loving in a loss domain. Thus, the situation in this
corollary happens when one player is in the gain domain and the other in the loss domain,
which is evident in various settings, e.g., in the repayment of debts from corporations to banks
or in territorial disputes in international conflicts. However, the result in this corollary has
been overlooked in previous studies because they have focused only on risk-averse individuals
(𝑢″

𝑖 < 0).

4. Bargaining model with a reference dependent utility

This section develops a behavioral bargaining theory wherein entitlement, reference, and fairness
concerns are taken into account. Various studies in the past have pointed out that behavioral
factors other than the size of bargaining pies and the options at the breakdown affect their
negotiation outcomes in experiments and real-life situations. For example, Kahneman et al. (1986)
point out that the association with past deals acts as a reference point in current negotiations.
It has also been argued that people’s sense of entitlement to the bargaining pie (Hoffman and
Spitzer, 1985; Hoffman et al., 1994), norm (Meyer, 1992; Andreoni and Bernheim, 2009), and
the preference for equality and fairness (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000)
affect people’s behavior.

The new theory developed here adopts a reference-dependent utility a la Tversky and Kahneman
(1979) and Kőszegi and Rabin (2006). In our terminology, we assume that people’s sense of
entitlement regarding bargaining pies and disagreements forms the reference point. In other
words, a bargaining agreement that falls short of the entitlement is an outcome that belongs
to the loss domain, while an outcome that exceeds the entitlement belongs to the gain domain.
A player could have a stronger passion for satisfying the entitlement than gaining more if we
model a loss aversion. Since such asymmetry is usual even when we interpret the reference as
the point to which norms, status quo, fairness, and equality appeal, our model encompasses
these concepts from a mathematical perspective.

It is possible to construct a unified framework for behavioral bargaining theory by capturing
the impact of entitlement in a utility function. Our setup developed in the previous sections is

9



sufficiently flexible in dealing with the asymmetry between loss and gain, for instance, risk-loving
in the loss and risk-avoidance in the gain domain. In addition, the results about the (in)equality
bias are key to understanding when and how the sense of entitlements affects their bargaining
outcomes. This unified theory builds on existing research findings and allows us to understand
the results of various negotiation experiments, which have been challenging to discuss in a unified
manner within a single framework.

Consider a bargaining between two players having entitlements 𝐸1 ≧ 0 and 𝐸2 ≧ 0. We consider
a reference dependent utility wherein the entitlement has a role of the reference. One remark is
that the reference point is not the origin (the point of 𝑥1 = 𝑥2 = 0) because we set the origin as
the worst case they imagine. Therefore, the origin can be different from the disagreement point
in the negotiation.

This setting allows us to describe the details of a negotiation situation more accurately than
existing models. For example, consider the following two situations. In one case, an unemployed
person receives an excellent joint venture offer from a friend just as he has obtained a job at a
firm with a fixed wage of 𝑤, and he must negotiate with the friend for his share by using 𝑤 as an
outside option. In the second case, the unemployed person is replaced by an employee already
working for a fixed wage 𝑤; the other conditions are the same as in the first case. Leaving out
subtleties such as future risk and uncertainty, transaction costs, and time discounting, in the
traditional bargaining theory, the situation is the same for the first and second cases in the sense
that there is a bargaining pie with a disagreement payoff of 𝑤. In contrast, our model treats the
two cases differently. In the first case, the origin and the reference points are 0, which is strictly
worse than the disagreement payoff 𝑤, and in the second case, the origin is 0 and the reference
and disagreement points are 𝑤. These differences may result in different agreements during the
negotiation phase.

We model the utility function as a monotonically increasing function considering asymmetry
before and after the reference point. Let Ψ be such a function on [0, ∞) with Ψ(0) = 0, Ψ′(𝑥) > 0,
and Ψ″(𝑥) < 0. Then, the utility function is defined as the result of its simple transformation to
model a loss aversion. Given a loss aversion parameter 𝜆𝑖 ≧ 1, for any 𝑥𝑖 ≧ 0,

𝑢𝑖(𝑥𝑖; 𝐸𝑖) = {
Ψ(𝑥𝑖 − 𝐸𝑖) if 𝑥𝑖 ≧ 𝐸𝑖,
−𝜆𝑖Ψ(𝐸𝑖 − 𝑥𝑖) if 𝑥𝑖 < 𝐸𝑖.

(2)

If needed, it is possible to add some positive constant in order to ensure that 𝑢𝑖(𝑥) ≧ 0. If we
don’t think about the change of 𝐸𝑖 explicitly, we just write 𝑢𝑖(.) instead of 𝑢𝑖(.; 𝐸𝑖).

We call Ψ a component function of utility function 𝑢𝑖. Figure 2 visualize the reference-dependent
utility functions when its component function is IARA or DARA. A detailed analysis about
IARA and DARA functions are found in Appendix 2.

5. Effect of the equal split norm on the bargaining outcome

In this section, we apply our behavioral bargaining model to explain the equality bias, which
is quite different from the discussion in Section 3. Here, we consider the effect of a norm for
the equal split that experimental participants initially have from their daily lives and use to
deal with the experimental bargaining situation. Such an explanation for the equality bias is
widely accepted among experimental economists, but its theoretical foundations have never
been developed. The reason why the equal split is evident in our society has been discussed by
evolutionary bargaining theory (Young, 1993; Binmore et al., 2003; Ellingsen, 1997) as well as
our companion paper (Kamijo, 2023b) using the framework of the behavioral bargaining theory.

We assume that players have the equal split norm in a simple bargaining problem (𝑀, 𝑣). We
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Figure 2: Concave IARA (top two panes) and DARA functions (bottom two panes). Left panes
correspond to different location parameters and right panes to different shape parameters

set the entitlements to be equal to the equal split (𝑀/2, 𝑀/2) and derive the Nash allocation.
It turns out that the allocation agrees with bargaining outcomes observed in the laboratory.

To obtain a sharp result about the effect of the equal split norm on the bargaining outcome, we
assume that a component function is neutral (i.e., Ψ(𝑥) = 𝑥) in this section. Thus, the utility
function is simplified as follows.

𝑢𝑖(𝑥𝑖; 𝐸𝑖) = {
𝑥𝑖 − 𝐸𝑖 if 𝑥𝑖 ≧ 𝐸𝑖,
−𝜆𝑖(𝐸𝑖 − 𝑥𝑖) if 𝑥𝑖 < 𝐸𝑖.

If we consider the equal split norm, 𝐸𝑖 in the above definition should be 𝑀/2.

The Nash allocation in this case is obtained as the solution to the following maximization
problem

max
𝑣2≦𝑥≦𝑀−𝑣1

(𝑢1(𝑀 − 𝑥; 𝑀/2) − 𝑢1(𝑣1; 𝑀/2)) × (𝑢2(𝑥; 𝑀/2) − 𝑢2(𝑣2; 𝑀/2)).

By solving the above maximization problems under 𝑣1 ≦ 𝑣2, we obtain the following result.

Theorem 2 (Equality bias caused by the equal split norm). Under Ψ(𝑥) = 𝑥, 𝐸𝑖 = 𝑀/2 for
𝑖 = 1, 2 and 𝑣1 ≦ 𝑣2, the Nash allocation is given as follows:

• (A) If 𝜆2𝑣2 − 𝑣1 ≦ (𝜆2 − 1)𝑀
2 and 𝑣1 ≦ 𝑣2 ≦ 𝑀/2,

𝑥𝐸𝑁𝑁𝐴
1 (𝑀, 𝑣) = 𝑥𝐸𝑁𝑁𝐴

2 (𝑀, 𝑣) = 𝑀/2.

• (B) If 𝜆2𝑣2 − 𝑣1 > (𝜆2 − 1)𝑀
2 and 𝑣1 ≦ 𝑣2 ≦ 𝑀/2,

𝑥𝐸𝑁𝑁𝐴
1 (𝑀, 𝑣) = 1 + 𝜆2

4
𝑀 + 𝑣1

2
− 𝜆2𝑣2

2
, and 𝑥𝐸𝑁𝑁𝐴

2 (𝑀, 𝑣) = 3 − 𝜆2
4

𝑀 − 𝑣1
2

+ 𝜆2𝑣2
2

.
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• (C) If 𝑣1 ≦ 𝑀/2 ≦ 𝑣2 and 𝑣1 + 𝑣2 ≦ 𝑀,

𝑥𝐸𝑁𝑁𝐴
1 (𝑀, 𝑣) = 1

2
𝑀 + 𝑣1

2
− 𝑣2

2
, and 𝑥𝐸𝑁𝑁𝐴

2 (𝑀, 𝑣) = 1
2

𝑀 − 𝑣1
2

+ 𝑣2
2

.

Proof. Because of the property of the Nash solution and the assumption of linearity, the
maximization problem can be transformed to

max
0≦𝑥≦𝑀/2−𝑣1

(𝜆1𝑀/2 − 𝜆1𝑥 − 𝑢1(𝑣1; 𝑀/2)) × (𝜆2𝑀/2 + 𝑥 − 𝑢2(𝑣2; 𝐸/2))

where 𝑥 ∈ [0, 𝑀/2−𝑣1] is the player 2’s increase in its share from 𝑀/2. In addition, 𝑢𝑖(𝑣𝑖; 𝑀/2)
varies due to the relation of 𝑀/2 and 𝑣𝑖. If 𝑣𝑖 ≦ 𝑀/2, 𝑢𝑖(𝑣𝑖; 𝑀/2) = 𝜆𝑖𝑣𝑖, and if 𝑣𝑖 > 𝑀/2,
𝑢𝑖(𝑣𝑖; 𝑀/2) = 𝜆𝑖𝑀/2 + (𝑣𝑖 − 𝑀/2).

Solving the maximization problem, we obtain the result.

We refer to the allocation in this theorem as the Egalitarian Neutral Nash Allocation (ENNA).

The ENNA provides a fruitful view of the equality bias caused by the equal split norm and helps
understand the bias observed in the laboratory (Anbarci and Feltovich, 2013, 2018; Birkeland
and Tungodden, 2014). The ENNA becomes the equal split allocation (the egalitarian solution)
when 𝑣1 and 𝑣2 are relatively small and not so different (Regions 𝐴 and 𝐴′ of the left panel of
Figure 3), it becomes the neutral Nash allocation (the standard solution) when one of 𝑣1 and
𝑣2 is more than 𝑀/2 (Regions 𝐶 and 𝐶′), and it becomes the intermediate values between the
equal split and the neutral Nash allocation when 𝑣1 and 𝑣2 are moderate in size and not so
similar (Regions 𝐵 and 𝐵′). Therefore, the ENNA indicates that the equality bias happens only
when the disagreement outcome of the stronger player is less than half of the pie, and its effect
is more evident when it is smaller.

The left panel of Figure 3 is also helpful to understand how the loss aversion parameters affect
the bargaining outcome. When the 𝜆’s of the two players are large, almost any bargaining
situation wherein their disagreement payoff is less than the half of a pie goes to the equal split
(since the area 𝐴 + 𝐴′ expands and 𝐵 + 𝐵′ shrinks). In contrast, when the 𝜆’s are small, only
the almost symmetric situations (𝑣1 and 𝑣2 are close each other) leads to the equal split.

To understand the discontinuous effect of the disagreement outcome, let’s see the right panel of
Figure 3. This shows how the share of player 2 varies according to 𝑣2 with fixing 𝑣1 = 0 (the
black solid line). The red dashed line corresponds to the standard solution and the blue dashed
one corresponds to the constrained egalitarian solution.11 Thus, it is apparent that the ENNA
is always between these two solutions. In fact, the ENNA coincides with the equal split when 𝑣2
is small and it coincides with the standard solution when 𝑣2 ≧ 𝑀/2. Notice that the region (B)
connecting the egalitarian and the standard solutions shrinks as 𝜆2 becomes larger. In that case,
around 𝑀/2, ENNA shifts sharply from the egalitarian solution to the standard solution, which
would appear to be almost discontinuous at this point (not in the mathematical sense, but in
terms of verification from the data).

From this discontinuity of the agreed outcome predicted by ENNA, we can hypothesize that
the disagreement outcome has a weak influence when it is less than half of the pie and has a
strong influence when it is more than half. This hypothesis was actually tested in the experiment
of Anbarci and Feltovich (2018). In their study, experimental participants bargain over the
distribution of the pie in two bargaining formats: the Nash demand game and the unstructured
bargaining, where bargainers can freely bargain for the division of the pie during a given time

11A constrained egalitarian solution refers to a solution that aims for the equality as much as possible within
the constraints imposed by the disagreement outcomes.
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interval. They define the measure of how the bargaining agreement is sensitive to the change in
the disagreement outcome as

𝑆(𝑀, 𝑣) = |𝜕𝑥1
𝑣1

| + |𝜕𝑥1
𝑣2

|.

They calculated these values from their data in the unstructured bargaining experiment and
reported that this is 0.675 when 𝑣𝑖 ≦ 𝑀/2 for 𝑖 = 1, 2, and it is 0.870 when one of 𝑣𝑖 is greater
than 𝑀/2. Such discrepancy is much evident in the experiment of the Nash demand game
(the former is 0.254 and the latter is 0.723).12 Anbarci and Feltovich (2018) argued that this
discontinuity is the result of switching the focal point; when the equal split is the individually
rational, it becomes the focal point, but when it is not, the standard solution seems to become
focal. ENNA, defined by the Nash solution with an equal split norm, captures this phenomenon
(see the right panel of Figure 3), and the discontinuity naturally arises without considering the
switch of the focal points. In other words, ENNA gives a theoretical justification for why such
switch of the focal points occurs.

Another merit of the ENNA is that it captures the distinction between the bargaining outcome
influenced by the equal split norm and one caused by the preference for equality. If the bargaining
outcome results from the preference for equality, it should be like the constrained egalitarian
solution (the blue line in the right panel of Figure 3). The ENNA and the constrained egalitarian
solution coincide when 𝑣2 is small but become different as 𝑣2 becomes large. Especially, when
𝑣2 > 𝑀/2, these two solutions provide quite different allocations.

6. Applications

6.1. Bargaining environment

The discussion in the previous section shows that our reference-dependent utility bargaining
model nicely describes bargaining outcomes under the influence of the equal split norm. In
this section, we apply the BBT to other behavioral patterns that are often observed in the

12Kamijo (2023c) shows that the risk dominant equilibrium of Nash demand game coincides with the Nash
bargaining solution for very wide class of utility functions.
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experimental literature.

We call (𝑀, 𝑣, (𝐸1, 𝐸2)) a bargaining environment. Since our reference-dependent utility function
𝑢𝑖 depends on entitlement 𝐸𝑖, the Nash allocation calculated from the reference dependent
utility functions depends not only the bargaining problem (𝑀, 𝑣) but also the entitlement
vectors (𝐸1, 𝐸2). As a result, it becomes a function that associates any bargaining environment
(𝑀, 𝑣, 𝐸1, 𝐸2) with the efficient allocation. We denote the Nash allocation by

𝑥∗(𝑀, 𝑣, (𝐸1, 𝐸2))

to emphasize the dependency on 𝐸1 and 𝐸2.

In the following subsections, we hold the view that, whether it is intentional or not, differ-
ent experimental manipulations generate different bargaining environments, even though the
bargaining problem is the same.

Before going to the application parts, we reexamine the relationship between utility function 𝑢
defined in (2) and the component function Ψ in terms of risk attitude. One easily verifies that
IARA/DARA of the component function Ψ is inherited to 𝑢 in the loss and gain domains. Let
𝑟Ψ be the Arrow-Pratt coefficient of a function Ψ. Then, after some calculation, in the gain
domain (𝑥𝑖 > 𝐸𝑖), we have 𝑟𝑖(𝑥𝑖) = 𝑟Ψ(𝑥𝑖 − 𝐸𝑖). In contrast, in the loss domain (𝑥𝑖 < 𝐸𝑖), since
(Ψ(𝐸𝑖 − 𝑥𝑖))′ = −Ψ′(𝐸𝑖 − 𝑥𝑖) and (Ψ(𝐸𝑖 − 𝑥𝑖))″ = Ψ″(𝐸𝑖 − 𝑥𝑖), we have 𝑟𝑖(𝑥𝑖) = −𝑟Ψ(𝐸𝑖 − 𝑥𝑖).
Therefore, 𝑟′

𝑖(𝑥𝑖) = 𝑟′
Ψ(𝑥𝑖 −𝐸𝑖) in the gain domain and 𝑟′

𝑖(𝑥𝑖) = −(−1)𝑟′
Ψ(𝐸𝑖 −𝑥𝑖) = 𝑟′

Ψ(𝐸𝑖 −𝑥𝑖)
in the loss domain. Thus, in both cases, IARA (DARA) of Ψ is succeeded to 𝑢𝑖 defined in (2).
A detailed analysis about IARA and DARA utility functions are provided in Appendix 2.

We use the terminology of IARA (DARA) model to refer to a situation that both bargainers
have the same concave IARA (DARA) function Ψ and their utility is defined by (2).

6.2. Bargaining for “manna from heaven”

As the first application of our bargaining model, let us consider a typical practice of traditional
bargaining experiments. Participants in the bargaining experiments are often instructed as
follows:

You and the person matched to you bargain over a £20.00 prize. You do this by
sending and receiving proposals for dividing the prize during a “negotiation stage” of
the game. Below is an example of how the bottom portion of your computer screen
will look during the negotiation stage.

...

[ The decision screen are shown and the explanation about how they can
make a proposal, accept one of the proposals, and end the negotiation
stage is continued ]

...

If you or the other person ends the negotiation stage early, or if the time available
for proposals ends without you reaching an agreement, then you receive an “outside
option”, and the other person receives a different “outside option”. These outside
options are chosen randomly by the computer, and vary from round to round and
from person to person. In each round, you and the person matched to you are
informed of both of your outside options at the beginning of the negotiation stage.

[from an experimental instruction of Anbarci and Feltovich (2013). The bold-font
text is inserted by the authors of the current study]
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In this situation, both the disagreement payoffs and the bargaining pie are windfall gains in
the sense that they are not related to the participants’ skill, status, efforts and actions. Then,
it is reasonable to think that players do not feel any entitlement to a bargaining surplus or
disagreement payoffs. One possible model of capturing this situation is to assume that they
are under the influence of the equal split norm and thus think 𝐸1 = 𝐸2 = 𝑀/2. This situation
is already analyzed in the previous section and we observed that the equality bias naturally
happens. Another way to model this situation is to naively assume that 𝐸1 = 𝐸2 = 0 holds. In
this subsection, we analyze the latter case.

Suppose that 𝐸1 = 𝐸2 = 0 holds. Thus, the bargaining environment in this case is (𝑀, 𝑣, (0, 0)).

If the disagreement point 𝑣 is different from the origin but they do not feel any entitlement to
their disagreement point either, the following result holds by our Theorem 1.

Proposition 1. Suppose that the bargaining environment is (𝑀, 𝑣, (0, 0)). Then, the equality
bias occurs in the IARA model, no bias occurs in the CARA model, and the inequality bias
occurs in the DARA model.

Using Proposition 1, we offer new interpretations of existing results in the laboratory. The
IARA model is consistent with lots of experimental evidence that point out the existence of the
equality bias.

Some studies examine the equality bias from a different angle. Anbarci and Feltovich (2013)
experimentally observe that subjects’ agreement is less responsive to changes in disagreement
outcomes compared to the neutral Nash solution’s prediction. Because the equal split is utterly
unresponsive to disagreement points, this phenomenon is entirely the flip side of the coin of
the equality bias. In fact, as a similar result to our Theorem 1, Kamijo (2023a) shows that
the outcome of the Nash solution is less responsive to disagreement outcomes when the utility
function satisfies IARA.

Experiments about dictator and ultimatum games have revealed that experimental participants
show a preference for fairness and equality (Knez and Camerer, 1995; Hoffman and Spitzer,
1985; Hennig-Schmidt et al., 2018). So, the equality bias observed in a unstructured bargaining
experiment can be explained from this preference.13 Our Proposition 1 provides another
explanation for this phenomenon. Without specific fairness consideration in a utility function,
the IARA utility function can explain the equality bias when the bargaining pie and disagreement
points are given to players as “manna from heaven.”

6.3. Bargaining with earned disagreement outcomes

The existing literature has documented that the equality-biased outcomes often observed in
bargaining experiments arise from the lack of entitlements that participants feel to the bargaining
pie and the outside option. To manipulate the feelings of entitlements, one of the most
common approaches is to introduce a production stage wherein participants can earn money
or experimental tokens by conducting some tasks (Baranski, 2016, 2019; Cappelen et al., 2007,
2011). A common observation from the bargaining experiment with production stage is that
the 50–50 split frequently observed in the ultimatum and dictator games without production
is less frequent in experiments in which the participants produce the surplus on their own. In
an unstructured bargaining experiment, Luhan et al. (2019) found that if a bargaining pie is
the product of their effort and performance, the agreement other than the equal split is often
justified. Takeuchi et al. (2022) also found that if there is a production stage, the egalitarian

13Birkeland and Tungodden (2014) explained the equality bias in the unstructured bargaining experiment by
incorporating concerns for fairness into the utility functions and applying the Nash solution.
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allocation is less observed and allocations close to other familiar solutions are observed more
frequently.

In an unstructured bargaining experiment with a production stage, the earned outcome in the
production stage is then used as the input in the subsequent bargaining stage like the following
instruction:

You and your partner can use the earnings from Part 1 [the production stage]
and engage in a joint investment that gives to you two a joint profit, which is higher
than the sum of earnings from Part 1. The task for you in Part 2 will be to negotiate
with your partner in order to reach an agreement on how to divide the joint profit.

The joint profit depends on the amount of money invested. The relationship between
the money earned in Part 1 and the joint profit is as follows: Joint profit = Your
earnings + your partner’ earnings + 𝛼, where 𝛼 is a number that changes from round
to round. Note that when you make a joint investment, you have to invest all the
money earned in Part 1.

[from an experimental instruction of Takeuchi et al. (2022). The bold-font text is
inserted by the current authors]

As in the above instruction, suppose that the disagreement outcome is the one that experimental
participants earn through some real effort tasks. They can obtain an extra surplus by putting their
disagreement payoffs into the opportunity of a joint project. In this case, it is reasonable to assume
𝐸𝑖 = 𝑣𝑖 for 𝑖 = 1, 2. Thus, the bargaining environment becomes (𝑀, 𝑣, (𝑣1, 𝑣2)) = (𝑀, 𝑣, 𝑣).

In our setting wherein the heterogeneity between players are captured by the different reference
points, the utility generated by the increment from the reference point is precisely the same for
both. Hence, from Lemma 1, the slope of the bargaining trajectory continues to be 1. Thus, we
have the following result.

Proposition 2. Suppose that the bargaining environment is (𝑀, 𝑣, 𝑣). In any of IARA, CARA
or DARA models, the bargaining trajectory coincides with that of NNA.

This proposition says that the neutral Nash solution appears when 𝐸𝑖 = 𝑣𝑖 for 𝑖 = 1, 2. This
prediction is supported from the experiment of Takeuchi et al. (2022). They manipulate how
the bargaining surplus is related to their input (disagreement payoff) earned in the production
stage. No relationship is mentioned in the baseline, and it is explained in the constant surplus
treatment that the bargaining pie is the sum of the fixed surplus and the subjects’ input (i.e.,
𝑀 = 𝛼 + 𝑣1 + 𝑣2 with 𝛼 > 0). They classified the agreed outcomes into nine categories based on
the three well-known solutions, the equal-split, the neutral Nash solution, and the proportional
solution, and they found that the most frequent agreement in these two treatments is the category
close to the neutral Nash solution.

Another example of the disagreement point being the entitlement is the experiments on price
bargaining between a seller and a buyer wherein a price below the seller’s reservation price
(above the buyer’s reservation price) entail a negative payoff to that person. In this situation,
𝐸𝑖 = 𝑣𝑖 = 0 for 𝑖 = 1, 2 holds and the neutral Nash solution is the equal split. Raiffa (1982)
observed that “the obvious focal point would be in the middle (…), and that’s what happens
overwhelmingly in experimental negotiations” (Raiffa 1982, p52). This result is also consistent
with Proposition 2.

6.4. Entitlement paradox in loss domain bargaining

Incorporating entitlements into the model enables us to consider the problem of how to share
the surplus in the loss domain or share the cost among the stakeholders. In the literature
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on unstructured bargaining experiments, bargaining in the loss domain is done by forcing
participants into a loss frame, as in the following experimental instruction.

In the experiment you and your partner act in the role of a head of department
in a firm. Imagine that in this firm there is a total budget of 2490 points for your
and your collegue’s salary. In the past the policy of the firm was to pay the salary
according to performance. (How the performance is determined in the experiment
will be explained below.) The head of department with the higher performance was
paid a salary of 1660 points and the head of department with the lower performance
was paid a salary of 830 points. There is now the possibility that, due to bad
economic conditions for the firm the top management is forced to cut back the salary
budget, with the consequence that the hitherto valid salary claims cannot be satisfied
anymore. The new total salary budget then amounts to 2050 points.

[from an experimental instruction for participants of Gächter and Riedl (2005)]

In the above explanation, if the economic situation is bad, the status quo salary will not be
covered, in which case the participant will have to negotiate regarding the distribution of an
amount less than the total of the status quo salary. A similar situation arises when the remaining
assets of a bankrupt company are less than the total amount claimed by its creditors (Aumann
and Maschler, 1985; O’Neill, 1982). The bankruptcy problem and other cost-sharing problems
have been studied intensively through the axiomatic approach combined with cooperative game
theory (for a survey, see Thomson (2003)).

Consider a bankruptcy problem or a claim problem wherein each player 𝑖 has a claim 𝑐𝑖 to the
bankrupt firm and the remaining asset of the firm is 𝑀 with 𝑀 < 𝑐1 + 𝑐2. They have to decide
how to share the remaining assets 𝑀. Several kinds of allocation rules have been proposed
and investigated from a normative point of view. Almost all rules draw a trajectory through
the bargaining parallelogram, where the outcome lies between the constrained equal award and
constrained equal loss rules (see Figure 3 Panel (A)). In the panel, the blue bottom, the red top,
the black and the central dashed lines are the constrained equal award, the constrained equal
loss, the proportional and the Talmudic rules,14 respectively).

Here, instead of applying allocation rules directly, we assume that the cost allocation is determined
through the bargaining between the stakeholders. Thus, we apply our behavioral bargaining
theory to this class of problems and try to know whether they agree on the allocations that a
normative rule should suggest. A variety of trajectories will be obtained as the result of the
variation of utility functions, not by allocation rules.

Since any shortage of the claim can be seen as the loss for that player, it is natural to set 𝑐𝑖 = 𝐸𝑖
for 𝑖 = 1, 2. In addition, we assume 𝑥∗

𝑖 (𝑀, 𝑣) ≦ 𝐸𝑖 because of the nature of the problem. 15

We obtain the following proposition, indicating that IARA is more consistent with the normative
solution concepts and DARA leads to a paradoxical result.

Proposition 3. Suppose that the bargaining environment is (𝑀, (0, 0), (𝑐1, 𝑐2)), where 𝑐1 +𝑐2 >
𝑀 and 𝑐1 < 𝑐2. The following statements hold true:

(i) In the IARA model, the locus of bargaining in the bankruptcy problem always belongs to
the bargaining parallelogram,

14In two-player case, the Talmudic rule coincides with the Shaplay value, the nucleolus, and other normative
solutions

15Without this assumption, we have to slightly modify the statement in the next proposition since when there
is a large difference between 𝐸1 and 𝐸2, it might happen that a person with smaller entitlement would obtain
the share more then the entitlement as the result of the bargaining.
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(ii) In the CARA model, the locus of bargaining in the bankruptcy problem coincides with
the one of the constrained equal award rule,

(iii) In the DARA model, the locus of bargaining in the bankruptcy problem deviates from the
bargaining parallelogram.

Proof. (i) and (ii). First, it should be mentioned that different values of 𝜆𝑖 for 𝑖 = 1, 2 do not
change the bargaining outcomes. This is because since the share of player 𝑖 is always in the
loss domain, 𝜆𝑖 becomes a multiplier of the Nash product, and thus, the maximizer of the Nash
product is invariant from the value of 𝜆𝑖.

Second, by Lemma 2 in the Appendix, in the IARA model, assumption A2 is automatically
satisfied, so the locus is guaranteed to be an upward-right sequence. Also, considering the locus
at the origin, player 1 is more risk-averse than player 2 at the origin due to the definition of the
utility function and the nature of IARA.16 Therefore, from Lemma 1, the slope of the locus is
greater than 1.

Furthermore, suppose that a point on the locus is in the neighborhood (lower side) of the equal
loss. In this case, the degree of risk aversion of both players is almost equal, so the slope of the
locus becomes closer to 1.

From the above three facts, we can see that the locus of negotiation does not deviate outside
the bargaining parallelogram for IARA model.

In the case of CARA model, from Lemma 1, the slope of the locus is equal to 1 until it reaches
the boundary of the bargaining parallelogram. Thus, it becomes the locus of the constrained
equal gain rule.

(iii). In the DARA model, since the utility function satisfies DARA, player 1 is less risk averse
than player 2 at the origin. Therefore, the slope of the trajectory becomes smaller than 1.
Therefore, near the origin, the trajectory deviates from the parallelogram of negotiation.

The second statement of the proposition shows that when the utility function exhibits CARA, it
is consistent with the neutral Nash allocation. This is a generalization of Dagan and Volij (1993)
showing that the Nash solution is consistent with the constrained equal gain rule when risk-
neutral agents are assumed. The axiomatic analysis of bargaining solutions has revealed which
ones are consistent with the allocation rule for the bankruptcy problem under the assumption of
risk-neutral agents. In contrast, the proposition shows that various trajectories can be obtained
by considering changes in the utility function with fixing the bargaining solutions to the Nash
solution.

In the IARA model, it is possible to draw trajectories similar to those of various normative
solutions, depending on the shape of the utility functions. In Panel (B1) of Figure 4, we use

16This is verified as follows. By the definition of a utility function, we have

𝑢𝑖(𝑥𝑖) = −𝜆𝑖Ψ(𝑐𝑖 − 𝑥𝑖).

Its Arrow-Pratt coefficient is

𝑟𝑖(𝑥𝑖) = − 𝜆𝑖Ψ″(𝑐𝑖 − 𝑥𝑖)
−𝜆𝑖Ψ′(𝑐𝑖 − 𝑥𝑖)

= −( − Ψ″(𝑐𝑖 − 𝑥𝑖)
Ψ′(𝑐𝑖 − 𝑥𝑖)

).

When Ψ is IARA, 𝑟Ψ(𝐸𝑖) = − Ψ″(𝐸𝑖)
Ψ′(𝐸𝑖) is an increasing function in 𝐸𝑖. Therefore, we have

𝑟1(0) = −( − Ψ″(𝑐1)
Ψ′(𝑐1)

) > −( − Ψ″(𝑐2)
Ψ′(𝑐2)

) = 𝑟2(0)

when 𝑐1 < 𝑐2.
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Figure 4: Pane (A) is the bargaining parallelogram. Panels (B1), (B2), and (B3) are the
trajectories under IARA when the convexity is weak, medium, and strong, respectively. Panels
(C1), (C2), and (C3) are those under DARA. We use pdf of a normal distribution as an IARA
function and the degree of convexity is controlled by the different values of standard deviaiton
(small/large sd correspond to strong/weak convexity in the domain). As a DARA function, we
use a power-type function a la Tversky and Kahneman (1992).
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the utility function that is much flatter and whose degree of convexity is weak. In such a case,
we can see that the trajectory is close to the equal award rule. In contrast, when the degree of
convexity is strong, the trajectory is similar to the one of the constrained equal loss rule (Panel
(B3) of Figure 4). It is worth noting that, when the degree of convexity is of medium size, it is a
mixture of the trajectory of the Talmudic rule and the proportional rule (Panel (B2) of Figure
4).

On the other hand, the DARA model yields inconsistent results with predictions from normative
solutions. In the DARA model, not only does the trajectory deviate from the parallelogram
of negotiation, but also it is discontinuous (because assumption A2 is not satisfied around the
reference point). In the DARA model, as shown in Panels (C1), (C2) and (C3) of Figure 4, after
a gentle rightward rise in the lower right region of the parallelogram, the locus begins to be
down to the right (i.e., the share of 2 begins to decrease), and then, at some point, it jumps
discontinuously to the right wall. After it reaches the right wall, the trajectory rises straight up.

As Figure 4 shows, in the DARA model, some paradoxical results happen when 𝑀 < 2𝐸1. In
this case, the bargaining share of a player with a smaller entitlement (𝐸1) becomes larger than
that of a player with a higher entitlement (𝐸2). Empirically, no paper examines whether the
entitlement paradox occurs or not. Thus, it is not easy to compare the two models from this
point of view. Nevertheless, it is unlikely that the entitlement paradox is justified since at least
no normative solution supports such an allocation.

Experimental investigations on the loss domain bargaining are not as abundant as those focusing
on the gain domain bargaining. One exception is an experimental paper by Gächter and Riedl
(2005). The experimental results of bargaining in the loss domain help us identify which of the
two models is more consistent with the data. The most frequent share of the higher claim player
is 65-67%, which is a slight shift of the equal loss to the egalitarian side (70.2% is the share of
the higher claim player under the equal loss rule). There is no agreement on an outcome that is
more favorable to the higher claim player than the equal loss rule. The second and third mode
in the data is (𝐸1, 𝑀 − 𝐸1), which is the allocation suggested by the constrained equal gain
rule. Thus, their experimental result is in good agreement with the IARA model, which predicts
that they agree on various points in the parallelogram.17 In contrast, the DARA model does not
have such a variation in prediction.

7. Data fitting

In the previous sections, we demonstrate that BBT explains important stylized facts observed
in bargaining experiments by considering various types of entitlements. In this section, we
empirically check the validity of BBT by using the data of Takeuchi et al. (2022).

In their experiment, an experimental participant earns 𝑣𝑖 by a real effort task in the first stage
(production stage), and then, they put 𝑣𝑖 to a joint project and bargain for the division of the pie
𝑀 in the second stage (bargaining stage). The explanation about the relationship between 𝑀 and
(𝑣1, 𝑣2) is manipulated in their experiment: In the baseline treatment, an explicit relationship is
not explained; in the constant surplus treatment, it is explained as 𝑀 = 𝛼 + 𝑣1 + 𝑣2, where 𝛼
is the constant surplus; in the proportional surplus treatment, 𝑀 = 𝛽(𝑣1 + 𝑣2), where 𝛽 is a
multiplication factor. Importantly, in these three treatments, 𝑀 and (𝑣1, 𝑣2) are the same, but
only the explanations about the relationship are different. However, their manipulations are
expected to affect the feelings of entitlements that experimental participants perceive, and thus,
bargaining environments (𝑀, 𝑣, (𝐸1, 𝐸2)) are different in the three treatments.

17In 25% percent of the agreements, a lower claim player gets more than its claim since some participants were
not affected by the experimental manipulation about status quo. Their experimental setting is different from the
bankruptcy problem in this respect.
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The estimated model is constructed as follows. For any bargaining problem (𝑀, 𝑣), we can
calculate the bargaining outcome if we know the type of utility function (e.g., IARA or DARA)
and entitlement vectors 𝐸 = (𝐸1, 𝐸2). So far, we propose several types of entitlements, each of
which corresponds to a specific experimental manipulation. An entitlement function 𝛾 specifies
the relation between a bargaining problem and the bargainers’ entitlements, and 𝐸𝑖 = 𝛾𝑖(𝑀, 𝑣)
for 𝑖 = 1, 2. To know the degree of fitness to the data, we consider the following types of
entitlement functions. For each 𝑖 = 1, 2,

• Equal Split Norm: 𝛾𝑖(𝑀, 𝑣) = 𝑀/2.
• Manna from Heaven: 𝛾𝑖(𝑀, 𝑣) = 0.
• Disagreement: 𝛾𝑖(𝑀, 𝑣) = 𝑣𝑖.
• Proportion: 𝛾𝑖(𝑀, 𝑣) = 𝑣𝑖

𝑣1+𝑣2
𝑀

The first three are already explained in the previous section. The “Proportion” case is such
that bargainers have entitlements that are proportional to their disagreements and satisfy the
consistency condition (𝑀 = 𝐸1 + 𝐸2).

Let 𝑥∗
𝑠,𝑝(𝑀, 𝑣, 𝐸1, 𝐸2; 𝜃) be the agreed share for the strong bargainer (i.e., player 2 if 𝑣2 > 𝑣1) of

the bargaining pair 𝑝, wherein 𝜃 is the parameter of the utility (component) function (e.g., 𝜃 = 𝑏
when Ψ(𝑥) = 𝑥𝑏). Then, we assume that the observed 𝑥𝑠,𝑝 is

𝑥𝑠,𝑝 = 𝑥∗
𝑠,𝑝(𝑀, 𝑣, 𝐸1, 𝐸2; 𝜃) + 𝜖𝑝

where 𝜖𝑝 is an error term and is distributed according to a normal distribution with mean 𝜇 = 0
and standard deviation 𝜎.

Then, the likelihood of a data point 𝑥𝑠,𝑝 is

𝑓(𝑥𝑠,𝑝; 𝜃, 𝜎) = 𝜙(
𝑥𝑠,𝑝 − 𝑥∗

𝑠,𝑝(𝑀, 𝑣, 𝐸1, 𝐸2; 𝜃)
𝜎

)

where 𝜙 denotes the density of a standard normal distribution.

As we explained so far, 𝐸1, 𝐸2 are functions depending on 𝑀 and 𝑣, and there are several
types. Thus, we denote 𝑓 by 𝑓𝐸𝑆𝑁, 𝑓𝑀𝑎𝑛𝑛𝑎, 𝑓𝐷, and 𝑓𝑃𝑟𝑜𝑝 when the entitlement function 𝛾𝑖
is one of “Equal Split Norm,” “Manna from Heaven,” “Disagreement” and “Proportion,” and
𝐸𝑖 = 𝛾𝑖(𝑀, 𝑣) for each 𝑖 = 1, 2.

Given a particular type of entitlement, we calculate the log-likelihood for all data as follows:

𝐿𝐿𝐾(𝜃, 𝜎) = ∑
𝑝

log(𝑓𝐾(𝑥1,𝑝; 𝜃, 𝜎)),

where 𝐾 is one of ESN, Manna, D, and Prop.

We estimate the model parameters using the data of Takeuchi et al. (2022).18 To focus on the
effect of the entitlements, we only consider the neutral component function Ψ(𝑥) = 𝑥. Thus, 𝜃,
the parameter of the component function, is fixed and not estimated. In addition, we assume that
the loss aversion parameter 𝜆 is 2.33 for simplicity. Thus, 𝜎 is the only estimated variable. An
estimation model using the neutral component function with a particular entitlement function is
referred to as a simple behavioral model.

18In their experiments, bargaining pairs are matched randomly so that some pairs have equal disagreement
payoffs. Because symmetric bargaining problems lead to an equal split of a pie theoretically and experimentally,
we used data from asymmetric bargaining problems (i.e., 𝑣1 ≠ 𝑣2). We performed an estimation on data where
participants agreed on an efficient allocation. However, the results are much the same when inefficient deals and
failed negotiations are included in the estimation.
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ESN D (Manna) Prop
Baseline treatment -550.4673 -459.6879 -541.2521
Constant surplus treatment -521.6796 -407.8255 498.4210
Proportional surplus treatment -624.8405 -533.0858 -474.1858

Table 1: Log likelihood of a simple behavioral model to the three treatments of Takeuchi et al.
(2022)
Note: The numbers of data are 238, 229, 229, respectively. ESN, Manna, D, Prop means ”Equal Split Norm”,
”Manna from Heaven”, ”Disagreement”, and ”Proportion”, respectively. Bold font indicates the best fit model.

The estimation results appear in Table 1. Since “Disagreement” and “Manna” perfectly coincide
in the neutral case (see Proposition 2) and they both induce the outcome of the neutral Nash
allocation (the equal surplus division), we only report the estimation results of “Disagreement.”
It shows that choosing the proper types of entitlement greatly increases fitness of the model,
indicating its importance for explaining the data. This tendency is common across all treatments,
but the proper model is different. “Manna from Heaven” and “Disagreement” show a good fit
for the baseline and the constant surplus treatments, which indicates that the data of these
treatments are close to the neutral Nash allocation. In contrast, “Proportion” best fits the
proportional surplus treatment.

In addition to fitness of the data, the selected models exhibit the interpretation of the experimental
manipulations. In their post-experiment questionnaire, experimental participants answered
which way of division is most preferred, the equal split division, the equal surplus division, or
the proportional surplus division. The results are in accordance with the selection from the
simple behavioral model. They answer that the equal surplus division is most favorable in the
baseline and constant surplus treatments, but the proportional surplus division is most preferred
in the proportional surplus treatment.

Furthermore, we also estimate the full models of the BBT. In a full model, the parameter of the
component function is also estimated. Let Φ(.; 𝜇, 𝑠) denote the cumulative density function for a
normal distribution with mean 𝜇 and standard deviation 𝑠. In the IARA case, we assume that
Ψ(𝑥) = Φ(𝑥; 0, 𝑠) − 0.5 (this becomes a concave IARA function; see Appendix 2 for details). In
the DARA case, we assume that Ψ(𝑥) = 𝑥𝑏 with 0 ≦ 𝑏 ≦ 1. In addition to 𝜎, parameters 𝑠 and
𝑏 are estimated in the IARA and DARA cases, respectively.

The results appear in Table 2. In the baseline and constant surplus treatments, “Manna from
Heaven” of DARA is the best fit, which reflects the tendency that the mode of these treatments
is the neutral Nash allocation, but the distribution of agreed outcomes is skewed towards the
proportional side, which is the direction of the inequality bias (see Theorem 1 and Proposition
1). In contrast, the “Proportion” of IARA shows the best fit for the proportional surplus
treatment. Therefore, even though we consider the parameter of the component functions,
selected entitlements are kept the same. Also, considering both elements (components and
entitlement functions) generates the best fit model, but the size of the fruit is modest.

7. Concluding remarks

This paper presents two explanations for the equality bias observed in bargaining experiments.
One is a canonical approach that assumes a standard utility function that accounts for risk
attitudes. This approach justifies the equality bias if players have IARA utility functions. The
other approach is the behavioral approach, which assumes that players have a certain sense of
entitlement to the bargaining pie. This approach allows us to theoretically model the equal split
norm, and we show that the resulting bargaining outcome, named ENNA, provides essential
insights into the equality bias that the equal split norm, rather than egalitarian preferences, can
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Baseline treatment
ESN Manna D Prop

IARA -550.4669 459.6879 -459.6879 -541.2521
DARA -550.4670 -457.3894 -459.6879 -541.2476

Constant surplus treatment
ESN Manna D Prop

IARA -521.6792 -407.8255 -407.8255 -498.4144
DARA -521.6793 -403.3803 -407.8255 -498.4144

Proportional surplus treatment
ESP Manna D Prop

IARA -624.8401 -533.0858 -533.0858 -463.3777
DARA -624.8401 -474.6077 -533.0858 -464.7159

Table 2: Log likelihood of full BBT models to the three treatments of Takeuchi et al. (2022)
For the explanations, please see caption of Table 1.

produce.

In addition to explaining the equality bias, the behavioral model provides many applications.
BBT expands the scope of analysis from a bargaining problem (𝑀, 𝑣) in the traditional bargaining
theory to a bargaining environment (𝑀, 𝑣, (𝐸1, 𝐸2)). By considering the relation between the
experimental manipulation and the type of entitlement vector (𝐸1, 𝐸2), BBT provides unified
perspectives for understanding the existing experimental literature, such as bargaining for manna
from heaven, bargaining based on earned disagreement outcomes, and loss domain bargaining.
Furthermore, data fitting demonstrated the effectiveness of BBT, showing that selecting an
appropriate type of entitlements improves the model’s fitness to the data.

Extensions and future directions of BBT are as follows. For theoretical studies, by using the
framework of BBT, it is expected that further theoretical analysis on the feeling of entitlements
that people form proceeds. For example, a companion paper to this study examines how
people form feelings of entitlement and discusses the emergence of distributive and equal split
norms (Kamijo, 2023b). For experimental studies, while BBT provides predictions to bargaining
environments, it remains unclear what kind of manipulation creates what kind of sense of
entitlement. We hope that future experimental studies will move in the direction of clarifying
the link between entitlements and experimental manipulations. For empirical studies, BBT is
expected to create an elaborated data-fitting model, especially for the formation of entitlements
based on experience. In the near future, the path dependence and status quo effects might be
successfully modeled and explained from data using BBT.

Appendix 1: Proof of P4, P5 and P6

Proof of P4

Proof. Since the Nash allocation is obtained as an interior solution, we have 𝐴 > 0 and 𝐵 > 0.
Then, the identity equation of P3 can be rewritten as follows:

𝑢′
1(𝑥1) = 𝐴

𝐵
𝑢′

2(𝑥2)
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Thus,

𝑢′
1(𝑥1)𝑢′

2(𝑥2) − 𝑢″
2(𝑥2)𝐴 = 𝐴

𝐵
(𝑢′

2(𝑥2))2 − 𝑢″
2(𝑥2)𝐴 = 𝐴((𝑢′

2(𝑥2))2

𝐵
− 𝑢″

2(𝑥2)).

By A1 and A2 of utility functions, we have −𝑢″
2(𝑥2) > − (𝑢′

2(𝑥2))2

𝑢2(𝑥2) . Therefore,

𝐴((𝑢′
2(𝑥2))2

𝐵
− 𝑢″

2(𝑥2)) > 𝐴( (𝑢′
2(𝑥2))2

𝑢2(𝑥2) − 𝑢2(𝑣2)
− (𝑢′

2(𝑥2))2

𝑢2(𝑥2)
) ≧ 0

Thus, we have 𝑢′
1(𝑥1)𝑢′

2(𝑥2) − 𝑢″
2(𝑥2)𝐴 > 0. The latter part of the lemma can be shown in a

similar way.

Proof of P5

Proof. We prove the uniqueness part, which together with Jansen and Tijs (1983) implies the
continuity part.

If 𝑀 = 𝑣1 + 𝑣2, then uniqueness immediately follows from P1. In what follows we assume
𝑀 > 𝑣1 + 𝑣2. We define 𝑓 ∶ (𝑣1, 𝑀) → ℝ by

𝑓(𝑥1) = (𝑢1(𝑥1) − 𝑢1(𝑣1))(𝑢2(𝑀 − 𝑥1) − 𝑢2(𝑣2)) for all 𝑥1 ∈ (𝑣1, 𝑀).

We prove two claims.

Claim 1. For any 𝑥1 ∈ (𝑣1, 𝑀), 𝑓 ′(𝑥1) = 0 implies 𝑓″(𝑥1) < 0.

Proof. Fix 𝑥1 ∈ (𝑣1, 𝑀). It holds that

𝑓 ′(𝑥1) = 𝑢′
1(𝑥1)𝐵 − 𝐴𝑢′

2(𝑀 − 𝑥1), (3)
𝑓″(𝑥1) = 𝑢″

1(𝑥1)𝐵 − 𝑢′
1(𝑥1)𝑢′

2(𝑀 − 𝑥1) + 𝑢″
2(𝑀 − 𝑥1)𝐴 − 𝑢′

1(𝑥1)𝑢′
2(𝑀 − 𝑥1), (4)

where 𝐴 and 𝐵 are defined as in P4. Suppose that 𝑓 ′(𝑥1) = 0. By (3) and 𝐵 > 0 (recall P2), we
have

𝑢′
1 (𝑥1) = 𝐴

𝐵
𝑢′

2 (𝑥2) .

By the same calculation as in the proof of P4,

𝑢′
1(𝑥1)𝑢′

2(𝑀 − 𝑥1) − 𝑢″
2(𝑀 − 𝑥1)𝐴 = 𝐴 ((𝑢′

2 (𝑥2))2

𝐵
− 𝑢′′

2 (𝑥2)) > 0. (5)

By switching the roles of bargainers 1 and 2 and applying the parallel argument, we have

𝑢′
1(𝑥1)𝑢′

2(𝑀 − 𝑥1) − 𝑢″
1(𝑥1)𝐵 > 0. (6)

By (5) and (6), we conclude that the value of (4) is negative.

Claim 2. There exists at most one 𝑥∗
1 ∈ (𝑣1, 𝑀) such that 𝑓 ′(𝑥∗

1) = 0.

Proof. Suppose by way of contradiction that there exist 𝑥∗
1, 𝑦∗

1 ∈ (𝑣1, 𝑀) such that

𝑥∗
1 < 𝑦∗

1, 𝑓 ′(𝑥∗
1) = 0, 𝑓 ′(𝑦∗

1) = 0.
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Together with Claim 1, there exists 𝜀 ∈ (0, 1) such that

𝑓 ′(𝑥∗
1 + 𝜀) < 0, 𝑓 ′(𝑦∗

1 − 𝜀) > 0, 𝑥∗
1 + 𝜀 < 𝑦∗

1 − 𝜀.

We define

𝑆 ≡ {𝑥1 ∈ (𝑣1, 𝑀) ∶ 𝑓 ′(𝑥1) > 0} ∩ (𝑥∗
1 + 𝜀, 𝑦∗

1 − 𝜀).

By continuity of 𝑓 ′(⋅) (which follows from twice differentiability of utility functions) and 𝑓 ′(𝑦∗
1 −

𝜀) > 0, we have 𝑆 ≠ ∅.

Since 𝑆 is bounded, it has an infimum 𝑠∗
1. By the definition of infimum, there exists a sequence

{𝑠𝑘
1}∞

𝑘=1 ⊆ 𝑆 such that 𝑠𝑘
1 → 𝑠∗

1. By the definition of 𝑆,

𝑓 ′(𝑠𝑘
1) > 0 for all 𝑘 = 1, 2, … .

Together with continuity of 𝑓 ′(⋅), we obtain

lim
𝑘→∞

𝑓 ′(𝑠𝑘
1) = 𝑓 ′(𝑠∗

1) ≥ 0. (7)

By 𝑓 ′(𝑥∗
1 + 𝜀) < 0 and 𝑠∗

1 ≥ 𝑥∗
1 + 𝜀, we obtain

𝑠∗
1 > 𝑥∗

1 + 𝜀. (8)

If 𝑓 ′(𝑠∗
1) > 0, then by continuity of 𝑓 ′(⋅) and (8), there exists 𝜀′ > 0 such that

𝑓 ′(𝑠∗
1 − 𝜀′) > 0 and 𝑠∗

1 − 𝜀′ > 𝑥∗
1 + 𝜀,

which implies 𝑠∗
1 − 𝜀′ ∈ 𝑆. We obtain a contradiction to the fact that 𝑠∗

1 is an infimum of 𝑆. It
follows that 𝑓 ′(𝑠∗

1) ≤ 0. Together with (7),

𝑓 ′(𝑠∗
1) = 0.

By Claim 1 and (8), there exists 𝜀″ > 0 such that

𝑓 ′(𝑠∗
1 − 𝜀″) > 0, 𝑠∗

1 − 𝜀″ > 𝑥∗
1 + 𝜀,

which implies 𝑠∗
1 − 𝜀″ ∈ 𝑆. We obtain a contradiction to the fact that 𝑠∗

1 is an infimum of 𝑆.

We resume the proof of P5. Since the Nash solution is defined by the maximum of the Nash
product and it is an interior solution (recall P2), if (𝑥∗

1, 𝑥∗
2) is a Nash allocation, we must have

𝑓 ′(𝑥∗
1) = 0. Now uniqueness follows from Claim 2.

Proof of P6

Proof. The identity equation of P3 is rewritten as 𝑢′
1(𝑥∗

1)𝐵 = 𝑢′
2(𝑥∗

2)𝐴. The total differential of
both sides yields

𝑢″
1(𝑥∗

1)𝑑𝑥∗
1𝐵 + 𝑢′

1(𝑥∗
1)𝑢′

2(𝑥∗
2)𝑑𝑥∗

2 = 𝑢″
2(𝑥∗

2)𝑑𝑥∗
2𝐴 + 𝑢′

2(𝑥∗
2)𝑢′

1(𝑥∗
1)𝑑𝑥∗

1

Rearranging this equation, we obtain (1). Thus, the second statement follows. The first statement
follows from P4 because P4 means that both the denominator and numerator of the right-hand
side of (1) are positive.
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Appendix 2: Properties of IARA and DARA component functions

In this appendix, we provide examples of the concave IARA and DARA functions, and then,
discuss the properties of these functions.

It is worth emphasizing that there exists an IARA function that satisfies the concavity. For
example, it is easily checked that the quadratic utility function Ψ(𝑥) = 𝑥 − 𝛼𝑥2, 0 ≦ 𝑥 ≦ 1

2𝛼
with 𝛼 > 0 is such function. Moreover, a logit function like Ψ(𝑥) = 𝐴( exp(𝑥)

1+exp(𝑥) − 0.5) with 𝐴 > 0
is also concave and IARA function.

To consider a class of IARA functions, the analysis of the log-concave probability density function
by Bagnoli and Bergstrom (2005) is helpful. They showed that the probability density functions
of several kinds of famous probability distribution like normal distribution, logit distribution,
etc. satisfy the log-concavity. Since the IARA of 𝑢 is equivalent to the log-concavity of 𝑢′, the
cumulative density function whose density function satisfies the log-concavity is IARA. Moreover,
the cumulative density function of a probability distribution having a continuous density is
an increasing function and satisfies concavity in a domain wherein the density is decreasing.
Let Φ(.|0, 𝜎) denote the cumulative density function of a normal distribution with mean 0 and
standard deviation 𝜎. Then, Ψ(𝑥) = 𝐴(Φ(𝑥|0, 𝜎) − 0.5) with 𝐴 > 0 for any 𝑥 ≧ 0 is concave and
IARA function.19 Similarly, we can construct a concave and IARA function from other type of
probability distributions.

On the other hand, the concave and DARA utility function is familiar in the literature. For
example, as an application of their cumulative prospect theory, Tversky and Kahneman (1992)
adopt the DARA utility function like the power-type utility (value) function as follows: Ψ(𝑥) =
𝑥𝛼 with 0 < 𝛼 < 1. In addition, Saha (1993) considers the expo-utility function defined by
Ψ(𝑥) = 𝐴 − exp(−𝛽𝑥𝛼) with some parameter restriction (𝐴 > 0, 𝛼𝛽 > 0). It is shown that this
is concave and DARA function if 𝛼 < 1. The one-parameter expo-utility function of Abdellaoui
et al. (2007) is defined by Ψ(𝑥) = − exp(−𝑥𝛼/𝛼) for 𝛼 ≠ 0 and Ψ(𝑥) = −1/𝑥 for 𝛼 = 0. This is
also concave and DARA if 0 ≦ 𝛼 ≦ 1. These functions have the common property that if they
are concave, they must be DARA (or there is only a narrow region where they can be IARA).

In a utility function defined by (2), 𝜆 and the scale parameter of Ψ determine the shape of the
utility function, and the entitlement 𝐸𝑖 becomes the location parameter (see Figure 2). Both
models satisfy the following conditions that are emphasized in the prospect theory:

C1. diminishing sensitivity

C2. loss aversion

C3. concave in gain domain and convex in loss domain

However, they are very different in the change in risk attitude with the change in 𝑥. When a
component function Ψ is IARA, 𝑢 defined in (2) is IARA in gain and loss domains, too. In
addition, since lim𝑥𝑖→𝐸−0 𝑟𝑖(𝑥𝑖) ≦ 0 ≦ lim𝑥𝑖→𝐸𝑖+0 𝑟𝑖(𝑥𝑖) hold true in this case, 𝑢 is IARA in
the whole domain. Moreover, if Ψ″(0) = 0, the Arrow Pratt coefficient becomes a continuous
function (see Footnote 19).

19 This can be checked analytically. By the definition of the density of a normal distribution,

Ψ′(𝑥) = 𝐴 exp(− 𝑥2

2𝜎2 ), and Ψ″(𝑥) = −𝐴 𝑥
𝜎2 exp(− 𝑥2

2𝜎2 ).

Thus, Ψ is concave when 𝑥 ≧ 0 and convex when 𝑥 < 0. In addition, the Arrow-Pratt coefficient is

𝑟Ψ(𝑥) = 𝑥
𝜎2 ,

which is apparently increasing in 𝑥.
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In contrast, if Ψ is DARA, the utility function is DARA in both gain and loss domains.
However, we can easily confirm that C3 under the DARA assumption imply that Arrow
Pratt coefficient is dis-continuous at the reference point. In fact, lim𝑥𝑖→𝐸𝑖+0 𝑟𝑖(𝑥𝑖) = +∞ and
lim𝑥𝑖→𝐸𝑖−0 𝑟𝑖(𝑥𝑖) = −∞ hold when the utility function is DARA of Tversky and Kahneman
(1992).20 Therefore, 𝑢 under the DARA component function is not DARA in the whole domain.

Mathematically and analytically, there is another significant advantage of using the class of
IARA component functions.

Lemma 2. If Ψ satisfies IARA or CARA, 𝑢𝑖 defined in equation (2) with adding some non-
negative constant 𝐴 of 𝐴 ≦ 𝜆Ψ(𝐸𝑖) satisfies A2 (without at the reference point).

Proof. The proof of the theorem is some modification of the proof of Theorem 1 of Bagnoli and
Bergstrom (2005), who investigate the log-concavity of probability density functions. Let 𝑢 be
the function in equation (2) with adding some 𝐴 of 0 ≦ 𝐴 ≦ 𝜆Ψ(𝐸). Suppose that Ψ satisfies
IARA, which immediately implies that 𝑢 is also IARA because adding 𝐴 does not change the
property of the first and higher derivatives. Since IARA is equivalent to the concavity of log 𝑢′

and CARA is its linearity, under the assumption of this lemma, we must have

(log 𝑢′)″ = 𝑑
𝑑𝑥

(𝑢″(𝑥)
𝑢′(𝑥)

) ≦ 0.

<!– In the case of CARA, this becomes the equality. –> <!– Thus, under the assumption of this
lemma, this holds with weak inequality. –>

For any 𝑥 ≠ 𝐸, we can find some 𝑎 ≦ 𝑥 such that 𝑢″(𝑥)𝑢(𝑎) is non-positive because when 𝑥 < 𝐸,
𝑢″(𝑥) > 0 and 𝑢(0) ≦ 0 by the assmption on 𝐴, and when 𝑥 > 𝐸, 𝑢″(𝑥) < 0 and 𝑢(𝑎) > 0 for
any 𝑎 with 𝐸 < 𝑎 < 𝑥. By using this 𝑎, it is possible to transform 𝑢″𝑢/𝑢′ as follows.

𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑥) = 𝑢″(𝑥)
𝑢′(𝑥)

∫
𝑥

𝑎
𝑢′(𝑡)𝑑𝑡+𝑢″(𝑥)

𝑢′(𝑥)
𝑢(𝑎) ≦ ∫

𝑥

𝑎

𝑢″(𝑡)
𝑢′(𝑡)

𝑢′(𝑡)𝑑𝑡+𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑎) = 𝑢′(𝑥)−𝑢′(𝑎)+𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑎)

where the first equality comes from the fundamental theorem of calculus and the second inequality
is from the fact that 𝑢″(𝑥)

𝑢′(𝑥) is non-increasing. Since 𝑢′(𝑎) > 0 and 𝑢″(𝑥)𝑢(𝑎)/𝑢′(𝑥) ≦ 0, we have

𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑥) ≦ 𝑢′(𝑥) − 𝑢′(𝑎) + 𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑎) ⇒ 𝑢″(𝑥)
𝑢′(𝑥)

𝑢(𝑥) < 𝑢′(𝑥) ⟺ 𝑢″(𝑥)𝑢(𝑥) < (𝑢′(𝑥))2.

This is A2.

Therefore, we can apply our setup and results developed in Sections 2 and 3 by using IARA
component functions.
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