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We consider a matching problem with interval constraints under the hierarchical
region structure. We proposes new stability, interval respecting stability, for match-
ing problems with interval constraints, which defines ceiling respecting stability
(Kamada and Kojima, 2018) using a blocking coalition instead of a pair, follow-
ing floor respecting stability (Akin, 2021). Interval respecting stability coincides
with floor respecting stability in problems with floor constraints and implies ceil-
ing respecting stability in problems with ceiling constraints. In addition, interval
respecting stability generally implies Pareto efficiency, unlike ceiling respecting
stability.

We also propose a generalized flexible deferred acceptance algorithm for a prob-
lem with interval constraints, which is a flexible deferred acceptance algorithm (i.e.,
cumulative offer process) that allocates quotas between regions, reserving additional
numbers for doctors’ future offers needed to fill the floor constraints even if there
are no offers now. Under acceptability, we show that further combining the above
algorithm with the serial dictatorship yields an algorithm that satisfies interval re-
specting stability. We also show that the combinded algorithm is strategy-proof for
doctors.

Keywards: Matching; Interval constraints; Stability; Strategy-proofness; Cumu-
lative offer process

JEL classification: C78; D47; D61; D63

1 Introduction

In this paper, we show the existence of stable matching in the matching problem with interval
constraints and the algorithm that produces it.
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Recently, the matching theory is applied to many real-world problems, and increasingly
research is being conducted toward this end. The simplest matching models, while tractable,
maybe too naive to be applied to real-world problems. For example, a school may have a
preference not only for individual students but also for diversity. 1 In this case, a school may
prefer if one student enrolls with another student, but not if she enrolls without him. We cannot
deal with this situation in the most elementary matching problem. Alternatively, it is also essential
to consider matching in cases with no standard stable matching. For example, in such cases, it
is known that the larger the market, the less dissatisfied the participants are. Moreover, we often
face problems where there are ceiling constraints or floor constraints on the number of matches
an agent or object can make. We do not doubt that such matching models with constraints are
indispensable for solving real-world problems like residency matching or laboratory assignment
problems. 2

While matching models with ceiling constraints and matching models with floor constraints
have been studied respectively, there are not many models that exist together, but they are vital.
In residency matching, doctor applications may be concentrated in certain regions. In many
cases, they have solved the problem by imposing ceiling constraints on hospitals or their regions.
In addition, Japanese medical schools have "regional quotas," or quotas that force applicants to
train and work in a particular region at the time of admission. Students admitted under this quota
may be forced to pay a large penalty if they do not find employment in that region. However,
many students currently break the terms and conditions and take residency and employment in
other areas, criticizing such restrictions as improperly harsh. In such cases, it may be possible to
distribute the doctor centrally to the regions by considering regional floor constraints rather than
ceiling constraints as in the past. Furthermore, for example, when assigning new employees to
a department, it may be desirable to set a minimum and a maximum number of employees for
a specific department in a specific branch and then match them. Thus, there appear to be many
matching problems for which it is more natural to consider both ceiling and floor constraints,
i.e., interval constraints.

In the matching model with constraints, it is crucial to determine how much to weaken stability.
This is because stability in the usual sense may not work well under constraints, and "too weak"
stability is not practical. Ehlers. et al. (2014) showed that there is no stable matching in the
usual sense in matching with floor constraints. On the other hand, Akin (2021) shows that floor
respecting stable matching exists if reassignment to another hospital is not allowed for agents
outside a blocking coalition. Kamada and Kojima (2017) discuss to what extent stability can be
weakened in matching with ceiling constraints to the extent that stable matching exists. Kamada
and Kojima (2018) shows that if a blocking pair exceeds the regional ceiling in a newly created
matching, they allow it to exist as a non-legitimate blocking pair and that in matching with ceiling
constraints, there is always a ceiling respecting stable matching. We show that it is not always
appropriate to use the above stabilities under interval constraints. Floor respecting stability is too
strong, and ceiling respecting stability is inefficient in matching interval constraints. We show
that there is always a stable matching under interval constraints by allowing some movement

1Diversity problems in schools are usually more complicated than the model in this paper: see, e.g., Kurata et al.
(2017), Ayg̈un and Turhan (2020), Correa et al. (2019), Ayg̈un and Bó (2021).

2In very recent years, some have tried to apply matching with constraints to healthcare rationing as well; see, e. g.,
Aziz and Brandl (2020), Pathak et al. (2021).
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inside the blocking coalition. On the other hand, if we consider even stronger stability, we show
that such stable matching may not exist under interval constraints.

We introduce interval constraints flexible differed acceptance algorithm. The algorithm is
a generalization of the ceiling constraints flexible differed acceptance algorithm introduced by
Kamada and Kojima (2018) for the matching problem with ceiling constraints. When the
accumulated applications by doctors currently fall below the ceiling constraints for a region, a
quota is allocated to each region, leaving a margin for future applications to that region. We show
that the algorithm, defined as a combination of interval constraints flexible differed acceptance
algorithm and serial dictatorship, satisfies interval respecting stability and strategy-proofness.
We also show that we need to combine the generalized flexible differed acceptance algorithm with
the serial dictatorship. In other words, simply adopting the interval constraints flexible differed
acceptance algorithm instead of the ceiling constraints flexible differed acceptance algorithm
achieves feasible matching but does not necessarily satisfy interval respecting stability. On the
other hand, directly combining the ceiling constraints flexible differed acceptance algorithm with
serial dictatorship, without generalizing the flexible differed acceptance algorithm, may not result
in a feasible matching, unlike with floor constraints.

In the remainder of this section, we describe related research. In section 2, we introduce the
basic setting. In section 3, we discuss several types of stability and introduce the IRS. In section
4, we propose the GFDA and GFDA+SD algorithms and explain that it satisfies our stability and
strategy-proofness. In section 5, we discuss further issues. All proofs are in the Appendix.

1.1 Related Literature

Matching problems with constraints can be divided into problems with ceiling constraints and
floor constraints. The matching with ceiling constraints problem has been studied primarily in
the context of the residency matching problem. The model is characterized by the presence of
ceiling constraints for each hospital in a given region. Such a problem originated by Kamada and
Kojima (2015), which has discussed various notions of regional structure and stability and the
mechanisms that produce stable matching. Kamada and Kojima (2017) introduces two types of
stability when regions have ceiling constraints: strong stability and weak stability. Both stabilities
allow for some blocking pairs and propose matching that does not override the ceiling constraints
and does not cause anyone’s deviations. They proved that while strong stable matching may not
exist, weak stable matching always exists. 3 Kamada and Kojima (2018) proves that a necessary
and sufficient condition for the existence of weak stable matching is that the structure of the
region is a hierarchy. Intuitively, the structure of a region is a hierarchy, meaning that only some
of the regions or hospitals belonging to one region do not belong to another region. We also adopt
the framework in their work but propose stronger stability than the one they introduce. Kamada
and Kojima (2018) also proves that the constrained matching problem can be associated with the
contracted matching problem (Hatfield and Milgrom, 2005). Note that the choice function in
contracted matching has been variously characterized, e.g., Hatfield and Milgrom (2015), Hirata
and Kasuya (2017), and Hatfield, Kominers, and Westkamp (2021), but independently of their
approach. We define the choice according to Kamada and Kojima (2018).

3Aziz, Baychkov, and Biró (2020) also showed that checking whether strong stable matching exists or not is NP-hard.

3



Ehler (2010) and Ehlers et al. (2014) split the notion of stability into non-wastefulness and
fairness and show that there may be no matching that satisfies both of them in the matching
with floor constraints problem. 4 Biró et al. (2010) and Huang (2010) also proved that it is
NP-hard to determine whether stable matching exists with floor constraints. Thus, the usefulness
of analyzing the model and a matching model with ceiling constraints, where stability in the
usual sense may exist, is weakened. This is why there have been few studies of matching models
with interval constraints.

Many studies have examined whether stable matching or some of its properties are present in
more restricted situations. Fragiadakis et al. (2016) developed a mechanism that would require
a tradeoff between the two concepts proposed by Ehlers et al. (2014). Yokoi (2020) proves that
the existence of justified envy-free matching is NP-hard but solvable under certain conditions.
Tomoeda (2018) showed that there is always a stable matching by restricting hospital preferences.
Akin (2021) shows that by devising a definition of blocking coalition, there exists stable matching
and a strategy-proof mechanism that produces it in the matching with floor constraints problem.
They require that doctors not in the blocking coalition be matched with the same partner in the
new matching as in the previous matching or be unemployed. Such blocking is consistent with
that in the model with ceiling constraints. We, therefore, build on Akin (2021) and integrate
the matching with ceiling constraints problem with the model with floor constraints to analyze
reasonable stability.

2 Model

2.1 Preliminaries

Let there be a finite set of doctors 𝐷 and hospitals 𝐻. Doctors are numbered from 1 to |𝐷 |. Thus,
𝐷 = {1, 2, . . . , |𝐷 |}. Each doctor 𝑑 ∈ 𝐷 has a strict preference ≻𝑑 over hospitals and remaining
unassigned, denoted by ∅. For any ℎ, ℎ′ ∈ 𝐻 ∪ {∅}, we write ℎ ⪰𝑑 ℎ′ if and only if ℎ ≻𝑑 ℎ′ or
ℎ = ℎ′. Let P𝑑 is the set of all preferences. Doctor 𝑑 is said to be acceptable to ℎ if 𝑑 ≻ℎ ∅.
For any ≻𝑑∈ P𝑑 , let Ac≻𝑑

be the set of all acceptable hospitals: i.e., Ac≻𝑑
= {ℎ ∈ 𝐻 |ℎ ≻𝑑 ∅.

.To simplify the notation, we write the list of all acceptable partners representing the preference.
For example,

≻𝑑: ℎ, ℎ′.

In particular, we say that a preference ≻𝑑∈ P𝑑 is acceptable iff Ac≻𝑑
= 𝐻.

Each hospital ℎ is endowed with a physical capacity 𝑞ℎ > 0 and has a strict preference
≻ℎ over the subsets of doctors. We assume that the hospital preferences are acceptable and
responsive (Roth, 1985): formally, for every 𝐷 ′ ⊆ 𝐷 with |𝐷 ′ | < 𝑞ℎ and 𝑑, 𝑑 ′ ∈ 𝐷 \ 𝐷 ′, we
have 𝐷 ′ ∪ {𝑑} ≻ℎ 𝐷 ′ ∪ {𝑑 ′} ≻ℎ 𝐷 ′ iff {𝑑} ≻ℎ {𝑑 ′}.

A subset 𝜇 ⊂ 𝐷×𝐻 is a matching iff (i) every 𝑑 ∈ 𝐷 has at most one ℎ ∈ 𝐻 such that (𝑑, ℎ) ∈ 𝜇

and (ii) for every ℎ ∈ 𝐻, doctors such that (𝑑, ℎ) ∈ 𝜇 are at most 𝑞ℎ. Here, (𝑑, ℎ) ∈ 𝜇 means that
doctor 𝑑 is assigned to hospital ℎ. Let M denote the set of all matchings. For each 𝜇 ∈ M, let
𝜇𝐷 and 𝜇𝐻 respectively denote the doctors who are assigned to some hospital, and the hospitals
that some doctor are assigned to in the matching: i.e., 𝜇𝐷 = {𝑑 ∈ 𝐷 |∃ℎ ∈ 𝐻, (𝑑, ℎ) ∈ 𝜇}

4Fairness is also called justified envy-freeness (Abdulkadiroğlu and Sönmez, 2003).
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and 𝜇𝐻 = {ℎ ∈ 𝐻 |∃𝑑 ∈ 𝐷, (𝑑, ℎ) ∈ 𝜇}. In addition, for each (𝑑, ℎ) ∈ 𝐷 × 𝐻, let 𝜇𝑑 and 𝜇ℎ
respectively denote the hospital and doctors whose (one of) partners are 𝑑 and ℎ: i.e., 𝜇𝑑 = ℎ if
(𝑑, ℎ) ∈ 𝜇 for some ℎ ∈ 𝐻, otherwise, 𝜇𝑑 = ∅; and 𝜇ℎ = {𝑑 ∈ 𝐷 | (𝑑, ℎ) ∈ 𝜇}.

Since hospital preferences are acceptable, there is no individual rationality constraint for
hospitals. We say a matching 𝜇 ∈ M is individual rational if and only if for each 𝑑 ∈ 𝐷,
𝜇𝑑 ≻𝑑 ∅.

2.2 Regions

There is a set of regions 𝑅 ⊆ 2𝐻 . We say that 𝑅 is hierarchy if 𝑟, 𝑟 ′ ∈ 𝑅 implies 𝑟 ⊆ 𝑟 ′ or 𝑟 ′ ⊆ 𝑟

or 𝑟 ∩ 𝑟 ′ = ∅. We also assume that {ℎ} ∈ 𝑅 for each ℎ ∈ 𝐻 and 𝐻 ∈ 𝑅. The set of regions
𝑠(𝑟) ⊂ 𝑅 is the subregion of 𝑟 if

⋃
𝑟′∈𝑠 (𝑟) 𝑟

′ = 𝑟 and for any 𝑟1, 𝑟2 ∈ 𝑠(𝑟), 𝑟1 ∩ 𝑟2 = ∅. Let
𝑅∋ℎ = {𝑟 ∈ 𝑅 |ℎ ∈ 𝑟} for each ℎ ∈ 𝐻. For any 𝜇 ∈ M, let 𝜇𝑟 = {𝑑 ∈ 𝐷 |𝜇𝑑 ∈ 𝑟}.

Each region 𝑟 ∈ 𝑅 is confronted with floor constraints 𝜅
𝑟

and ceiling constraints 𝜅𝑟 , where
the number of doctors in the region is required to be in the interval. We say a matching 𝜇 ∈ M
is feasible if |𝜇𝑟 | ∈ [𝜅

𝑟
, 𝜅𝑟 ] for each 𝑟 ∈ 𝑅. To avoid complexity, we assume that for any ℎ ∈ 𝐻,

𝜅 {ℎ} is equal to or smaller than 𝑞ℎ.
To consider the condition under which a feasible matching exists, we take the following

approach. Given constraints 𝜅, 𝜅 ∈ N𝑅
+ , we inductively define (𝜅∗

𝑟
, 𝜅∗𝑟 ) for each region 𝑟 ∈ 𝑅 as

follows:

• Set 𝜅∗{ℎ} = 𝜅 {ℎ}. For any nonsingleton 𝑟 ∈ 𝑅 such that each of 𝜅∗
𝑠 (𝑟) has been defined, set

𝜅∗
𝑟
= max{𝜅

𝑟
,
∑

𝑠 (𝑟) 𝜅
∗
𝑟′}.

• Set 𝜅∗{ℎ} = 𝜅 {ℎ}. For any non-singleton 𝑟 ∈ 𝑅 such that each of 𝜅∗
𝑠 (𝑟) has been defined, set

𝜅∗𝑟 = min{𝜅𝑟 ,
∑

𝑠 (𝑟) 𝜅
∗
𝑟′}.

For any 𝑟 ∈ 𝑅, 𝜅∗
𝑟

and 𝜅∗𝑟 respectively describe the floor and ceiling numbers of doctors for the
region that are necessary to satisfy the floor and ceiling constraints of all regions included in 𝑟 .
We get the following result.

Proposition 1. If there is a feasible matching, then (i) 𝜅∗
𝐻
≤ |𝐷 | and (ii) 𝜅∗

𝑟
≤ 𝜅∗𝑟 for each 𝑟 ∈ 𝑅.

Proposition 1 gives a necessary condition for the existence of feasible matching. Hereafter,
we assume that (𝜅, 𝜅) satisfies this condition.

Assumption 1. (i) 𝜅∗
𝐻
≤ |𝐷 | and (ii) 𝜅∗

𝑟
≤ 𝜅∗𝑟 for each 𝑟 ∈ 𝑅.

It is shown as a corollary of the feasibility of our algorithm (Proposition 6) that this condition
is also the sufficient condition.

Furthermore, each nonsingleton region 𝑟 is assumed to have a (preorder) preference ≿̃𝑟 on
N

𝑠 (𝑟)
+ , where each 𝑤𝑠 (𝑟) ∈ N𝑠 (𝑟)

+ is considered a distribution of numbers of doctors among
the subregions. We assume that regional preference ≻̃𝑟 satisfies the following two properties.
The first assumption is distributional acceptance. That is, 𝑤′ ⪇ 𝑤 implies 𝑤≻̃𝑟𝑤

′ for any
𝑤, 𝑤′ ∈ N𝑠 (𝑟)

+ . The second assumption is distributional substitutability with floor constraint
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𝜅∗
𝑟
. That is, ≿̃𝑟 has a quasi-choice function C̃h𝑟 : V𝑟 → N𝑠 (𝑟)

+ , where

V𝑟
def
=

(𝑣, 𝑣, 𝑐) ∈ N𝑠 (𝑟)
+ × N𝑠 (𝑟)

+ × N+

������{𝑤 ∈ N𝑠 (𝑟)
+ |𝑣 ≤ 𝑤 ≤ 𝑣 &

∑︁
𝑠 (𝑟)

𝑤𝑟′ ≤ 𝑐} ≠ ∅
 ,

such that

(A) C̃h𝑟 ((𝑣, 𝑣), 𝑐) is one of the best distributions among all distributions in {𝑤 ∈ [𝑣, 𝑣] |∑𝑠 (𝑟) 𝑤𝑟′ ≤
𝑐} with respect to ≿̃𝑟 :

∀(𝑣, 𝑣, 𝑐) ∈ B × N+, C̃h𝑟 (𝑣, 𝑣, 𝑐) ∈ [𝑣, 𝑣] &
∑︁
𝑠 (𝑟)

(C̃h𝑟 (𝑣, 𝑣, 𝑐))𝑟′ ≤ 𝑐

& ∀𝑤 ∈ [𝑣, 𝑣] s.t.
∑︁
𝑠 (𝑟)

𝑤𝑟′ ≤ 𝑐, C̃h𝑟 (𝑣, 𝑣, 𝑐)≿̃𝑟𝑤.

(B) Especially, if 𝑣 = 𝜅∗
𝑟
, the chosen numbers of doctors are substitutive among the subregions:

𝑣 ≥ 𝑣′&𝑐 ≥ 𝑐′ =⇒ C̃h𝑟 (𝜅∗𝑟 , 𝑣, 𝑐) ≥ min{C̃h𝑟 (𝜅∗𝑟 , 𝑣
′, 𝑐′), 𝑣}.

This assumption requires that ≿̃𝑟 reveals a type of substitutability specified in (B) under
a choice problem where the range is an |𝑠(𝑟) |-dimensional interval with the cap of the total
numbers. Intuitively, (B) means that when the lower bound of the interval is 𝜅∗

𝑠 (𝑟) , (i) if the cap
is relaxed, the number of doctors does not decrease in any subregion, and (ii) if the upper bound
of the interval is relaxed and the original number of doctors is smaller than the upper bound in a
subregion, the number of doctors in the subregion does not increase. Here, the fact that the lower
bound of the interval is 𝜅∗

𝑠 (𝑟) means that region 𝑟 chooses the distribution in the range where
all regions included in 𝑟 can satisfy their floor constraints. If 𝜅∗

𝑠 (𝑟) = 0, then this assumption is
equivalent to that introduced in Kamada and Kojima (2018).

Note that this condition is similar to the standard substitutability by Roth and Sotomayor (1990)
and Hatfield Milgrom (2005) but differs in that (i) it does not distinguish between different doctors
and (ii) it can handle multi-unit supply. However, Kamada and Kojima (2018) shows that if the
quasi-choice function satisfies their substitutability, then it also satisfies the law of aggregate
demand and substitutability introduced by Hatfield and Milgrom (2005).

A matching problem (with interval constraints) is given as a list of (𝐷, 𝐻, ≻𝐷 , ≻𝐻 , 𝑞𝐻 , 𝜅, 𝜅,≿𝑅
). In particular, a problem with ceiling constraints is a problem such that 𝜅 = 0; a problem with
floor constraints is a problem such that 𝜅𝑟 = +∞ for any non-singleton 𝑟 ∈ 𝑅 and 𝜅 {ℎ} = 𝑞ℎ for
any ℎ ∈ 𝐻; a problem with disjoint regions is a problem such that there exists a partition 𝑃 of 𝑅
such that for any 𝑟 ∈ 𝑅 \ 𝑃, (𝜅

𝑟
, 𝜅𝑟 ) is (0, +∞) if |𝑟 | ≥ 2, and (0, 𝑞𝑟 ) if 𝑟 = {ℎ} for some ℎ ∈ 𝐻.

3 Stability

This section discusses the stability in a problem with interval constraints.
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First, we introduce two types of stability: floor and ceiling respecting stability, which was
proposed to analyze problems with floor and ceiling constraints, respectively (Kamada and
Kojima, 2017; Akin, 2021). Under both problems, stable matching may not exist if we require
blocking not to exist at all. Instead, both stability types consider making as many blockings as
possibly valid to the extent that the existence of a corresponding stable matching is guaranteed.
We then propose stability in problems with interval constraints, interval respecting stability,
following the same principles, based on the two types of stability. Finally, we discuss impossibility
of stronger stability.

3.1 Floor respecting stability

When considering blocking in a problem with floor constraints, unlike the case of ceiling
constraints, we have to consider whether the doctor’s original region meets the floor constraint
after the blocking. Although the original hospital is not part of the blocking pair, it is questionable
whether blocking that does not result in feasible matching is valid in society. Thus, we need to
consider what moves outside the blocking pair for a feasible matching that is reasonable. Floor
respecting stability considers that if the pair can be considered as a part of a larger coalition and
the coalition can form a feasible matching as a blocking coalition, then the blocking is valid. In
other words, floor respecting stability requires the non-existence of blocking by the general form
of coalition, including non-pair-type coalition.

Definition 1. A nonempty coalition 𝐵 = 𝐵𝐷 × 𝐵𝐻 ⊆ 𝐷 × 𝐻 blocks 𝜇 with 𝜇′ if

(i) 𝜇′ is feasible,

(ii) For every 𝑖 ∈ 𝐵𝐷 ∪ 𝐵𝐻 , 𝜇′
𝑖
≻𝑖 𝜇𝑖 ,

(iii) For every 𝑑 ∉ 𝐷 \ 𝐵𝐷 , 𝜇′
𝑑
∈ {𝜇𝑑 ,∅}.

(iv) For every ℎ ∉ 𝐻 \ 𝐵𝐻 , 𝜇′
ℎ
= 𝜇ℎ \ 𝐵𝐷 .5

Especially, a coalition 𝐵 is a blocking pair iff 𝐵 is a singleton. For notational simplicity, a
blocking pair is denoted by (𝑑, ℎ) instead of ({𝑑}, {ℎ}).

In 𝜇′ formed by blocking, individuals other than 𝐵 either have the same partner as that of 𝜇
or lose a member of 𝐵 as a partner; only members of 𝐵 can have new partners, but they must
strictly improve.

5There are two differences between our and Akin (2021)’s definitions. First, they refer to the combination of Babove
and the doctors and hospitals that did not move as a coalition. Since their stability does not depend on what a
coalition refers to, this change is simply a matter of terminology.

Secondly, in their original definition, (iv) is 𝜇′
ℎ
⊆ 𝜇ℎ \ 𝐵𝐷 . Thus, a hospital not in the coalition can fire

some currently matched doctors regardless of whether it improves its welfare. Although Akin (2021) considers
problems with floor constraints, when there are also ceiling constraints, some matchings can be unreasonably
blocked since we can make a blocking satisfying ceiling constraints by forcing irrelevant hospitals to fire some
of their doctors. In this sense, to reasonably generalize the concept to problems other than problems with floor
constraints, we add the latter part to (iv).

Note that under problems with floor constraints, a matching has a blocking in the original definition if and only
if it has a blocking in our definition, since if a matching with such dismissal is feasible, then the matching is also
feasible without the dismissal.
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The definition of floor respecting stability is as follows:

Definition 2. We say a matching 𝜇 is floor respecting stable if and only if 𝜇 is feasible,
individually rational, and there is no blocking coalition.

Akin (2021) shows that in a matching problem with floor constraints, there exists a floor
respecting stable matching. Ehlers (2014) shows that if we further consider blocking to also
be valid, including individuals with new but not improving partners, there is no corresponding
stable matching.

3.2 Ceiling respecting stability

It is known that in problems with ceiling constraints, even considering only blocking pairs to be
valid may lead to the non-existence of stable matching (Kamada and Kojima, 2015). For each
(𝑑, ℎ) ∈ 𝐷 × 𝐻, let 𝜇𝑑ℎ be a matching such that 𝜇𝑑ℎ

𝑑′ = 𝜇𝑑′ for 𝑑 ′ ≠ 𝑑 and 𝜇𝑑ℎ
𝑑

= ℎ. That is,
𝜇𝑑ℎ is a matching where only doctor 𝑑 moves to hospital ℎ from 𝜇. To ensure the existence of
stable matching, ceiling respecting stability restricts valid blocking pairs in the following way:
for any blocking pair (𝑑, ℎ), first, if 𝜇ℎ contains a doctor 𝑑 ′ who is less preferable for ℎ to 𝑑,
then blocking with 𝜇′ where ℎ dismiss 𝑑 ′ and employs 𝑑 is valid (justified envyness); secondly, if
𝑚𝑑 = ∅, blocking with 𝑚𝑑ℎ is valid (strongly wastefullness) ;6 otherwise, blocking by 𝜇′ is vaild
only if the smallest region 𝑟 containing both the original hospital 𝜇𝑑 and ℎ is (a) included in some
region reaching the ceiling and (b) strictly prefers 𝜇′

𝑠 (𝑟) to 𝜇𝑠 (𝑟) (legitimacy). The intuition for
legitimacy is the following. Note here that the fact that 𝑟 is the smallest such region is equivalent
to the fact that 𝑟 is the (unique) largest region whose subregion distribution differs between 𝜇

and 𝜇𝑑ℎ. In other words, 𝑟 is the highest region affected by the change from 𝜇 to 𝜇𝑑ℎ. Thus,
this condition requires that the highest region affected by the blocking should prefer the blocking
matching to the original matching.

The definition of ceiling respecting stability is as follows.

Definition 3. We say a matching 𝜇 is ceiling respecting stable if and only if 𝜇 is feasible,
individual rational, and if (𝑑, ℎ) ∈ 𝐷 ×𝐻 blocks 𝜇 with 𝜇′, (i) 𝑑 ′ ≻ℎ 𝑑 for every 𝑑 ′ ∈ 𝜇ℎ, and (ii)
𝜇 = 𝜇𝑑ℎ and there exists 𝑟 ∈ 𝑅 satisfying 𝜇𝑑 , ℎ ∈ 𝑟 and ( |𝜇𝑟′ |)𝑠 (𝑟) ≠ ( |𝜇𝑑ℎ

𝑟′ |)𝑠 (𝑟) , and it follows
that |𝜇𝑟 | = 𝜅𝑟 for some 𝑟 ∈ 𝑅 with 𝑟 ⊇ 𝑟, and ( |𝜇𝑟′ |)𝑠 (𝑟) ≿̃𝑟 ( |𝜇𝑑ℎ

𝑟′ |)𝑠 (𝑟) .

Here, (i) corresponds to 𝜇 being justified envy-free. (ii) corresponds to 𝜇 being neither strongly
wasteful nor legitimate.7 Kamada and Kojima (2018) show that the ceiling respecting stable
matching always exists in a matching problem with ceiling constraints.

3.3 Interval respecting stability

Floor respecting stability requires that all blocking, including non-pair-type blockings, is valid
and that no valid blocking exists. On the other hand, ceiling respecting stability requires that
only a further part of blocking pairs is valid and that no valid blocking exists. Thus, the set of

6Note that for 𝑚𝑑ℎ to be a blocking matching, it must be feasible (condition (i)). Therefore, 𝑚𝑑 = ∅ implies the
addition of 𝑑 does not violate any constraint.

7(ii) means non strongly wastfulness since if 𝜇𝑑 = ∅, then there is no region satisfying 𝑚𝑑 , ℎ ∈ 𝑟 .
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valid blockings for floor respecting stability includes that for ceiling respecting stability. The
following result holds.

Remark 1. Floor respecting stability implies ceiling respecting stability.

However, each has its deficiencies in problems with interval constraints. First, as mentioned
earlier, even in problems with ceiling constraints, if all pair-type blockings are valid, there may
be no stable matching. On the other hand, Akin (2021) shows that in the problem with floor
constraints, considering only blocking pairs is too weak to satisfy Pareto efficiency among doctors
and hospitals.

A matching 𝜇 is Pareto efficient if there is no other feasible matching 𝜇′ such that 𝜇′
𝑖
⪰𝑖 𝜇𝑖

for all 𝑖 ∈ 𝐷 ∪ 𝐻 and 𝜇′
𝑖
≻𝑖 𝜇𝑖 for some 𝑖 ∈ 𝐷 ∪ 𝐻.

Fact 1. (i) If the problem is not a matching with floor constraints, floor respecting stable matching
may not exist. (ii) If the problem is not a matching with ceiling constraints, ceiling respecting
stable matching may not be Pareto efficient.

We now explore stability that considers as many blockings as possible to be valid, to the extent
that the existence of stable matching can be ensured, based on the above two types of stability in
the corresponding constrained problems. We have two issues to discuss.

First, should we consider a non-pair-type blocking coalition outside of problems with floor
constraints? The following example shows that even in problems with only ceiling constraints,
unlike in problems with no constraint, there is a matching that is not blocked by any blocking
pair but is blocked by some non-pair type coalition.

Example 1. Let 𝐷 = {1, 2} and 𝐻 = {ℎ1, ℎ
′
1, ℎ2, ℎ

′
2}. The physical cap 𝑞ℎ is +∞ for every

ℎ ∈ 𝐻. Their preferences are defined as

≻1: ℎ1, ℎ
′
1, ℎ2, ℎ

′
2

≻2: ℎ2, ℎ
′
2, ℎ1, ℎ

′
1

≻ℎ1 : 1, 2
≻ℎ′1

: 2, 1

≻ℎ2 : 2, 1
≻ℎ′2

: 1, 2.

The region structure 𝑅 is {{ℎ1}, {ℎ′1}, {ℎ2}, {ℎ′2}, 𝑟1, 𝑟2, 𝐻}. Hospitals ℎ1 and ℎ′1 is located
in 𝑟1 and ℎ2 and ℎ′2 in 𝑟2. Formally, {ℎ1}, {ℎ′1} ⊂ 𝑟1 and {ℎ2}, {ℎ′2} ⊂ 𝑟2. There is no ceiling
constraint: 𝜅𝑟 = +∞ for every 𝑟 ∈ 𝑅. Floor constraints are given as 𝜅

𝑟1
= 𝜅

𝑟2
= 1.

The regional preference is

≻̃𝑟1 : (1, 0), (0, 1)
≻̃𝑟2 : (1, 0), (0, 1).
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Consider the following matching:

𝜇 = {(1, ℎ′2), (2, ℎ
′
1)}.

There is no pair blocking 𝜇; although {1} ≻ℎ1 ∅ and ℎ1 ≻1 ℎ′2, any matching that they can
form is not feasible, and the same is true for 2 and ℎ2. However, coalition {1, 2} × {ℎ1, ℎ2} can
block 𝜇 with 𝜇′ = {(1, ℎ1), (2, ℎ2)}.

Note that in this example, all regions also prefer 𝜇′ to 𝜇. Therefore, it is also reasonable to
regard this blocking as valid from the perspective of regional preferences. Thus, we will assume
blockings including non-pair-type coalition for interval constraints, as long as stable matching
exists.8

Next, we must consider what non-pair type blockings are to be considered valid since consid-
ering all blocking to be valid leads to the non-existence of stable matching. The classification
of blockings in ceiling respecting stability is for blocking pairs. In non-pair-type blocking, they
can be complex. According to our aim to make as many blockings as possibly valid, for the first
two categories, we consider in the following way: first, for at least one hospital ℎ in 𝐵𝐻 and a
doctor in 𝜇′

ℎ
∩ 𝐵𝐷 , blocking with 𝜇′ is valid if 𝜇ℎ contains a doctor 𝑑 ′ who is less preferable for

ℎ to 𝑑 (justified envy); secondly, if 𝜇′
𝐷
⊋ 𝜇𝐷 , then blocking with 𝜇′ is valid (strongly wasteful).

Note that if 𝐵 is a blocking pair, these are equivalent to those in ceiling respecting stability.
Finally, we consider legitimacy. Unlike the case of a blocking pair, there can be multiple

hospitals in 𝐵𝐻 . Therefore, there is not necessarily one highest affected region in the sense
that the sub-region’s distribution has changed and the distribution of any superior region has not
changed. Thus, there may be conflicting preferences among the highest regions. Again, we will
make as much blocking as possible valid for this. That is, if at least one of the highest regions
in the above sense prefers blocking, the blocking is valid; in other words, only when none of the
highest regions prefers blocking, the blocking is not legitimate.

We define interval respecting stability in the following way.9

Definition 4. A matching 𝜇 is interval respecting stable if and only if 𝜇 is feasible, individual
rational, and if 𝐵 ⊆ 𝐷 × 𝐻 blocks 𝜇 with 𝜇′ (i) 𝑑 ′ ≻ℎ 𝑑 for every ℎ ∈ 𝐵𝐻 , 𝑑 ∈ 𝜇′

ℎ
∩ 𝐵𝐷 , and

𝑑 ′ ∈ 𝜇ℎ, and (ii) for each ℎ ∈ 𝐵𝐻 , there exist 𝑟∗ ∈ 𝑅∋ℎ satisfying ( |𝜇𝑟′ |)𝑠 (𝑟∗) ≠ ( |𝜇′
𝑟′ |)𝑠 (𝑟∗) , and

it follows that |𝜇𝑟 | = 𝜅𝑟 for some 𝑟 ∈ 𝑅 with 𝑟 ⊇ 𝑟∗, and ( |𝜇𝑟′ |)𝑠 (𝑟) ≿̃𝑟 ( |𝜇′
𝑟′ |)𝑠 (𝑟) for any 𝑟 ∈ 𝑅

with 𝑟∗ ⊆ 𝑟 ⊆ 𝑟 .

As in ceiling respecting stability, (i) corresponds to 𝜇 being justified envy-free. (ii) means that
for any hospital ℎ in 𝐵𝐻 , (a) there is a region 𝑟 that has reached its ceiling that includes it, and (b)
either the highest affected region or the region 𝑟 in itself does not prefer blocking (illegitimate).
(ii) also means that 𝜇 is not strongly wasteful.10

8Note that the algorithm proposed by Kamada and Kojima (2018) consequently generates a matching satisfying
interval respective stability, which assumes blocking including the non-pair coalition, in problems with ceiling
constraints. This is shown by the fact that our algorithm, which generates an interval respective stable matching,
coincides with theirs in problems with ceiling constraints. In other words, our result shows that the matchings
generated by their algorithm satisfies stability stronger than what they consider.

9We discuss variants of the definition in Section 5.1.
10The proof is as follows. By (ii), there is 𝑅′ ⊂ 𝑅 that covers 𝐵𝐻 , is mutually disjoint, and satisfies 𝜇𝑟 = 𝜅𝑟 for every
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Interval respecting stability considers blocking coalitions, but unlike floor respecting stable,
it considers only those coalitions that satisfy additional conditions to be valid. Therefore, floor
respecting stable is as strong as or stronger than interval respecting stable. In particular, the
additional condition is always satisfied in the matching problem with floor constraints, so floor
respecting stable and interval respecting stable are equivalent. Next, if the coalition in interval
respecting stable is a pair, then (i) and (ii) in interval respecting stable and ceiling respecting
stable are equivalent. Thus, interval respecting stable is as strong as or stronger than ceiling
respecting stable.

Now, we have the following remark.

Remark 2. Floor respecting stable implies interval respecting stable. Interval respecting stable
implies ceiling respecting stable. Especially in matching problem with floor constraints, floor
respecting stable is equivalent to interval respecting stable.

Floor respecting stable is the strongest requirement, but as shown in Fact 1 (i), it cannot be
guaranteed to exist even for matching problems with ceiling constraints. On the other hand,
ceiling respecting stable is a weak requirement; this condition does not imply Pareto efficiency
(Fact 1 (ii)).

In contrast to floor respecting stability, interval respecting stability always satisfies Pareto
efficiency.

Proposition 2. Interval respecting stability implies Pareto efficiency.

3.4 Strong interval respecting stability

Both illegitimacy of ceiling and interval respecting stability require ℎ 𝑖𝑛𝐵𝐻 to be included in
the region reaching the ceiling. However, there is a difference between them as to what this
means. In the case of ceiling respecting stability, legitimacy implies that 𝑑 in 𝐵𝐷 moves within
the region reaching its ceiling. On the other hand, legitimacy does not imply this in the case of
interval respecting stability. The blocking can be illegitimate even if the same number of doctors
move in and out between different regions reaching their ceilings, rather than within one region
that has reached its ceiling. For stronger stability, we might consider regarding the blocking as
legitimate unless movement is inside a region that has reached its ceiling, even if the coalition is
not a pair. We call it strong interval respecting stability.

Definition 5. A matching 𝜇 is strongly interval respecting stable if 𝜇 is feasible, individually
rational, and if 𝐵 ∈ 𝐷 × 𝐻 blocks 𝜇 with 𝜇′, then (i) 𝑑 ′ ≻ℎ 𝑑 for every ℎ ∈ 𝐵𝐻 , 𝑑 ′ ∈ 𝜇ℎ and
𝑑 ∈ 𝜇′

ℎ
∩ 𝐵 and (ii) there exists 𝑟 ∈ 𝑅 such that |𝜇𝑟 | = 𝜅𝑟 , and for every ℎ ∈ 𝐵𝐻 , there exists

𝑟ℎ ∈ 𝑅∋ℎ ∩ 2𝑟 such that ( |𝜇𝑟′ |)𝑠 (𝑟ℎ) ≠ ( |𝜇′
𝑟′ |)𝑠 (𝑟ℎ) and ( |𝜇𝑟′ |)𝑠 (𝑟) ≿̃𝑟 ( |𝜇′

𝑟′ |)𝑠 (𝑟) for every 𝑟 ∈ 𝑅

with 𝑟ℎ ⊆ 𝑟 ⊆ 𝑟 .

𝑟 ∈ 𝑅′. By definition of blocking, 𝜇′
ℎ
≤ 𝜇ℎ for any ℎ ∈ 𝐻 \ 𝐵𝐻 . Thus,

∪ℎ∈∪𝑅′ |𝜇′
ℎ
| = ∪𝐻 |𝜇′

ℎ
| − ∪ℎ∉∪𝑅′ |𝜇′

ℎ
| ≥ ∪𝐻 |𝜇′

ℎ
| − ∪ℎ∉∪𝑅′ |𝜇ℎ | > ∪𝐻 |𝜇ℎ | − ∪ℎ∉∪𝑅′ |𝜇ℎ | = ∪ℎ∈∪𝑅′ |𝜇ℎ |.

Since 𝑅′ is mutually disjoint, 𝜇′𝑟 > 𝜇𝑟 = 𝜅𝑟 for some 𝑟 ∈ 𝑅′, which contradicts feasibility of 𝜇′.

11



This stability requires all hospitals in 𝐵𝐻 to be included in the same region reaching its ceiling:
that is, 𝑟 in the definition of interval respecting stability must be the same for every ℎ ∈ 𝐵𝐻 .
Thus, while this stability regards some blocking as invalid, it is stronger than interval respecting
stability.

Remark 3. Floor respecting stable implies strong interval respecting stable. strong interval
respecting stable implies interval respecting stable.

The following example illustrates that strongly interval respecting stable matching does not
always exist.

Example 2. Suppose that there are four doctors 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} and three hospitals 𝐻 =

{ℎ1, ℎ2, ℎ3, ℎ4}. The preference profile is

≻𝑑1 : ℎ2, ℎ3, ℎ4, ℎ1

≻𝑑2 : ℎ1, ℎ3, ℎ4, ℎ2

≻𝑑3 : ℎ2, ℎ1, ℎ4, ℎ3

≻𝑑4 : ℎ1, ℎ3, ℎ2, ℎ4

≻ℎ1 : 𝑑1, 𝑑2, 𝑑3, 𝑑4

≻ℎ2 : 𝑑2, 𝑑1, 𝑑3, 𝑑4

≻ℎ3 : 𝑑3, 𝑑4, 𝑑1, 𝑑2

≻ℎ3 : 𝑑4, 𝑑3, 𝑑1, 𝑑2.

The regional structure is 𝑅 = {{ℎ1}, {ℎ2}, {ℎ3}, {ℎ4}, 𝑟, 𝑟 ′, 𝐻} where 𝑟 = {ℎ1, ℎ2} and 𝑟 ′ =
{ℎ3, ℎ4}. There is no floor constraint: 𝜅

𝑟′′ = 0 for every 𝑟 ′′ ∈ 𝑅. Only 𝑟 and 𝑟 ′ have ceiling
constraints given by 𝜅𝑟 = 𝜅𝑟′ = 1; thus, 𝜅𝑟′′ = +∞ for 𝑟 ′′ ∉ {𝑟, 𝑟 ′}. We assume that regional
preferences are indifferent. That is, each region cares only about the total number of slots filled
in its own subregion.

Note that when considering either stable matching, each hospital never matches with a doctor
other than the most preferred one. For example, suppose 𝑑2 is matched with ℎ1. In this case, 𝑑1
is matched with ℎ3 or ℎ4 or is unemployed. If he is matched with ℎ3, the pair (𝑑3, ℎ3) blocks this
match because 𝑑3, the most preferred doctor for ℎ3, is unemployed. Similarly, if he is matched
with hospital ℎ4, the pair (𝑑4, ℎ4) blocks this matching. Also, when 𝑑1 is unemployed, the pair
(𝑑1, ℎ1) blocks this matching. These blockings are not valid for considering either stability.
Therefore, we consider only the following feasible matchings:

𝜇1 = {(𝑑1, ℎ1), (𝑑3, ℎ3)}, 𝜇2 = {(𝑑2, ℎ2), (𝑑3, ℎ3)},
𝜇3 = {(𝑑1, ℎ1), (𝑑4, ℎ4)}, 𝜇4 = {(𝑑2, ℎ2), (𝑑4, ℎ4)}

These matchings are interval respecting stable because each region indifferently prefers each
allocation if the total number of doctors in its subregions is the same.

On the other hand, none of these are strongly interval respecting stable. This is because the
strongly interval respecting stable also considers blocking valid across regions. For example, the
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matching 𝜇1 is blocked by the matching

𝜇′
1 = {(𝑑1, ℎ3), (𝑑3, ℎ1)}.

Similarly, the other matchings are not strongly interval respecting stable. Thus, strongly interval
respecting stable matching may not exist.

Fact 2. In the matching problem with ceiling constraint, there may not exist a strongly interval
respecting stable matching.

This means that the non-existence of stable matching arises not only from making all moves
within a single region that has reached its ceiling valid but also from making moves between
regions that have reached their ceilings valid. This is consistent with the notion of interval
respecting stability.

In Section 4, we will show constructively that interval constraints respecting stable matching
always exist and that a mechanism satisfies strategy-proofness.

4 Generalized FDA + serial dictatorship (GFDA+SD) algorithm

In this section, we define the generalized FDA + serial dictatorship (GFDA+SD) algorithm and
show that it satisfies stability and strategy proofness. The definition of this algorithm consists
of two parts. First, we formulate the generalized choice function 𝐶ℎ for the FDA in interval
constraint problems. However, the FDA obtained by this choice function (GFDA) does not
produce a feasible matching. Hence, we next consider a combination of this and the serial
dictatorship process (GFDA+SD).

4.1 Reserved quota allocations

First, we introduce a concept for matching related to the process of making the lower constraint
satisfied by adding doctors to that matching, which has an essential role in our algorithm.

For any matching 𝜇 ∈ M, inductively define reserved quota 𝜅𝑟 ∈ for any 𝑟 ∈ 𝑅 in the
following way:

• Set 𝜅 {ℎ} = max{𝜅
𝑟
, |𝜇ℎ |}. For any 𝑟 ∈ 𝑅 such that each of 𝜅𝑠 (𝑟) has been defined, set

𝜅𝑟 = max{𝜅
𝑟
,
∑

𝑠 (𝑟) 𝜅𝑟′}.

We can consider 𝜅𝑟 the minimum numbers of doctors belonging to each region when doctors are
added to 𝜇 to satisfy the floor constraint in the future. 𝜅𝑟 is different from max{𝜅∗

𝑟
, |𝜇𝑟 |}, which

is the number of doctors ensuring that all regions included in 𝑟 can satisfy the floor constraints
by reallocation of doctors in 𝑟 .

Example 3. There are three regions 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 ∈ 𝑅, and 𝑟𝐴 and 𝑟𝐵 are located in 𝑟𝐶 . The floor
constraints for each region are given as 𝑋 = 𝑌 . Assume that 𝑟𝐴 and 𝑟𝐵 belong to an arbitrarily
large number of hospitals and that many doctors apply to those hospitals.

Suppose that there are 110 doctor applicants in region 𝑟𝐴 and 30 in region 𝑟𝐵. In this case,
𝜅∗
𝑟𝐶

= 100, which simply tells us that at least 100 doctors are needed to satisfy the floor constraints
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for regions below region 𝑟𝐶 . Also, max{𝜅∗
𝑟𝐶
, |𝜇𝑟𝐶 |} = 140, which requests a quota to be reserved

for 𝑟𝐶 when doctor movement from 𝑟𝐴 to 𝑟𝐵 is allowed for. On the other hand, since we have
𝜅𝑟𝐴 = 110 and 𝜅𝑟𝐵 = 50, we obtain 𝜅𝑟𝐶 = 160. In other words, 𝜅𝑟𝐶 requests that we need to
reserve an additional 20 slots, i.e., 160 slots overall, to meet all the floor constraints in the region
below it without reducing the number of doctors who are currently matched with hospitals in 𝑟𝐴.

Thus, 𝜅𝑟 is the minimum number of doctors to satisfy the floor constraints by adding new
doctors without reducing the current numbers of doctors for all regions included in 𝑟 .

For any 𝑟 ∈ 𝑅, define 𝛿𝑟 as 𝛿𝑟 = 𝜅𝑟 −
∑

𝑠 (𝑟) 𝜅𝑟′ if |𝑟 | ≥ 2, 𝛿{ℎ} = 𝜅 {ℎ} − |𝜇ℎ | if 𝑟 = {ℎ} for
some ℎ ∈ 𝐻. Note that 𝛿𝑟 is non-negative and 𝜅𝑟 = 𝜅

𝑟
if 𝛿𝑟 > 0. 𝛿𝑟 is the number of doctors that

need to be added to region 𝑟 to satisfy the floor constraint. In other words, it is the marginal
shortfall of doctors for region 𝑟 .

For any 𝑟 ′ ∈ 𝑠(𝑟), 𝜅𝑟′ is the sum of doctors who are currently assigned to 𝑟 ′ and the shortfalls
of all regions included in 𝑟 ′. Thus, 𝛿𝑟 is the marginal shortfall of doctors that takes place between
𝑟 and 𝑠(𝑟) (or {ℎ} and ℎ). Let

∑
𝑅 𝛿𝑟 be the total shortfall of doctors for 𝜇. We can obtain the

following equation:

∀𝜇 ∈ M, 𝜅𝐻 − |𝜇 | = ©­«𝛿𝐻 +
∑︁
𝑠 (𝐻)

𝜅𝑟′
ª®¬ − |𝜇 | = 𝛿𝐻 +

∑︁
𝑠 (𝐻)

(𝜅𝑟′ − |𝜇𝑟′ |) = · · · =
∑︁
𝑅

𝛿𝑟 .

Thus, 𝜅𝐻 − |𝜇 | is an alternative expression of the total shortfall for 𝜇.
Note that 𝜅𝐻 − |𝜇 | = 0 is equivalent to that 𝜇 satisfies the floor constraints.

Proposition 3. For any 𝜇 ∈ M, 𝜅𝐻 − |𝜇 | = 0 iff |𝜇𝑟 | ≥ 𝜅
𝑟

for every 𝑟 ∈ 𝑅. Thus, 𝜇 is feasible
iff 𝜅𝐻 − |𝜇 | = 0 and 𝜅𝑟 ≤ 𝜅𝑟 for every 𝑟 ∈ 𝑅.

Thus, how to add doctors to the doctor shortage regions is essential when a matching does not
satisfy the floor constraints. The following two sets will play an important role in this analysis:
for any matching 𝜇 ∈ M, define 𝑅−(𝜇) ⊆ 𝑅 and 𝐻−(𝜇) ⊆ 𝐻 as follows.

• 𝑟 ∈ 𝑅−(𝜇) iff 𝛿𝑟 > 0 or [𝑟 ∈ 𝑅−(𝜇) and 𝜅𝑟 < 𝜅𝑟 ].

• ℎ ∈ 𝐻−(𝜇) iff {ℎ} ∈ 𝑅−(𝜇).

𝑅−(𝜇) (or 𝐻−(𝜇)) is a region (or hospital) that is connected to a superior doctor shortage
region without any region reaching ceiling constraints. In other words, 𝐻−(𝜇) is the set of
hospitals that can add doctors to a doctor shortage region without violating the ceiling constraint
of any region.

Lemma 1. For any 𝜇 ∈ M, if 𝜅𝐻 − |𝜇 | > 0, then 𝐻−(𝜇) is non empty.

Lemma 2. For any 𝜇 ∈ M, 𝑑 ∉ 𝜇𝐷 , and ℎ ∈ 𝐻−(𝜇), when we consider 𝜇′ = 𝜇 ∪ {(𝑑, ℎ)}, it
follows that 𝜅′𝑟 = 𝜅𝑟 for any 𝑟 ∈ 𝑅 such that 𝑟 = 𝐻 or 𝜅𝑟 = 𝜅𝑟 .

Lemma 1 implies that (when Assumption 1 is satisfied,) any matching with a shortage of
doctors has such a hospital that can add a doctor.
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Lemma 2 implies two facts. First, 𝜅′
𝐻

= 𝜅𝐻 , which means that if we add a doctor to such a
hospital, then the reserved quota of 𝐻 does not change while the total number of doctors increases
(since 𝜇′

𝐷
= 𝜇𝐷 ∪ {𝑑}). That is, such an addition must decrease the total shortfall 𝜅𝐻 − |𝜇 | by

one. Secondly, 𝜅′𝑟 = 𝜅𝑟 when 𝜅𝑟 = 𝜅𝑟 , which means that such an addition must not increase the
reserved quota of any region reaching the ceiling constraint. Since 𝜅′𝑟 ≥ |𝜇′

𝑟 |, this ensures that
such an addition does not create a new violation of ceiling constraints.

Since the second fact also holds for any ℎ ∈ 𝐻 and we assume 𝜅𝑟 ≤ 𝑞𝑟 , 𝜇′ satisfies the
hospital’s physical caps. Thus, Lemma 2 also ensures that 𝜇′ ∈ M.

4.2 Construction of choice function 𝐶ℎ in the interval constraint problem.

In this section, we consider how to generalize FDA by Kamada and Kojima (2018),CFDA, for
the problem with ceiling constraints. The idea of CFDA is as follows. First, instead of the
original problem, consider a matching problem with contracts between one fictitious hospital
and D, where H is the set of contracts. Then, we use the cumulative offer process (COP) to
generate a matching. Finally, we interpret the matching in the original problem, where H is the
set of hospitals rather than contracts.

Key in this idea is how to construct the choice function of a single fictitious hospital, which
is needed for COP. Based on the preferences of each region and hospital, we have to cleverly
construct the choice function to derive the good behavior of the COP and the stability of
the resulting matches. We propose how to construct the function generalized for the interval
constraint problem.

Let the function that we are about to construct be denoted by 𝐶ℎ. 𝐶ℎ is a function assigning a
subset of 𝑋 to any set 𝑋 ⊆ 𝐷 × 𝐻, where 𝑋 is considered a set of accumulated contracts offered
by doctors to the fictitious hospital and 𝐶ℎ(𝑋) is considered the set of provisionally accepted
contracts.
𝐶ℎ is constructed through three procedures. (1) a procedure whereby, based on the number of

contracts applied for each hospital, each region calculates the contract quantity adjusted by the
constraints from the singleton regions towards the top region; (2) a procedure whereby, based on
subregions’ adjusted contract quantities, the upper region r determines the quota allocation from
the top region towards the singleton regions; and (3) a procedure whereby, based on its quota,
each hospital chooses doctors from contracts addressed to itself.

The three are formulated below:

Adjusted contract quantity vector 𝑣: For any 𝑋 ⊆ 𝐷 × 𝐻, inductively define the Adjusted
contract quantity vector ∈ N𝑅

+ towards the upper regions as follows.

• For each ℎ ∈ 𝐻,

𝑣 {ℎ} =


𝜅 {ℎ} if |𝑋ℎ | < 𝜅 {ℎ},

|𝑋ℎ | if |𝑋ℎ | ∈ [𝜅 {ℎ}, 𝜅 {ℎ}],
𝜅 {ℎ} if |𝑋ℎ | > 𝜅 {ℎ}
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• For each 𝑟 ∈ 𝑅 such that 𝑣𝑠 (𝑟) has been defined,

𝑣𝑟 =


𝜅
𝑟

if
∑

𝑠 (𝑟) 𝑣𝑟′ < 𝜅
𝑟
,∑

𝑠 (𝑟) 𝑣𝑟′ if
∑

𝑠 (𝑟) 𝑣𝑟′ ∈ [𝜅
𝑟
, 𝜅𝑟 ],

𝜅𝑟 if
∑

𝑠 (𝑟) 𝑣𝑟′ > 𝜅𝑟

Reserved quota allocation function 𝐶ℎ For 𝑣 obtained above, inductively define the quota
𝐶ℎ𝑟 (𝑋) ∈ N+ of each region 𝑟 ∈ 𝑅 as follows:

• 𝐶ℎ𝐻 (𝑋) = 𝑣𝐻 .

• For 𝑟 ∈ 𝑅 such that 𝐶ℎ𝑟 has been defined,

𝐶ℎ𝑠 (𝑟) (𝑋) = 𝐶ℎ𝑟 (𝜅∗𝑠 (𝑟) , 𝑣𝑠 (𝑟) ;𝐶ℎ𝑟 (𝑋)).

Choice function 𝐶ℎ For each ℎ ∈ 𝐻, using 𝐶ℎℎ (𝑋), which is the last number obtained above,
as the cap, each hospital ℎ chooses desirable contracts from 𝑋ℎ as 𝐶ℎℎ (𝑋):

∀ℎ ∈ 𝐻, |𝐶ℎℎ (𝑋) | = min{𝑋ℎ, 𝐶ℎ{ℎ} (𝑋)}
& ∀𝑑, 𝑑 ′ ∈ 𝑋ℎ, [{𝑑} ≻ℎ {𝑑 ′} & 𝑑 ′ ∈ 𝐶ℎℎ (𝑋)] =⇒ 𝑑 ∈ 𝐶ℎℎ (𝑋).

Note that from the definition, we have 𝜅∗
𝑟
≤ 𝑣𝑟 for every 𝑟 ∈ 𝑅. Thus, we can show inductively

from 𝑟 = 𝐻 that
∑

𝑠 (𝑟) 𝜅
∗
𝑟′ ≤ 𝐶ℎ𝑟 (𝑋). Thus, (𝜅∗

𝑠 (𝑟) , 𝑣𝑠 (𝑟) ;𝐶ℎ𝑟 (𝑋)) ∈ V in the definition of 𝐶ℎ𝑟 .
In addition, by distributional acceptance, condition (A) of 𝐶ℎ, and hospitals’ acceptance, it

follows that 𝐶ℎ𝑟 (𝑋) =
∑

𝑠 (𝑟) 𝐶ℎ𝑟′ (𝑋) unless (i) |𝑟 | ≥ 2 and 𝐶ℎ𝑟 (𝑋) = 𝜅
𝑟
>

∑
𝑠 (𝑟) 𝑣𝑠 (𝑟) =∑

𝑠 (𝑟) 𝐶ℎ𝑟′ (𝑋) or (ii) 𝑟 = {ℎ} for some ℎ ∈ 𝐻 and 𝐶ℎ𝑟 (𝑋) = 𝜅 {ℎ} > |𝑋ℎ | = |𝐶ℎ𝑟 (𝑋) |.
Therefore, 𝐶ℎ(𝑋) is the reserved quota allocation of 𝐶ℎ(𝑋).

Remark 4. For each 𝑋 ⊆ 𝐷×𝐻 and 𝑟 ∈ 𝑅, (i) if |𝑟 | ≥ 2, then𝐶ℎ𝑟 (𝑋) = min{𝜅
𝑟
,
∑

𝑠 (𝑟) 𝐶ℎ𝑟′ (𝑋)},
and (ii) if 𝑟 = {ℎ} for some ℎ ∈ 𝐻, 𝐶ℎ𝑟 (𝑋) = min{𝜅

𝑟
, |𝐶ℎ{ℎ}(𝑋) |}. In other words, when

𝐶ℎ(𝑋) = 𝜇, 𝐶ℎ(𝑋) = 𝜅.

Furthermore, note that 𝐶ℎ(𝑋) ≤ 𝜅 since 𝑣 ≤ 𝜅.

Remark 5. For each 𝑋 ⊆ 𝐷 × 𝐻, 𝐶ℎ(𝑋) ≤ 𝜅.

From these remarks, we can consider 𝐶ℎ as a procedure that first determines the reserved
quota allocation 𝜅 satisfying the ceiling constraint based on 𝑋 , and then lets the hospital choose
doctors following (𝜅 {ℎ})𝐻 .

Thus, 𝐶ℎ(𝑋) satisfies the ceiling constraints but not necessarily the floor constraints. To
satisfying the floor constraints, from Proposition 3, its total shortfall 𝐶ℎ𝐻 (𝑋) − |𝐶ℎ(𝑋) | must
be zero.

There are two differences between our choice function and that of Kamada and Kojima (2018).
First, 𝑣𝑟 = 𝜅

𝑟
if
∑

𝑠 (𝑟) 𝑣𝑟′ < 𝜅
𝑟
. That is, if the adjusted contract quantities of subregions fall

below the floor constraint, the region requests to the upper regions by accumulating the minimum
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number of additional doctors required. Second, 𝐶ℎ𝑠 (𝑟) ≥ 𝜅∗
𝑠 (𝑟) . This means that each region 𝑟

is forced not to choose an allocation smaller than 𝜅∗
𝑟
.

In other words, a feature of our procedure is that it requires regions to choose the subregion
quota allocation in advance, considering the quota to accept additional doctors to meet the
floor constraint in the future (even if there are currently no applications from the corresponding
doctors). If each region does not have a floor constraint, then our procedure is equivalent to those
in Kamada and Kojima (2018).

The following properties ensure that our process, defined in the next section, behaves well.
Property (i) is called substitutability in the literature. (ii) implies two properties. First, |𝐶ℎℎ (𝑋 ∪
{𝑥}) | − |𝐶ℎℎ (𝑋) | is not negative, which is called the law of aggregate demand in the literature.
Second, since 𝐶ℎ𝐻 (𝑋) − |𝐶ℎℎ (𝑋) | means the total shortfall, this means that adding a contract
𝑥 must decrease the total shortfall by 1 or 0.

Proposition 4. For any 𝑋 ⊂ 𝐷 × 𝐻 and {𝑥} ∉ 𝑋 ,
(I) 𝐶ℎ(𝑋 ∪ {𝑥}) ⊆ 𝐶ℎ(𝑋) ∪ {𝑥},
(II) (𝐶ℎ𝐻 (𝑋 ∪ {𝑥}) − 𝐶ℎ𝐻 (𝑋), |𝐶ℎ(𝑋 ∪ {𝑥}) | − |𝐶ℎ(𝑋) |) is (1, 1), (0, 1), or (0, 0).

4.3 The GFDA+SD algorithm

Kamada and Kojima (2018) consider a constrained matching problem as a matching problem
with contracts between one hospital with the choice function including no floor constraints and
a set 𝐷 of doctors, where 𝐻 is the set of contractual contents, and consider the COP in that
problem; we call this algorithm using 𝐶ℎ defined above the generalized FDA algorithm. 11

The generalized FDA (GFDA) algorithm Let 𝑋0 = 𝜇0 = 𝐷0 = ∅ and move to Step 1.

Step 𝑑: Let 𝐷𝑑 = 𝐷𝑑−1 ∪ {𝑑}, 𝑋𝑑,0 = 𝑋𝑑−1, and 𝜇𝑑,0 = 𝜇𝑑−1. Move to Sub-step (𝑑.1)
Sub-step (𝑑.𝑛): Choose any 𝑑 ′ ∈ 𝐷𝑑 \ 𝜇

𝑑,𝑛−1
𝐷

such that Ac≻𝑑′ \ 𝑋
𝑑,𝑛−1
𝑑′ ≠ ∅, and let

𝑋𝑑,𝑛 = 𝑋𝑑,𝑛−1 ∪ {(𝑑 ′, ℎ)} where ℎ satisfies that ℎ ∉ 𝑋
𝑑,𝑛−1
𝑑′ and ℎ ⪰𝑑 ℎ′ for every

ℎ′ ∉ 𝑋
𝑑,𝑛−1
𝑑′ . Let 𝜇𝑑,𝑛 = 𝐶ℎ(𝑋𝑑,𝑛) and move to Sub-step (𝑑, 𝑛 + 1).

If there is no such 𝑑 ′, then let 𝑋𝑑 = 𝑋𝑑,𝑛−1 and 𝜇𝑑 = 𝜇𝑑,𝑛−1 and terminates this step:
if 𝑑 < |𝐷 |, then move to Step 𝑑 + 1; if 𝑑 = |𝐷 |, then let 𝜇 = 𝜇𝑑 and terminates the
algorithm.

The COP with the choice function satisfying substitutability and the law of aggregate demand
generates a matching (Hirata and Kasuya, 2014). Thus, the GFDA algorithm generates a
matching. In addition, the matching is individually rational since for each Sub-step (𝑑, 𝑛), ℎ is
the best for ≻𝑑′ among 𝐻 \ 𝑋𝑑,𝑛−1

𝑑′ and Ac≻𝑑′ \ 𝑋
𝑑,𝑛−1
𝑑′ ≠ ∅.

11 When 𝐶ℎ satisfies substitutability and the law of aggregate demand, the order of the doctors’ offers does not
affect what matching the COP finally generates. 12 Therefore, instead of starting from an empty matching and
cumulative offer set, we regard the COP up to {1, ..., 𝑑 − 1} as "the intermediate stage of the COP in {1, ..., 𝑑},
where offers of doctor 𝑑 are processed after all offers of doctors previous to d have been completed" and start
from the last doctor 𝑑’s offer.
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For interval constraint problems, even if doctors’ preferences are acceptable, GFDA does not
always lead to feasible matching (see Section 5.3). Following Akin (2021), we consider an
algorithm that combines Serial Dictatorship. The intuition of our algorithm is as follows. Note
that we can regard each Step 𝑑 ∈ 𝐷 in the GFDA algorithm as the process generating the COP
matching when {1, . . . , 𝑑} is the set of all doctors (see also footnote 11). Increase 𝑑 one by one (i.e.
add one doctor at a time) and observe the series of total shortfalls, {∑𝑅 𝛿1

𝑟 ,
∑

𝑅 𝛿2
𝑟 , . . . ,

∑
𝑅 𝛿

|𝐷 |
𝑟 }.

Since additional doctors are not always placed to make up for shortfalls in the doctor shortage
regions, it does not necessarily follow that it will be zero (i.e., feasible) when we reach 𝑑 = |𝐷 |.
Our algorithm initially increases 𝑑 by 1 and observes the total shortfall one by one, starting from
the state with no doctor. However, if the remaining number of doctors, |𝐷 | − 𝑑, is in line with
the total shortfall, to ensure feasibility, in subsequent stages, we force the added doctors to be
matched in the doctor shortage hospital (the "+SD" process).

The formal definition of the GFDA+SD algorithm is as follows.

The generalized FDA+SD algorithm Let 𝑋0 = 𝜇0 = 𝐷0 = ∅ and move to Step 1 of the GFDA
phase.

GFDA phase

Step 𝑑: Execute Step 𝑑 of GFDA algorithm. When the step terminates, if 𝑑 < |𝐷 | and∑
𝑅 𝛿

𝑑,𝑛−1
𝑟 < |𝐷 | − 𝑑, then move to Step 𝑑 + 1 of GFDA phase; if 𝑑 < |𝐷 | and∑

𝑅 𝛿
𝑑,𝑛−1
𝑟 ≥ |𝐷 | − 𝑑, then move to Step 𝑑 + 1 of Serial-dictatorship phase; if 𝑑 = |𝐷 |,

then let 𝜇 = 𝜇𝑑 and terminates the algorithm.

Serial-dictatorship (SD) phase

Step 𝑑: If 𝐻−(𝜇𝑑−1) ∩ Ac≻𝑑
≠ ∅, then let 𝜇𝑑 = 𝜇𝑑−1 ∪ {(𝑑, ℎ)} where ℎ satisfies that ℎ ⪰𝑑 ℎ′

for every ℎ′ ∈ 𝐻−(𝜇𝑑−1), otherwise, let 𝜇𝑑 = 𝜇𝑑−1. This step is terminated: if 𝑑 < |𝐷 |,
then move to Step 𝑑 + 1 of Serial-dictatorship phase; if 𝑑 = |𝐷 |, then let 𝜇 = 𝜇𝑑 and
terminates the algorithm.

Let 𝑑∗ denote the final step of the GFDA phase. In a problem with ceiling constraints, the
total shortfall is zero, so 𝑑∗ = |𝐷 |, and the matching produced by this algorithm is equal to the
FDA by Kamada and Kojima (2018).

The following proposition explains the change when the step proceeds by 1 in the GFDA (or
GFDA-phase of the GFDA-SD) algorithm, corresponding to the results to those of Proposition
4.

Proposition 5. For any 𝑑 ∈ 𝐷 in the GFDA algorithm or any 𝑑 ≤ 𝑑∗ of GFDA phase in
GFDA+SD algorithm,
(i) 𝜇𝑑

𝐷
⊆ 𝜇𝑑−1

𝐷
∪ {𝑑}, and

(ii) (𝜅𝑑
𝐻
− 𝜅𝑑−1

𝐻
, |𝜇𝑑 | − |𝜇𝑑−1 |) is (1, 1), (0, 1), or (0, 0).
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Proposition 5 (i) implies that doctors who are unmatched in Step 𝑑 − 1 cannot match any
hospital in Step 𝑑.13 Proposition 5 (ii) implies the total shortfall decreases by 0 or 1 when step
proceeds by 1. Thus, if the algorithm transitions to SD phase, it follows that

∑
𝑅 𝛿𝑑

∗
𝑟 = |𝐷 | − 𝑑∗.

From Lemmas 1 and 2, we know that this implies that the algorithm must proceed to Step |𝐷 |,
and for each Step 𝑑 of SD phase, (a) 𝐻−(𝜇𝑑−1) is not empty, (b) the total shortfall decreases
by 0 or 1, and (c) 𝜇𝑑 ∈ M. In particular, (c) inductively implies that the GFDA+SD algorithm
generates a matching, since 𝜇𝑑∗ generated by the GFDA phase is a matching. Further, it is
individually rational since 𝜇𝑑∗ is individually rational and ℎ ∈ Ac≻𝑑

for (𝑑, ℎ) added in each step
of the SD phase.

When doctors’ preferences are acceptable (Ac≻𝑑
= 𝐻), (a) implies that doctor 𝑑 matches some

hospital for any Step 𝑑 > 𝑑∗, and thus the total shortfall must decrease by 1. Thus, the total
shortfall becomes 0 at Step |𝐷 |. In this way, this algorithm generates a feasible matching.

Proposition 6. When ≻𝐷 is acceptable,
∑

𝑅 𝛿
𝑑∗,𝑛−1
𝑟 = |𝐷 |−𝑑∗ for 𝑑∗ in the GFDA+SD algorithm

and the generated matching is feasible.

The algorithm satisfies a stronger requirement. The generated matching satisfies our stability.

Theorem 1. When ≻𝐷 is acceptable, the matching generated by the GFDA+SD algorithm is
interval respecting stable.

4.4 Strategy-proofness

Unlike feasibility and stability, the GFDA+SD (and GFDA) algorithms are strategy-proof for
doctors even without acceptance. Let a matching function 𝑓 be a function from P𝐷 to M.

Definition 6 (Strategy-proof). A matching function 𝑓 is strategy-proof (for doctors) iff for every
≻𝐷∈ P𝐷 , 𝑑 ∈ 𝐷, and ≻′

𝑑
∈ P𝑑 , 𝑓 (≻𝐷) ⪰𝑑 𝑓 (≻′

𝑑
, ≻𝐷\{𝑑 }).

Hatfield and Milgrom (2005) showed that a function assigning a matching generated by the
COP when the choice functions satisfy substitutability and the law of aggregate demand to each
preference profile is strategy-proof. Therefore, from Proposition 4, GFDA is strategy-proof: let
GFDA be the matching function such that for any ≻𝐷∈ GFDA(≻𝐷) is the matching generated
by the GFDA algorithm when the preference profile of doctors is ≻𝐷 .

Remark 6. Matching function GFDA is strategy-proof.

Let GFDA+SD be the matching function such that for any≻𝐷 , GFDA+SD(≻𝐷) is the matching
generated by the GFDA+SD algorithm when the preference profile of doctors is ≻𝐷 . GFDA+SD
also satisfies strategy-proofness.

Theorem 2. GFDA+SD is strategy-proof.

13This is also a corollary of population monotonicity of the COP. The change between two steps corresponds to the
change in the COP when doctor 𝑑 is added.
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Even if doctors’ preferences are acceptable, these algorithms are strategy-proof because they
satisfy strategy-proof on a broader domain. Therefore, if doctors are acceptable, the GFDA+SD
algorithm is strategy-proof and satisfies interval respecting stability.14 In addition, our result
ensures that, even if each doctor is unsure whether other doctors are acceptable, they will honestly
declare their preferences and thus achieve stability at least when they are all acceptable.

5 Discussion

5.1 Variations of interval respecting stability

In this section, we consider variations of interval respecting stability by comparing it with the
original definition of ceiling respecting stability.

Kamada and Kojima (2018) study a problem with ceiling constraints without assuming hier-
archical region structures. They consider stability defined in the following way:

Definition 7 (Alternative representation of ceiling respecting stability). We say a matching 𝜇 is
ceiling respecting stable if and only if 𝜇 is feasible, individual rational, and if (𝑑, ℎ) blocks 𝜇

with 𝜇𝑑ℎ, then (i) 𝑑 ′ ≻ℎ 𝑑 for every 𝑑 ′ ∈ 𝜇ℎ and (ii) there exists 𝑟 ∈ 𝑅 satisfying |𝜇𝑟 | = 𝜅𝑟 and
𝑅′ = {𝑟 ′ ∈ 𝑅 ∩ 2𝑟 |𝜇𝑑 , ℎ ∈ 𝑟 ′} satisfies the following condition: (a) there exists 𝑟 ′ ∈ 𝑅′ such that
( |𝜇𝑟′′ |)𝑠 (𝑟′) ≻̃𝑟′ ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟′) or (b) every 𝑟 ′ ∈ 𝑅′ satisfies ( |𝜇𝑟′′ |)𝑠 (𝑟′) ≿̃𝑟′ ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟′) .

Requiring (a) or (b) means that 𝜇𝑑ℎ is not weakly Pareto superior to 𝜇 for all regions in 𝑅′.
Since we assume that the region structure 𝑅 is hierarchical, then 𝑅′ is linearly ordered with the

inclusion relationship and only the smallest element 𝑟 ′ in 𝑅′ satisfies ( |𝜇𝑟′′ |)𝑠 (𝑟′) ≠ ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟′) ;
thus, for any 𝑟+ ∈ 𝑅′ \ {𝑟 ′}, ( |𝜇𝑟′′ |)𝑠 (𝑟+) = ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟+) . Therefore, requiring (a) or (b) are
equivalent to requiring ( |𝜇𝑟′′ |)𝑠 (𝑟) ≿̃𝑟′ ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟′′) for the smallest element 𝑟 ′ in 𝑅′, which is
our representation of ceiling respecting stability.

When we define interval respecting stability, even if we assume hierarchical 𝑅, we have to
consider invalidity of blocking based on preferences of a set of regions, like 𝑅′ in the above
definition. There, we only require (b) for the set of authoritative regions to decide the invalidity.
One may consider to require (a) or (b) similarly to the above definition. However, since it enlarges
invalid blocking, it gives us weaker stability. Therefore, our result does not change even if we
consider it.

Next, in the above definition of ceiling respecting stability, if there exists 𝑟 ∈ 𝑅 satisfying (ii),
for every region outside of 𝑅′, we have ( |𝜇𝑟′′ |)𝑠 (𝑟) = ( |𝜇𝑑ℎ |𝑟′′)𝑠 (𝑟′′) since for any subject other
than 𝑑 and ℎ, their partner does not change. However, this property does not hold in interval
respecting stability even if condition (ii) in the definition holds. If the coalition is not a pair, there
can be a feasible matching where doctors move from hospitals outside the regions reaching the
ceiling to those regions. Therefore, for stronger stability, we can consider blocking to be valid if
there is a region that is not included in the region where the ceiling has been reached, but which
would prefer the blocking more.

14Note that the fact that GFDA and SD separately satisfy strategy proofness does not directly imply strategy-proofness
of GFDA+SD, since doctors before 𝑑∗ may improve by controlling the timing of the shift from GFDA to SD
through false reporting.
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However, this does not strengthen stability. Note that condition (ii) implies that all hospitals
ℎ ∈ 𝐵 are located in regions that reach the ceiling. Hence, the number of doctors in hospitals
with no region reaching the ceiling will remain the same or decrease. This implies the following.

Proposition 7. For any interval stable matching 𝜇, if 𝐵 ∈ 𝐷 ∪ 𝐻 blocks 𝜇 with 𝜇′ and satisfies
condition (ii), then |𝜇′

𝑠 (𝑟) | ≤ |𝜇𝑠 (𝑟) | for every 𝑟 ∈ 𝑅 such that |𝜇𝑟+ | < 𝜅𝑟+ for every 𝑟− ⊆ 𝑟+.

Therefore, if the matching is interval respecting stable, in blocking that satisfies condition (ii),
the regions that are not included in the regions reaching the ceiling also do not prefer blocking.

5.2 CFDA+SD algorithm

Akin (2021) showed that DA+SD, an algorithm that combines the unconstrained DA algorithm
with the serial-dictatorship, similarly to our study, satisfies floor respecting stability in the
problem with floor constraints. On the other hand, Kamada and Kojima (2018) showed that
CFDA, which is the FDA ignoring floor constraints, satisfies ceiling respecting stability in the
problem with ceiling constraints. Thus, we are interested in the performance of an algorithm
that combines CFDA and SD rather than GFDA in interval constraint problems.

Define 𝐶ℎ𝑐 as follows.

Ceiling only adjusted contract quantity vector 𝑣𝑐: For any 𝑋 , inductively define 𝑣𝑐 ∈ N𝑅
+

towards the upper regions as follows.

• For each ℎ ∈ 𝐻

𝑣𝑐{ℎ} =

{
|𝑋ℎ | if |𝑋ℎ | ∈ [𝜅 {ℎ}, 𝜅 {ℎ}],
𝜅 {ℎ} if |𝑋ℎ | > 𝜅 {ℎ}

• For any 𝑟 ∈ 𝑅 such that each of 𝑣𝑐
𝑠 (𝑟) has been defined,

𝑣𝑐𝑟 =

{∑
𝑠 (𝑟) 𝑣

𝑐
𝑟′ if

∑
𝑠 (𝑟) 𝑣

𝑐
𝑟′ ∈ [𝜅

𝑟
, 𝜅𝑟 ],

𝜅𝑟 if
∑

𝑠 (𝑟) 𝑣
𝑐
𝑟′ > 𝜅𝑟

𝐶ℎ
𝑐 and 𝐶ℎ𝑐: Replace 𝑣 with 𝑣𝑐 and construct 𝐶ℎ and 𝐶ℎ following the definitions. Let

𝐶ℎ𝑐 = 𝐶ℎ.

Note that 𝐶ℎ𝑐 is equivalent to 𝐶ℎ when there is no floor constraint. Define the algorithm that
replaces 𝐶ℎ with 𝐶ℎ𝑐 in the GFDA+SD algorithm as the CFDA+SD algorithm.

The ceiling constraint FDA+SD (CFDA+SD) algorithm The CFDA+SD algorithm is the algo-
rithm obtained by replacing 𝐶ℎ with 𝐶ℎ𝑐 in the GFDA+SD algorithm.

CFDA+SD may not give a feasible matching.

21



Example 4. Suppose that there are three doctors 𝐷 = {𝑑1, 𝑑2, 𝑑3} and three hospitals 𝐻 =

{ℎ1, ℎ2, ℎ3}. The preference profile is

≻𝑑 : ℎ2, ℎ1, ℎ3 for any 𝑑 ∈ 𝐷 and
≻ℎ : 𝑑1, 𝑑2, 𝑑3 for any ℎ ∈ 𝐻.

There are two regions 𝑅 = {𝑟1, 𝑟2} and each hospital is located as 𝑟 (ℎ1) = 𝑟 (ℎ2) = 𝑟1 and
𝑟 (ℎ3) = 𝑟2. Ceiling and floor constraints of each region are given by 𝜅 {ℎ1 } = 1 and 𝜅𝑟1 = 1. We
assume that regional preferences are indifferent. That is, each region cares only about the total
number of slots filled in its own subregion.

Here, we run the CFDA+SD algorithm. We start that algorithm with an empty matching. First,
we choose doctor 𝑑1. Since each doctor prefers ℎ2 the most, she applies to that hospital. Given
this contract (𝑑1, ℎ2) and the choice of each region based on the constraints, ℎ2 chooses the one
most preferred doctor. Therefore, hospital ℎ2 accepts 𝑑2. Since the total shortfall is 1 and the
number of remaining doctors is 2, this step ends and we proceed to the next step of the CFDA.

Next, 𝑑2 makes an offer to ℎ2. Since ℎ2 chooses the single most preferred doctor, it accepts 𝑑1
and rejects 𝑑2. So 𝑑2 then applies to its next preferred hospital ℎ3. Similarly, ℎ3 chooses the one
most preferred doctor, so it accepts 𝑑2. Here, the total shortfall is 1, which equals the number of
remaining doctors, so we proceed to SD. However, ℎ1 cannot match, although it is acceptable to
𝑑3, because the ceiling for region 𝑟1 is binding.

Thus, the CFDA+SD algorithm may not produce a feasible match because one region may not
fulfill the floor constraint but has reached the ceiling for its upper region.

Proposition 8. There is a case where the CFDA+SD algorithm does not generate a feasible
matching.

This example clarifies why we need 𝐶ℎ rather than 𝐶ℎ𝑐 : 𝐶ℎ allocates quotas that take into
account future additions of doctors to solve the shortage; 𝐶ℎ𝑐 does not take this into account and
therefore ignores the shortage and allocates doctors who are currently applying up to the ceiling.
As a result, even if it moves to SD, it will not be able to add doctors to the shortage regions
without violating the ceiling, thus failing to achieve a feasible matching.

5.3 GFDA with ceiling |𝐷 |
This section examines how to generate feasible matchings using only GFDA without SD.

In the GFDA algorithm, 𝐶ℎ takes into account the number of shortfalls and generates a
matching that will be feasible if doctors are added in the future. However, 𝐶ℎ does not take into
account the total number of doctors, which may result in a matching that is not feasible even if
all currently unmatched doctors participate. If 𝐶ℎ takes into account the total number of doctors
and rejects the above-mentioned allocations, GFDA will generate a feasible matching. Define
𝐶ℎ |𝐷 | below.
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|𝐷 |-ceiling adjusted contract quantity vector 𝑣 |𝐷 |: For any 𝑋 and 𝑟 ∈ 𝑅 \ {𝐻}, let 𝑣 |𝐷 |
𝑟 = 𝑣𝑟 .

Let

𝑣
|𝐷 |
𝐻

=


𝜅
𝐻

if
∑

𝑠 (𝐻) 𝑣
|𝐷 |
𝑟′ < 𝜅

𝐻
,∑

𝑠 (𝐻) 𝑣
|𝐷 |
𝑟′ if

∑
𝑠 (𝐻) 𝑣

|𝐷 |
𝑟′ ∈ [𝜅

𝐻
,min{𝜅𝐻 , |𝐷 |}],

min{𝜅𝐻 , |𝐷 |} if
∑

𝑠 (𝐻) 𝑣
|𝐷 |
𝑟′ > min{𝜅𝐻 , |𝐷 |}

𝐶ℎ
|𝐷 | and 𝐶ℎ |𝐷 |: Replace 𝑣 with 𝑣 |𝐷 | and construct 𝐶ℎ and 𝐶ℎ following the definitions. Let

𝐶ℎ |𝐷 | = 𝐶ℎ.

In other words, 𝐶ℎ |𝐷 | is 𝐶ℎ with 𝜅𝐻 modified to the smaller of |𝐷 | and the true 𝜅𝐻 . 𝐶ℎ |𝐷 |

does not choose an allocation where the reserved total quota 𝜅𝐻 is greater than |𝐷 |. The rest
part is the same as for 𝐶ℎ. We name the algorithm that replaces 𝐶ℎ with 𝐶ℎ |𝐷 | in GFDA as the
GFDA with ceiling |𝐷 |.

The generalized FDA algorithm with ceiling |𝐷 | The GFDA with ceiling |𝐷 | is the algorithm
obtained by replacing 𝐶ℎ with 𝐶ℎ |𝐷 | in the GFDA+SD algorithm.

This algorithm generates a feasible matching.

Proposition 9. When ≻𝐷 is acceptable, the matching generated by GFDA with ceiling |𝐷 | is
feasible.

Note that ceiling |𝐷 | for region 𝐻 is a pseudo ceiling and not the true ceiling for 𝐻. Therefore,
GFDA with ceiling |𝐷 | may fail to satisfy not only stability, but also the weaker condition of
ceiling respecting stability.

Example 5. Let 𝐷 = {1, 2, 3} and 𝐻 = {ℎ1, ℎ2, ℎ3}. The physical cap 𝑞ℎ is +∞ for every ℎ ∈ 𝐻.
Their preferences are defined as

∀𝑑 ∈ 𝐷, ≻𝑑: ℎ3, ℎ2, ℎ1

∀ℎ ∈ 𝐻, ≻ℎ: 1, 2, 3

The region structure 𝑅 is {{ℎ1}, {ℎ2}, {ℎ3}, 𝐻}. There is no ceiling constraint: 𝜅𝑟 = +∞
for every 𝑟 ∈ 𝑅. In addition, 𝜅 {ℎ1 } = 1 is the unique floor constraint; 𝜅

𝑟
= 0 for any 𝑟 ∈ 𝑅

with 𝑟 ≠ {ℎ1}. The unique non-singleton region 𝐻’s preference is represented by the following
objective function 𝑢𝐻 : N |𝑠 (𝐻) |

+ → R.

𝑢𝐻 (𝑤 {ℎ1 }, 𝑤 {ℎ2 }, 𝑤 {ℎ3 }) = 1.2𝑤 {ℎ1 } + 1.1𝑤 {ℎ2 } + 𝑤 {ℎ1 }

That is, 𝐻 slightly value the number in {ℎ1} over that in {ℎ2} and that in {ℎ2} over that in {ℎ3}.
Consider the GFDA with ceiling |𝐷 | = 3. Then, 𝜇1 = {(1, ℎ3)} and 𝜅1

𝐻
= 2; 𝜇2 =

{(1, ℎ3), (2, ℎ3)} and 𝜅2
𝐻

= 3; 𝜇3,1 = {(1, ℎ3), (2, ℎ3)} = 𝑋3,1 \ {(3, ℎ3)} and 𝜅
3,1
𝐻

= 3;
𝜇3,2 = {(1, ℎ3), (3, ℎ2)}; 𝜇3,3 = {(3, ℎ2), (2, ℎ2)}; 𝜇3,4 = {(2, ℎ2), (1, ℎ2)}; finally, 𝜇 = 𝜇3 =

{(2, ℎ2), (1, ℎ2), (3, ℎ1)}.
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However, 𝜇 is not ceiling respecting stable. Both {1, ℎ3} and {2, ℎ3} block 𝜇 with 𝜇1ℎ3 and
𝜇2ℎ3 but there is no ceiling constraint in this problem. The GFDA+SD matching, which is the
unique interval respecting stable matching in this problem, is {(1, ℎ3), (2, ℎ3), (3, ℎ1)}.

Fact 3. There is a case where the GFDA with ceiling |𝐷 | does not generate ceiling respecting
stability.

If 𝜅𝐻 is guaranteed to be less than or equal to |𝐷 | even under the original 𝐶ℎ, then replacing
𝐶ℎ does not affect the algorithm. This is also a necessary and sufficient condition for GFDA to
function alone.15

Proposition 10. The following three conditons are equivalent:
(i) The matchings generated by the GFDA algorithm and the GFDA with ceiling |𝐷 | are equal.
(ii) The matching generated by the GFDA algorithm is feasible.
(iii) The matching generated by the GFDA algorithm is interval respecting stable.
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Appendix
1 Proof of Proposition 1

Note that for each 𝑟 ∈ 𝑅,

𝜅∗
𝑟
= max

𝑃⊂𝑅 s.t. 𝑃 is a partition on 𝑟

∑︁
𝑟′∈𝑃

𝜅
𝑟

(1)

𝜅∗𝑟 = min
𝑃⊂𝑅 s.t. 𝑃 is a partition on 𝑟

∑︁
𝑟′∈𝑃

𝜅𝑟 (2)

Proof. Consider any feasible matching 𝜇 and any 𝑟 ∈ 𝑅. Suppose that for some partition 𝑃 on 𝑟 ,
|𝜇𝑟 | <

∑
𝑟′∈𝑃 𝜅

𝑟′. Then, there must be 𝑟 ′ ∈ 𝑃 such that |𝜇𝑟′ | < 𝜅
𝑟′, which contradicts feasibility.

Thus, |𝜇𝑟 | ≥
∑

𝑟′∈𝑅′ 𝜅𝑟′ for any partition 𝑅′ ⊂ 𝑅 on 𝑟 . By (1), |𝜇𝑟 | ≥ 𝜅∗
𝑟
. In the same manner,

we can show by (2) that |𝜇𝑟 | ≤ 𝜅∗𝑟 . Thus, 𝜅∗𝑟 ≥ 𝜅∗
𝑟
.

Since we choose any 𝑟 ∈ 𝑅, when 𝑟 = 𝐻, we have |𝐷 | ≥ |𝜇𝐻 | ≥ 𝜅∗
𝐻

. □

2 Proof of Proposition 3

Proof. Suppose that 𝜅𝐻 − |𝜇 | = 0. Then,
∑

𝑅 𝛿𝑟 = 0. Since 𝛿𝑟 is non-negative, 𝛿𝑟 = 0 for every
𝑟 ∈ 𝑅. By definition, 𝜅𝑟 =

∑
𝑠 (𝑟) 𝜅𝑟′ for every 𝑟 ∈ 𝑅. By construction of 𝜅𝑟 , 𝜅𝑟 = |𝜇𝑟 | for every

𝑟 ∈ 𝑅. Since 𝜅𝑟 = min{𝜅
𝑟
,
∑

𝑠 (𝑟) 𝜅𝑟′} ≥ 𝜅
𝑟
, then |𝜇𝑟 | ≥ 𝜅

𝑟
.

Note that for any 𝑟 ′ ∈ 𝑅, 𝜅𝑟′ ≥
∑

𝑠 (𝑟′) 𝜅𝑟′′ ≥ · · · ≥ ∑
ℎ∈𝑟′ 𝜅 {ℎ} ≥

∑
ℎ∈𝑟′ |𝜇ℎ | = |𝜇𝑟′ |. Suppose

that 𝜅𝐻 − |𝜇 | > 0. Then, there exists 𝑟 ∈ 𝑅 with 𝛿𝑟 > 0. Thus, 𝜅𝑟 − ∑
𝑠 (𝑟) 𝜅𝑟′ > 0 and

𝜅𝑟 = max{𝜅
𝑟
,
∑

𝑠 (𝑟) 𝜅𝑟′} = 𝜅
𝑟
. Since

∑
𝑠 (𝑟) 𝜅𝑟′ ≥ ∑

𝑠 (𝑟) |𝜇𝑟′ | = |𝜇𝑟 |, we have 𝜅
𝑟
= 𝜅𝑟 >∑

𝑠 (𝑟) 𝜅𝑟′ ≥ |𝜇𝑟 |. □
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3 Proof of Proposition 2

Proof. Suppose that 𝜇 is interval respecting stable and 𝜇′ ∈ 𝑀𝑀 Pareto dominates 𝜇. Let
𝐴𝐷 = {𝑑 ∈ 𝐷 |𝜇𝑑 ≠ 𝜇′

𝑑
} and 𝐴𝐻 = {ℎ ∈ 𝐻 |𝜇ℎ ≠ 𝜇′

𝐻
}. Since each of (≻𝐷 , ≻𝐻) is a strict

preference, we have 𝜇′
𝑑
≻𝑑 𝜇𝑑 for any 𝑑 ∈ 𝐴𝐷 and 𝜇′

ℎ
≻ℎ 𝜇ℎ for any ℎ ∈ 𝐴𝐻 . Thus, 𝐴𝐷 × 𝐴𝐻

blocks 𝜇 with 𝜇′.
If 𝐴𝐻 = ∅, since 𝜇′ ≠ 𝜇 and , then 𝐴𝐷 ≠ ∅. Choose any 𝑑 ∈ 𝐴𝐷 . Since 𝜇′

𝑑
≻𝑑 𝜇𝑑 , then

∅ ≻𝑑 𝜇𝑑 . Thus, 𝜇𝑑 is not individual rational, which contradicts 𝜇’s interval respecting stability.
Thus, 𝐴𝐻 ≠ ∅.

Next, suppose that there exists ℎ ∈ 𝐴𝐻 such that |𝜇′
ℎ
| ≤ |𝜇ℎ |. Choose any 𝐷 ′ ⊆ 𝜇ℎ \ 𝜇′

ℎ
with

|𝐷 ′ | = |𝜇′
ℎ
\ 𝜇ℎ |. Since 𝜇 is interval respecting stable, for any 𝑑 ′ ∈ 𝜇′

ℎ
\ 𝜇ℎ and any 𝑑 ∈ 𝐷 ′,

{𝑑} ≻ℎ {𝑑 ′}. Since ≻ℎ is strict, acceptable, and responsive, then 𝜇ℎ ⪰ℎ 𝐷 ′ ∪ [𝜇′
ℎ
∩ 𝜇ℎ] ≻ℎ 𝜇′,

which is a contradiction. Thus, |𝜇′
ℎ
| > |𝜇ℎ | for any ℎ ∈ 𝐴𝐻 . Since |𝜇′

ℎ
| = |𝜇ℎ | for any ℎ ∉ 𝐴𝐻 ,

then ( |𝜇′
ℎ
|)𝐻 ⪈ ( |𝜇ℎ |)𝐻 .

Consider any 𝑟 ∈ 𝑅 such that ( |𝜇′
𝑟′ |)𝑠 (𝑟) ≠ ( |𝜇𝑟′ |)𝑠 (𝑟) . Since ( |𝜇′

ℎ
|)𝐻 ⪈ ( |𝜇ℎ |)𝐻 , ( |𝜇′

𝑟′ |)𝑠 (𝑟) ⪈
( |𝜇𝑟′ |)𝑠 (𝑟) . By distribution acceptance of ≻̃𝑟 , ( |𝜇′

𝑟′ |)𝑠 (𝑟) ≻̃𝑟 ( |𝜇𝑟′ |)𝑠 (𝑟) . Thus, Condition (ii) in
definition of interval respecting stability does not hold, which is a contradiction. □

4 Proof of Proposition 4

In this section, we discuss the relation of 𝐶ℎ(𝑋) and 𝐶ℎ(𝑋 ∪ {𝑥}) for any 𝑋 and {𝑥} ∉ 𝑋 .
Let (𝑤, 𝑣) and (𝑤′, 𝑣′) be the adjusted contract quantity vectors corresponding to 𝑋 and 𝑋∪{𝑥}

respectively. Let (𝜅, 𝜇) and (𝜅′, 𝜇′) denote (𝐶ℎ(𝑋), 𝐶ℎ(𝑋)) and (𝐶ℎ(𝑋 ∪ {𝑥}), 𝐶ℎ(𝑋 ∪ {𝑥}))
respectively.

Let 𝑥𝐻 = ℎ. Thus, 𝑤ℎ = 𝑤′
ℎ
+ 1 and 𝑤−ℎ = 𝑤′

−ℎ.
By definition of 𝑣 and 𝑣′, there exists a sequence (𝑛𝑛)𝑛

∗

𝑛=1 on 𝑅∋ℎ such that 𝑟𝑛 ∈ 𝑠(𝑟𝑛−1) for
each 𝑛 = 2, . . . , 𝑛∗, 𝑟𝑛∗ = {ℎ}, and

∀𝑟 ∈ 𝑅, 𝑣′𝑟 =

{
𝑣𝑟 + 1 if 𝑟 ∈ {𝑟1, . . . , 𝑟𝑛}
𝑣𝑟 otherwise

Note that 𝑟1 can be 𝐻, otherwise, there exists 𝑟0 such that 𝑟1 ∈ 𝑠(𝑟0) and
∑

𝑠 (𝑟0) 𝑣𝑟′ ∉ [𝜅
𝑟0
, 𝜅𝑟 −1].

First, we show four relations between (𝜅𝑟 , 𝜅′𝑟 ) and (𝜅𝑠 (𝑟) , 𝜅′𝑠 (𝑟) ) for 𝑟 ∈ 𝑅. (i) and (ii) are
properties for any region on this sequence. (iii) and (iv) are properties for other regions.

Lemma 3. The following four properties hold:
(i) If 𝜅′𝑟𝑛 = 𝜅𝑟𝑛 , then (a) [𝜅𝑠 (𝑟𝑛) = 𝑣𝑠 (𝑟𝑛) and 𝜅′

𝑠 (𝑟𝑛) = 𝑣′
𝑠 (𝑟𝑛) ], (b) 𝜅′

𝑠 (𝑟𝑛) = 𝜅𝑠 (𝑟𝑛) or (c)
[𝜅𝑟𝑛+1 = 𝑣𝑟𝑛+1 and 𝜅′𝑟𝑛+1 = 𝑣′𝑟𝑛+1], 𝜅

′
𝑟∗ = 𝜅∗𝑟 − 1 for some 𝑟∗ ∈ 𝑠(𝑟𝑛) \ {𝑟𝑛+1}, and 𝜅′

𝑟′ = 𝜅𝑟′

for every 𝑟 ′ ∈ 𝑠(𝑟𝑛) \ {𝑟𝑛+1,𝑟∗}.
(ii) If 𝜅′𝑟𝑛 = 𝑣′𝑟𝑛 and 𝜅𝑟𝑛 = 𝑣𝑟𝑛 , then 𝜅′

𝑠 (𝑟𝑛) = 𝑣′
𝑠 (𝑟𝑛) and 𝜅𝑠 (𝑟𝑛) = 𝑣𝑠 (𝑟𝑛) .

(iii) For every 𝑟 ∉ ∪𝑛{𝑟𝑛} with 𝜅′𝑟 = 𝜅𝑟 , then 𝜅′
𝑠 (𝑟) = 𝜅𝑠 (𝑟) .

(iv) For every 𝑟 ∉ ∪𝑛{𝑟𝑛} with 𝜅′𝑟 = 𝜅𝑟 − 1, then 𝜅′
𝑠 (𝑟) = (𝜅𝑟′ − 1, 𝜅𝑠 (𝑟𝑛) ).

Proof. (i) If 𝜅𝑟𝑛 >
∑

𝑠 (𝑟𝑛) 𝑣𝑟′, since 𝜅
𝑟𝑛

≥ ∑
𝑠 (𝑟𝑛) 𝑣𝑟′+1 =

∑
𝑠 (𝑟𝑛) 𝑣

′
𝑟′, then we obtain (a). Suppose
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that 𝜅𝑟𝑛 ≤ ∑
𝑠 (𝑟1) 𝑣𝑟′. Since 𝜅′𝑟𝑛 = 𝜅𝑟𝑛 , 𝑣′𝑟𝑛+1 = 𝑣𝑟𝑛+1 +1, and 𝑣′

𝑟′ = 𝑣𝑟′ for every 𝑟 ′ ∈ 𝑠(𝑟𝑛) \{𝑟𝑛+1},
by Condition (i) of 𝐶ℎ, we obtain (b) or (c).

(ii) Since 𝜅𝑟𝑛 ≥ 𝑣′𝑟𝑛 > 𝑣𝑟𝑛 , then 𝜅𝑟𝑛 >
∑

𝑠 (𝑟𝑛) 𝑣𝑟′. Thus, 𝜅𝑟𝑛 ≥ ∑
𝑠 (𝑟𝑛) 𝑣𝑟′ + 1 =

∑
𝑠 (𝑟𝑛) 𝑣

′
𝑟′.

Therefore, 𝑣𝑟𝑛 ≥ ∑
𝑠 (𝑟𝑛) 𝑣𝑟′ and 𝑣′𝑟𝑛 ≥ ∑

𝑠 (𝑟𝑛) 𝑣
′
𝑟′. By assumption of (ii), 𝜅𝑟𝑛 ≥ ∑

𝑠 (𝑟𝑛) 𝑣
′
𝑟′ and

𝜅𝑟𝑛 ≥ ∑
𝑠 (𝑟𝑛) 𝑣𝑟′. Since ≻𝑟𝑛 is monotonic, 𝜅′

𝑠 (𝑟𝑛) = 𝐶ℎ𝑟 (𝑣′𝑠 (𝑟𝑛) , 𝜅
′
𝑟𝑛
) = 𝑣′

𝑠 (𝑟𝑛) and 𝜅𝑠 (𝑟𝑛) =

𝐶ℎ𝑟 (𝑣𝑠 (𝑟𝑛) , 𝜅𝑟𝑛) = 𝑣𝑠 (𝑟𝑛) .
(iii) Since 𝑣′

𝑠 (𝑟) = 𝑣𝑠 (𝑟) , then 𝜅′
𝑠 (𝑟) = 𝐶ℎ𝑟 (𝑣′𝑠 (𝑟) , 𝜅

′
𝑟 ) = 𝐶ℎ𝑟 (𝑣𝑠 (𝑟) , 𝜅𝑟 ) = 𝜅𝑠 (𝑟) .

(iv) Since by definition of 𝐶ℎ, 𝑣𝑟 ≥ 𝜅𝑟 , then 𝑣′𝑟 = 𝑣𝑟 ≥ 𝜅𝑟 > 𝜅′𝑟 ≥ 𝜅∗
𝑟
≥ 𝜅

𝑟
. Thus,∑

𝑠 (𝑟) 𝑣𝑟′ ≥ 𝑣𝑟 ≥ 𝜅𝑟 and
∑

𝑠 (𝑟) 𝑣
′
𝑟′ ≥ 𝑣′𝑟 ≥ 𝜅′𝑟 . By Condition (ii) of 𝐶ℎ, 𝜅′

𝑠 (𝑟) < 𝜅𝑠 (𝑟) . Since ≻𝑟

is monotonic, we obtain this conclusion. □

Note that if 𝜅′𝑟1 ≠ 𝜅𝑟1 , then 𝑟1 = 𝐻 and 𝑣′𝑟1 = 𝑣𝑟1 + 1. Thus, 𝜅𝑟1 ≥ 𝑣′𝑟1 > 𝑣𝑟1 ≥ 𝜅
𝑟1

. Since
𝑟1 = 𝐻, we have 𝜅′𝑟1 = 𝑣′𝑟1 and 𝜅𝑟1 = 𝑣𝑟1]. In addition, for every 𝑟𝑛, if 𝜅′𝑟𝑛 = 𝑣′𝑟𝑛 and 𝜅𝑟𝑛 = 𝑣𝑟𝑛 ,
then [𝜅′𝑟𝑛+1 = 𝑣′𝑟𝑛+1 and 𝜅𝑟𝑛+1 = 𝑣𝑟𝑛+1] (Property (i)), and if 𝜅′𝑟𝑛 = 𝜅𝑟𝑛 , then [𝜅′𝑟𝑛+1 = 𝑣′𝑟𝑛+1 and
𝜅𝑟𝑛+1 = 𝑣𝑟𝑛+1] (Properties (ii).a and c) or 𝜅′𝑟𝑛 = 𝜅𝑟𝑛 (Property (ii).b). Thus, we can consider four
cases.

Case 1 Property (ii) applies to every 𝑟𝑛. (Note that this implies [𝜅′𝑟1 = 𝑣′𝑟1 and 𝜅𝑟1 = 𝑣𝑟1] and
𝑟1 = 𝐻.)

Case 2 There exists 𝑟𝑛 such that Property (i).b applies to every 𝑛′ < 𝑛, Property (ii).a applies to
𝑟𝑛, and Property (ii) applies to every 𝑛′ > 𝑛.

Case 3 There exists 𝑟𝑛 such that Property (i).b applies to every 𝑛′ < 𝑛, Property (ii).c applies to
𝑟𝑛, and Property (ii) applies to every 𝑛′ > 𝑛.

Case 4 Property (ii).b applies to every 𝑟𝑛.

Now, we give Proof of Proposition 4 for every case.

Proof.

Claim 1. In Cases 1,2, and 4, 𝜅′
ℎ′ = 𝜅ℎ′ for every ℎ′ ≠ ℎ.

For every ℎ′ ≠ ℎ, there is no 𝑟𝑛 such that 𝜅𝑟′′ ≠ 𝜅′
𝑟′′ for some 𝑟 ′′ ∈ 𝑠(𝑟 ′𝑛) \ {𝑟𝑛 + 1}. Thus, by

repeatedly applying Property (iii), it follows that 𝜅ℎ′ = 𝜅′
ℎ′.

Claim 2. In Case 3, There exists ℎ′ ∈ 𝑟𝑛 such that 𝜅′
ℎ′ = 𝜅ℎ′ − 1 and 𝜅′

ℎ′′ = 𝜅ℎ′′ for every
ℎ′′ ≠ ℎ, ℎ′.

For 𝑟∗ ∈ 𝑠(𝑟𝑛), by repeatedly applying Properties (iii) and (iv), there exists unique ℎ′ ∈ 𝑟𝑛\{ℎ}
such that 𝜅′

ℎ′ = 𝜅ℎ′ −1 and 𝜅′
ℎ′′ = 𝜅ℎ′′ for every ℎ′′ ∈ 𝑟𝑛 \ {ℎ,ℎ′}. For every 𝑟 ′′′ ∉ 𝑟𝑛, since there is

no 𝑟𝑛′ such that 𝑟 ′′′ ∈ 𝑟𝑛′ and 𝜅′′′
𝑟′ ≠ 𝜅′

𝑟′′′′ for some 𝑟 ′′′′ ∈ 𝑠(𝑟𝑛′) \ {𝑟𝑛′+1}, by repeatedly applying
Property (iii), it follows that 𝜅ℎ′′′ = 𝜅′

ℎ′′′.

Claim 3. 𝐶ℎ(𝑋 ∪ {𝑥}) ⊆ Ch(𝑋) ∪ {𝑥}.
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By Claims 1 and 2, for every ℎ′ ≠ ℎ, 𝜅ℎ′ ≥ 𝜅′
ℎ′. By responsibility of ⪰ℎ′ and definition

of 𝐶ℎ, [𝐶ℎ(𝑋 ∪ {𝑥})] ′
ℎ

⊆ [𝐶ℎ(𝑋)] ′
ℎ
. In Case 4, 𝜅ℎ = 𝜅′

ℎ
. Thus, in the same manner,

[𝐶ℎ(𝑋 ∪ {𝑥})]ℎ ⊆ [𝐶ℎ(𝑋)]ℎ. In Cases 1,2, and 3, 𝜅ℎ = 𝑤ℎ. By acceptability of ℎ, [𝐶ℎ(𝑋)]ℎ ∪
{𝑥} = 𝑋ℎ ∪ {𝑥} ⊇ [𝐶ℎ(𝑋 ∪ {𝑥})]ℎ.

Claim 4. (𝜅′
𝐻
− 𝜅𝐻 , |𝐶ℎ(𝑋 ∪ {𝑥}) | − |𝐶ℎ(𝑋) |) is (1, 1), (0, 1), or (0, 0).

In Case 1, 𝜅′
𝐻
− 𝜅𝐻 = 1 since 𝜅′

𝐻
= 𝑣′

𝐻
= 𝑣𝐻 + 1 = 𝜅𝐻 + 1. In Cases 2,3, and 4, 𝜅′

𝐻
− 𝜅𝐻 = 0

since 𝑣′
𝑟′ = 𝑣𝑟′ for every 𝑟 ′ ⊇ 𝑟1.

Note that by acceptability and the fact that 𝜅′
ℎ′, 𝜅ℎ ≤ 𝜅ℎ′ ≤ 𝑞ℎ′ for any ℎ′ ∈ 𝐻, we have

|𝐶ℎ(𝑋 ∪ {𝑥}) | = ∑
𝐻 𝜅′

ℎ′ and |𝐶ℎ(𝑋) | = ∑
𝐻 𝜅ℎ.

In Cases 1,2, and 3, since Property (i), (ii).a, or c applies to 𝑛∗ − 1, then 𝜅′
ℎ
= 𝑤′

ℎ
= 𝑤ℎ + 1 =

𝜅ℎ + 1. In Case 4, since Property (ii).b applies to 𝑛∗ − 1, then 𝜅′
ℎ
= 𝜅ℎ.

Thus, in Cases 1 and 2, by Claim 1,
∑

𝐻 𝜅′
ℎ′ −

∑
𝐻 𝜅ℎ = 1. In Case 3, by Claim 2,

∑
𝐻 𝜅′

ℎ′ −∑
𝐻 𝜅ℎ = 0. In Case 4, by Claim 1,

∑
𝐻 𝜅′

ℎ′ −
∑

𝐻 𝜅ℎ = 0. □

5 Proof of Proposition 7

Proof. We consider induction from singleton regions. Consider any singleton region {ℎ} ∈
∪𝐻{ℎ′} such that |𝜇𝑟+ | < 𝜅𝑟+ for every 𝑟+ ∈ 𝑅 with {ℎ} ⊆ 𝑟+. If |𝜇′

{ℎ} | > |𝜇{ℎ} |, then 𝜇′
ℎ
⊄ 𝜇ℎ.

Thus, ℎ ∈ 𝐵. By condition (ii) of interval respecting stability, there exists 𝑟+ ∈ 𝑅∋ℎ with
|𝜇𝑟+ | = 𝜅𝑟+ . Since {ℎ} ⊆ 𝑟+, this is a contradiction. Thus, |𝜇′

{ℎ} | ≤ |𝜇{ℎ} | for any {ℎ} ∈ ∪𝐻 {ℎ′}
such that |𝜇𝑟+ | < 𝜅𝑟+ for every 𝑟+ ∈ 𝑅 with {ℎ} ⊆ 𝑟+.

Consider 𝑟 ∈ 𝑅 such that |𝜇𝑟+ | < 𝜅𝑟+ for every 𝑟+ ∈ 𝑅 with 𝑟 ⊆ 𝑟+. Suppose by induction
that for every 𝑟− ∈ 𝑠(𝑟) such that |𝜇𝑟+ | < 𝜅𝑟+ for every 𝑟+ ∈ 𝑅 with 𝑟− ⊆ 𝑟+, it follows that
|𝜇′

𝑟− | ≤ |𝜇𝑟− |.
Note that if 𝑟− ∈ 𝑠(𝑟) has 𝑟 ′ ∈ 𝑅 with 𝑟− ⊆ 𝑟 ′ such that |𝜇𝑟′ | = 𝜅𝑟′, since |𝜇𝑟+ | < 𝜅𝑟+ for

every 𝑟+ ∈ 𝑅 with 𝑟 ⊆ 𝑟+, it follows that |𝜇𝑟− | = 𝜅𝑟− . Since 𝜇′ is feasible, |𝜇′
𝑟− | ≤ |𝜇𝑟− |. Thus,

|𝜇′
𝑟− | ≤ |𝜇𝑟− | for every 𝑟− ∈ 𝑠(𝑟), which implies that |𝜇′

𝑟 | ≤ |𝜇𝑟 |.
By induction, we obtain the desired conclusion. □

6 Properties of the GFDA and the GFDA+SD algorithms

6.1 Preliminary analysis

For any matching 𝜇, from the definition of 𝐻−(𝜇), ℎ ∈ 𝐻−(𝜇) has the smallest region 𝑟1 such
that 𝑠(𝑟1) > 0, and all in-between regions are in 𝑅−(𝜇). If one doctor is added to ℎ, for any
in-between region 𝑟 , since 𝛿𝑟 = 0, 𝜅𝑟 increases by 1. 𝜅𝑟1 remains unchanged since 𝛿𝑟1 > 0. For
every other region 𝑟 ′, it is obvious that 𝜅𝑟′ does not change. We summarize this as a remark.

Remark 7. For any 𝜇 and ℎ ∈ 𝐻−(𝜇), there exists 𝑟1 ∈ 𝑅−(𝜇) such that 𝛿𝑟1 > 0 and for
any 𝑟 ∈ 𝑅∋ℎ such that 𝑟 ⊆ 𝑟1, it follows that 𝑟 ∈ 𝑅−(𝜇) and 𝛿𝑟 = 0, and for each 𝑑 ∉ 𝜇𝐻 ,
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𝜇′ = 𝜇 ∪ {(𝑑, ℎ)} satisfies that

∀𝑟 ∈ 𝑅, 𝜅′𝑟 =

{
𝜅𝑟 + 1 if ℎ ∈ 𝑟 ⊊ 𝑟1

𝜅𝑟 otherwise

Note that this implies that for any 𝑟 ∈ 𝑅 such that (i) 𝑟 = 𝐻 or (ii) 𝑟 ∈ 𝑠(𝑟 ′) for some
𝑟 ′ ∉ 𝑅−(𝜇), we have 𝜅𝑟 = 𝜅′𝑟 .16

Next, we show that under the matching obtained by 𝐶ℎ, a hospital in 𝐻−(𝜇𝑑) or some region
with a bounded ceiling constraint does not reject any contract.

Lemma 4. For any 𝑋 , if 𝜇 = 𝐶ℎ(𝑋), then for each ℎ ∈ 𝐻 such that (i) ℎ ∈ 𝐻−(𝜇) or (ii) 𝜅𝑟 < 𝜅𝑟
for every 𝑟 ∈ 𝑅∋ℎ, we have 𝜇ℎ = 𝑋ℎ.

Proof. In case (i), by Remark 7, there exists 𝑟0 ∈ 𝑅∋ℎ such that 𝛿𝑟0 > 0 and for each 𝑟 ∈ 𝑅∋ℎ
with 𝑟 ⊆ 𝑟0, 𝜅𝑟 < 𝜅𝑟 . By definition of 𝐶ℎ, 𝛿𝑟0 > 0 implies that 𝜅𝑠 (𝑟0) = 𝑣𝑠 (𝑟0) . In case (ii), let
𝑟0 = 𝐻. Since 𝜅𝐻 < 𝜅𝐻 , by definition of 𝐶ℎ, 𝜅𝑠 (𝑟0) = 𝑣𝑠 (𝑟0) .

Define (𝑟𝑛)𝑛
∗

𝑛=1 as 𝑟𝑛 = 𝑠(𝑟𝑛−1) for each 𝑛 = 1, . . . , 𝑛∗ and 𝑟𝑛∗ = {ℎ}. Note that 𝜅𝑟𝑛 < 𝜅𝑟𝑛 for
each 𝑛 = 1, . . . , 𝑛∗, and 𝜅𝑟1 = 𝑣𝑟1 . Since 𝜅𝑟1 > 𝑣𝑟1 , by definition of 𝑣,

∑
𝑠 (𝑟1) 𝑣𝑟′ ≤ 𝑣𝑟1 = 𝜅𝑟1 .

By definition of 𝐶ℎ, 𝜅𝑠 (𝑟1) = 𝑣𝑠 (𝑟1) . Especially, 𝜅𝑟2 = 𝑣𝑟2 . By repeating the above argument, we
have 𝜅𝑟𝑛∗ = 𝜅 {ℎ} = 𝑣 {ℎ}. Since 𝑣 {ℎ} < 𝜅 {ℎ}, |𝜇ℎ | = 𝑤ℎ. □

6.2 Proof of Proposition 5

Proof. Consider any 𝑑 ≤ 𝑑∗ and let Step 𝑑 terminate at Sub-step (𝑑, 𝑛∗). By definition, Sub-step
(𝑑, 𝑛∗) lets 𝜇𝑑 = 𝜇𝑑,𝑛∗−1 and immediately finishes.

We first show that 𝜇𝑑,𝑛

𝐷
⊆ 𝜇𝑑−1

𝐷
∪ {𝑑} and |𝜇𝑑,𝑛 | − |𝜇𝑑−1 | = 0 for any 𝑛 ∈ {1, . . . , 𝑛∗ − 2}.

We consider induction with respect to 𝑛. By definition, 𝜇
𝑑,0
𝐷

= 𝜇𝑑−1 ⊆ 𝜇𝑑−1
𝐷

∪ {𝑑} and
|𝜇𝑑,0 | = |𝜇𝑑−1 |. We now show that for each 𝑛 ∈ {1, . . . , 𝑛∗ − 2}, if 𝜇𝑑,𝑛−1

𝐷
⊊ 𝜇𝑑−1

𝐷
∪ {𝑑} and

|𝜇𝑑,𝑛−1 | = |𝜇𝑑−1 |, then 𝜇
𝑑,𝑛

𝐷
⊆ 𝜇𝑑−1

𝐷
∪ {𝑑} and |𝜇𝑑,𝑛 | − |𝜇𝑑−1 | = 0.

Suppose that 𝜇𝑑,𝑛−1 ⊆ 𝜇𝑑−1
𝐷

∪ {𝑑} and |𝜇𝑑,𝑛−1 | = |𝜇𝑑−1 |. Note that for any 𝑑 ′ ∈ {1, . . . , 𝑑 −
1} \ 𝜇𝑑−1

𝐷
, 𝑋𝑑−1

𝑑′ = 𝐻. Thus, 𝑋𝑑,𝑛 = 𝑋𝑑,𝑛−1 ∪ {(𝑑 ′′, ℎ)} satisfies that 𝑑 ′′ ∈ 𝜇𝑑−1
𝐷

∪ {𝑑}. By
Proposition 4 (i),

𝜇
𝑑,𝑛

𝐷
= (𝐶ℎ(𝑋𝑑,𝑛))𝐷 ⊆ (𝐶ℎ(𝑋𝑑,𝑛−1) ∪ {(𝑑 ′′, ℎ)})𝐷 = 𝜇

𝑑,𝑛−1
𝐷

∪ (𝜇𝑑−1
𝐷 ∪ {𝑑}) = 𝜇𝑑−1

𝐷 ∪ {𝑑},

By Proposition 4 (ii),

|𝜇𝑑,𝑛 | − |𝜇𝑑−1 | = |𝜇𝑑,𝑛 | − |𝜇𝑑,𝑛−1 | = |𝐶ℎ(𝑋𝑑,𝑛) | − |𝐶ℎ(𝑋𝑑,𝑛−1) | ∈ {0, 1}

If |𝜇𝑑,𝑛 | − |𝜇𝑑−1 | = 1, since 𝜇𝑑,𝑛 ⊆ 𝜇𝑑−1 ∪ {𝑑}, then 𝜇
𝑑,𝑛

𝐷
= 𝜇𝑑−1

𝐷
∪ {𝑑}. Since 𝑋𝑛−1

𝑑′ = 𝐻 for
any 𝑑 ′ ∈ {1, . . . , 𝑑 − 1} \ 𝜇𝑑−1

𝐷
, there is no 𝑑 ′ ∈ {1, . . . , 𝑛} \ 𝜇𝑑

𝐷
such that 𝑋𝑑,𝑛

𝑑′ ≠ 𝐻. Thus,
𝑛 = 𝑛∗ − 1, which is a contradiction.

16When (i) or (ii) holds and ℎ ∈ 𝑟 ⊆ 𝑟1 ∈ 𝑅− (𝜇), we have 𝑟 = 𝑟1 and by this remark, 𝜅′𝑟1 = 𝜅𝑟1 .
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By induction with respect to 𝑛, we have (a) 𝜇𝑑,𝑛 ⊆ 𝜇𝑑−1
𝐷

∪ {𝑑} and (b) |𝜇𝑑,𝑛 | − |𝜇𝑑−1 | = 0 for
every 𝑛 ∈ {1, . . . , 𝑛∗ − 2}. (a) implies that 𝜇𝑑

𝐷
= 𝜇

𝑑,𝑛∗−2
𝐷

⊆ 𝜇𝑑−1
𝐷

∪ {𝑑}, which is the conclusion
(i).

Next, (b) implies |𝐶ℎ(𝑋𝑑,𝑛) |− |𝐶ℎ(𝑋𝑑,𝑛−1) | = |𝜇𝑑,𝑛 | − |𝜇𝑑,𝑛−1 | = 0 for every 𝑛 ∈ {1, . . . , 𝑛∗−
2}. By Proposition 4 (ii), 𝜅

𝑑,𝑛

𝐻
− 𝜅

𝑑,𝑛−1
𝐻

= 𝐶ℎ(𝑋𝑑,𝑛) − 𝐶ℎ(𝑋𝑑,𝑛−1) = 0. Thus, we have
𝜅
𝑑,𝑛∗−2
𝐻

− 𝜅𝑑−1
𝐻

= 0 and |𝜇𝑑,𝑛∗−2 | − |𝜇𝑑−1 | = 0.Thus,

(𝜅𝑑 − 𝜅𝑑−1, |𝜇𝑑 | − |𝜇𝑑−1 |) = (𝜅𝑑,𝑛∗−1 − 𝜅𝑑,𝑛
∗−2, |𝜇𝑑,𝑛∗−1 | − |𝜇𝑑,𝑛∗−2 |)

= (𝐶ℎ(𝑋𝑑,𝑛∗−1) − 𝐶ℎ(𝑋𝑑,𝑛∗−2), |𝐶ℎ(𝑋𝑑,𝑛∗−1) | − |𝐶ℎ(𝑋𝑑,𝑛∗−2) |)

which is (0, 0), (0, 1), or (1, 1) by Proposition 4. □

6.3 Proof of Lemma 1

Proof. Since 𝜅𝐻 − |𝜇 | > 0, there exists 𝑟 ∈ 𝑅 such that 𝛿𝑟 > 0. Note that 𝜅𝑟 = 𝜅
𝑟
. Suppose

that 𝐻−(𝜇) is empty. Then, for any ℎ ∈ 𝑟 , there exists 𝑟ℎ ∈ 𝑅∋ℎ such that 𝑟ℎ ⊆ 𝑟 and 𝜅𝑟ℎ = 𝜅𝑟ℎ .
Since 𝑅 is hierarchical, there exists 𝑃 ⊆ {𝑟ℎ}𝐻 that is a parition of 𝑟 . Since 𝛿𝑟 > 0,

𝜅
𝑟
−

∑︁
𝑟′∈𝑃

𝜅𝑟′ = 𝜅𝑟 −
∑︁
𝑟′∈𝑃

𝜅𝑟′ =
∑︁

𝑟′′∈𝑅 s.t. ∃𝑟′∈𝑃,𝑟′⊊𝑟′′⊆𝑟
𝛿𝑟′′ > 0.

Since 𝜅∗𝑟 ≤ ∑
𝑃 𝜅𝑟′ (by (2)) and 𝜅∗

𝑟
≥ 𝜅

𝑟
, we have 𝜅∗

𝑟
> 𝜅∗𝑟 , which contradicts Assumption 1. □

6.4 Proof of Lemma 2

Proof. By Remark 7, if 𝜅𝑟 ≠ 𝜅′𝑟 for some 𝑟 ∈ 𝑅, then it follows that 𝑟 ∈ 𝑅−(𝜇), 𝛿𝑟 (𝜇) = 0, and
𝜅′𝑟 − 𝜅𝑟 = 1. □

6.5 Proof of Theorem 2

First we introduce several preliminary results and concepts.
By definition, including those in the intermediate steps, every matching generated by the

GFDA or the GFDA+SD algorithm is individual rational: that is, doctor does not match hospitals
worse than being unemployed.

Remark 8 (Individual rationality). Any matching 𝜇𝑑 generated at some step in the GFDA or the
GFDA+SD algorithm satisfies 𝜇𝑑

𝑑′ ⪰𝑑′ ∅ for any 𝑑 ′ ∈ 𝐷.

Next, we can say that for any step in the GFDA algorithm or GFDA phase of the GFDA+SD
algorithm, the already existing doctors’ welfares will not be improved.

Remark 9. Consider any Steps 𝑑, 𝑑 ′ in the GFDA algorithm or 𝑑, 𝑑 ′ ≤ 𝑑∗ in the GFDA phase
of the GFDA+SD algorithm. Suppose that 𝑑 < 𝑑 ′. Then, for any 𝑑 ′′ ∈ 𝐷𝑑 , 𝜇𝑑

𝑑′′ ⪰𝑑′′ 𝜇𝑑′

𝑑′′.

Proof. By definition of algorithms, for any 𝑑 ′′ ∈ 𝐷𝑑 , if ℎ ≻𝑑′′ 𝜇𝑑
𝑑′′ for some ℎ ∈ 𝐻, then

(𝑑 ′′, ℎ) ∈ 𝑋𝑑 \ 𝜇𝑑 . By Proposition 4 (i), 𝜇𝑑′ ⊆ 𝜇𝑑 ∪ [𝑋𝑑′ \ 𝑋𝑑]. Thus, (𝑑 ′′, ℎ) ∉ 𝜇𝑑′. □
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For any permutation 𝜋 on 𝐷, we can consider the GFDA algorithm where the order of doctors
is changed from (1, 2, . . . , |𝐷 |) to (𝜋(1), 𝜋(2), . . . , 𝜋( |𝐷 |)).

The reordered GFDA algorithm with order (𝜋(1), 𝜋(2), . . . , 𝜋( |𝐷 |)) Let 𝑋0 = 𝜇0 = 𝐷0 = ∅
and move to Step 1 of GFDA phase.

Step 𝑑 Let 𝐷𝑑 = 𝐷𝑑−1 ∪ {𝜋(𝑑)}, 𝑋𝑑,0 = 𝑋𝑑−1, and 𝜇𝑑,0 = 𝜇𝑑−1. Move to Sub-step (𝑑.1)
Sub-step (𝑑, 𝑛) Choose any 𝑑 ′ ∈ 𝐷𝑑 \ 𝜇

𝑑,𝑛−1
𝐷

such that 𝑋𝑑,𝑛−1 ≠ Ac⪰𝑑
, and let 𝑋𝑑,𝑛 =

𝑋𝑑,𝑛−1 ∪ {(𝑑 ′, ℎ)} where ℎ satisfies that ℎ ∉ 𝑋
𝑑,𝑛−1
𝑑′ and ℎ ⪰𝑑 ℎ′ for every ℎ′ ∉

𝑋
𝑑,𝑛−1
𝑑′ . Let 𝜇𝑑,𝑛 = 𝐶ℎ(𝑋𝑑,𝑛) and move to Sub-step (𝑑, 𝑛 + 1).

If there is no such 𝑑 ′, then let 𝑋𝑑 = 𝑋𝑑,𝑛−1 and 𝜇𝑑 = 𝜇𝑑,𝑛−1 and terminates this step:
if 𝑑 < |𝐷 |, then move to Step 𝑑 + 1; if 𝑑 = |𝐷 |, then let 𝜇 = 𝜇𝑑 and terminates the
algorithm.

For any Step 𝑑, we can regard 𝜇𝑑 as the COP matching when the set of doctors is {𝜋(1), 𝜋(2), . . . , 𝜋(𝑑)}.
Hirata and Kasuya (2017) show that when 𝐶ℎ satisfies substitutability and the law of aggregate
demand, any change in the offer sequence does not affect the matching generated by COP. In
addition, Hatfield and Milgrom (2005) show that when 𝐶ℎ satisfies these properties, the COP is
strategy-proof.

Note that 𝐶ℎ satisfies these properties (Proposition 4). For any 𝐷 ′ ⊆ 𝐷, let GFDA𝐷′ (⪰)
be the matching generated at Step |𝐷 ′ | in any reordered GFDA algorithm with order such that
∪ |𝐷′ |
𝑑=1 𝜋(𝑑) = 𝐷 ′ when ⪰ is the doctors’ reporting preference profile. Then, GFDA𝐷′ is strategy-

proof for doctors in 𝐷 ′. Since GFDA𝐷′ (⪰) = ∅ for any 𝑑 ∉ 𝐷 ′, it is also strategy-proof for other
doctors.

Remark 10 (Strategy-proofness of GFDA). For any 𝐷 ′ ⊆ 𝐷, GFDA𝐷′ is strategy-proof.

Let 𝐷𝑑 = {1, 2, . . . , 𝑑} for 𝑑 ∈ 𝐷. Thus, for any Step 𝑑 in the GFDA algorithm or 𝑑 ≤ 𝑑∗ in the
GFDA phase of the GFDA+SD algorithm, the generated matching is described as GFDA𝐷𝑑 (⪰)
when ⪰ is reported.

Now, we will show that the GFDA+SD algorithm is strategy-proof.

Proof. Let 𝜇 be the matching generated by the GFDA+SD algorithm when the true preference
profile ⪰ is reported. Consider any 𝑑 ∈ 𝐷 and ⪰′

𝑑
. Let 𝜇′ and 𝑑 ′∗ be respectively the matching

and the final step in GFDA phase when (⪰′
𝑑
, ⪰−𝑑) is reported. We will show this result by

contradiction. Suppose that 𝜇′
𝑑
≻𝑑 𝜇𝑑 . Thus, 𝜇′

𝑑
≠ ∅. Since in the GFDA+SD algorithm, what

𝑑 matches is independent of the orders of hospitals lower than 𝜇′
𝑑
, without loss of generality, let

∅ ≻′
𝑑
ℎ iff 𝜇′

𝑑
≻′
𝑑
ℎ for any ℎ ∈ 𝐻.

Claim 1. 𝑑 ≤ min{𝑑 ′∗, 𝑑∗}.

Suppose that 𝑑 > min{𝑑 ′∗, 𝑑∗}. Since the preference profiles of {1, . . . , 𝑑 − 1} are equal
between ⪰ and (⪰∗

𝑑
, ⪰−𝑑), each Step 𝑑 ′ ≤ 𝑑 − 1 is equal between the two cases. Since 𝑑 >

min{𝑑 ′∗, 𝑑∗}, Step 𝑑 is in the SD phase for either case and, when 𝜇𝑑−1 and 𝜇′𝑑−1 are the matchings
generated in Step 𝑑 − 1 under ⪰ and (⪰∗

𝑑
, ⪰−𝑑) respectively, we have 𝐻−(𝜇𝑑−1) = 𝐻−(𝜇∗𝑑−1).
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Thus, 𝜇′
𝑑
∈ 𝐻−(𝜇′𝑑−1) ∪ {∅} = 𝐻−(𝜇𝑑−1) ∪ {∅} Thus, 𝜇𝑑 ⪰𝑑 𝜇′

𝑑
, which is a contradiction.

Thus, 𝑑 ≤ min{𝑑 ′∗, 𝑑∗}.
Note that the above claim implies that 𝜇′

𝑑
= 𝜇′𝑑′∗

𝑑
and 𝜇𝑑 = 𝜇𝑑∗

𝑑
.

Let 𝑑+ ≤ 𝑑∗ be the smallest step such that 𝜇𝑑+

𝑑
= 𝜇𝑑∗

𝑑
(= 𝜇𝑑).

Claim 2. 𝑑 ′∗ < 𝑑+.

Suppose that 𝑑 ′∗ ≥ 𝑑+. By strategy-proofness of GFDA and Remark 9, 𝜇′
𝑑

= 𝜇′𝑑′∗

𝑑
=

GFDA𝐷𝑑′∗

𝑑
(⪰′

𝑑
, ⪰−𝑑) ⪯𝑑 GFDA𝐷𝑑′∗

𝑑
(⪰) ⪯𝑑 GFDA𝐷𝑑+

𝑑
(⪰) = 𝜇𝑑 , which is a contradiction.

Thus, 𝑑 ′∗ < 𝑑+.
By definition, 𝜇𝑑+−1 ≠ 𝜇𝑑+ . By Remark 9, 𝜇𝑑+−1

𝑑
≻𝑑 𝜇𝑑+

𝑑
. By individual rationality of GFDA,

𝜇𝑑+−1
𝑑

≠ ∅.
Let ≻+ be such that (i) for each ℎ, ℎ′ ∈ 𝐻, ℎ ⪰+

𝑑
ℎ′ iff ℎ ⪰𝑑 ℎ′, and (ii) for each ℎ ∈ 𝐻,

∅ ⪰𝑑𝑝

𝑑
ℎ iff 𝜇𝑑+−1

𝑑
⪰𝑑 ℎ. Let 𝜇+ = GFDA𝐷𝑑+ (⪰+

𝑑
, ⪰−𝑑).

In addition, let 𝜇′+ = GFDA𝐷𝑑+ (⪰′
𝑑
, ⪰−𝑑).

Claim 3. 𝜇+
𝑑
= ∅ and 𝜅+

𝐻
− |𝜇+ | ≤ |𝐷 | − 𝑑+.

By strategy-proofness of GFDA, 𝜇+
𝑑
= GFDA𝐷𝑑+

𝑑
(⪰+

𝑑
, ⪰−𝑑) ⪯𝑑 GFDA𝐷𝑑+ (⪰) = 𝜇𝑑+

𝑑
= 𝜇𝑑∗

𝑑
=

𝜇+
𝑑
≺𝑑 𝜇𝑑+−1

𝑑
. By individual rationality of GFDA, 𝜇+𝑑

𝑑
= ∅.

Consider the GFDA+SD algorithm when (⪰+
𝑑
, ⪰−𝑑) is reported. Since ⪰+

𝑑
’s preferences on

hospitals at least as good as 𝜇𝑑+−1
𝑑

are the same as those of ⪰𝑑 , each step 𝑑 ′ ≤ 𝑑+ − 1 is equal
between ⪰ and (⪰+

𝑑
, ⪰−𝑑). Thus, when 𝜇+−1 is the matching generated at Step 𝑑+−1 in the case of

(⪰+
𝑑
, ⪰−𝑑), we have 𝜇+−1 = 𝜇𝑑+−1. Thus, 𝜇+−1

𝑑
= 𝜇𝑑+−1

𝑑
≠ ∅. In addition, since 𝑑+−1 < 𝑑+ ≤ 𝑑∗,

then 𝜅+−1
𝐻

− |𝜇+−1 | < |𝐷 | − (𝑑+ − 1). By Proposition 5 (ii), 𝜅+
𝐻
− |𝜇+ | ≤ |𝐷 | − 𝑑+.

Claim 4. 𝜇′+
𝑑
= ∅ and 𝜅′+

𝐻
− |𝜇′+ | > |𝐷 | − 𝑑+.

By strategy-proofness of GFDA, 𝜇′+
𝑑

= GFDA𝐷𝑑+ (⪰′
𝑑
, ⪰−𝑑) ⪯𝑑 GFDA𝐷𝑑+ (⪰) = 𝜇+

𝑑
= 𝜇∗

𝑑
=

𝜇𝑑 ≺𝑑 𝜇′
𝑑
. By definition of 𝜇′

𝑑
and individual rationality of GFDA, 𝜇′+

𝑑
= ∅.

Note that 𝜇′𝑑′∗

𝑑
= 𝜇′

𝑑
≠ ∅. Thus, 𝑑 ∈ 𝜇′𝑑′∗

𝐷
\ 𝜇′+

𝐷
.

Further, note that 𝜇′𝑑′∗ and 𝜇′+ are respectively the matchings generated at Steps 𝑑 ′∗ and 𝑑+ in
the GFDA algorithm. By Proposition 5 (ii), 𝜅′+ ≥ 𝜅′𝑑

′∗ . In addition, by Claim 2 and Proposition
5 (i), 𝜇′+

𝐷
⊆ 𝜇′𝑑′∗

𝐷
∪ {𝑑 ′∗, . . . , 𝑑+}.Since 𝑑 ∈ 𝜇′𝑑′∗

𝐷
\ 𝜇′+

𝐷
, then |𝜇′+ | ≤ |𝜇′𝑑′∗ | + (𝑑+ − 𝑑 ′∗) − 1.

By definition of 𝑑 ′∗, 𝜅′𝑑′∗
𝐻

− |𝜇′𝑑′∗ | ≥ |𝐷 | − 𝑑 ′∗. Thus,

𝜅′+𝐻 − |𝜇′+ | ≥ 𝜅′𝑑
′∗

𝐻 − (|𝜇′𝑑′∗ | + (𝑑+ − 𝑑 ′∗) − 1)
> 𝜅′𝑑

′∗
𝐻 − |𝜇′𝑑′∗ | − (𝑑+ − 𝑑 ′∗) ≥ |𝐷 | − 𝑑 ′∗ − (𝑑+ − 𝑑 ′∗) = |𝐷 | − 𝑑+.

Claim 5. 𝜅+
𝐻
− |𝜇+ | = 𝜅′+

𝐻
− |𝜇′+|, which contradicts Claims 3 and 4.

By Claims 1 and 2, 𝑑 ∈ 𝐷𝑑+ . Note that𝐺𝐹𝐷𝐴𝐷𝑑+\{𝑑 } (⪰′
𝑑
, ⪰−𝑑) = 𝐺𝐹𝐷𝐴𝐷𝑑+\{𝑑 } (⪰+

𝑑
, ⪰−𝑑).

Let this matching be 𝜇−.
Since 𝜇+ = 𝐺𝐹𝐷𝐴𝐷𝑑+\{𝑑 } (⪰+

𝑑
, ⪰−𝑑), we can regard 𝜇− and 𝜇+ respectively as the matchings

generated at Step 𝑑+−1 and 𝑑+ in the reordered GFDA algorithm with the order replacing 𝑑 with
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𝑑+, when (⪰+
𝑑
, ⪰−𝑑) is reported. By Claim 3, the 𝑑+-th doctor 𝑑 does not match any hospital.

By Proposition 5 (i), 𝜇−
𝐷
= 𝜇+

𝐷
. By Proposition 5 (ii), 𝜅+

𝐻
− |𝜇+ | = 𝜅−

𝐻
− |𝜇− |.

In the same manner, since 𝜇′+ = 𝐺𝐹𝐷𝐴𝐷𝑑\{𝑑 } (⪰′
𝑑
, ⪰−𝑑), we can regard we can regard 𝜇−

and 𝜇′+ respectively as those when (⪰′
𝑑
, ⪰−𝑑) is reported. Thus, by Claim 4, in the same manner,

we have 𝜅′+
𝐻
− |𝜇′+ | = 𝜅−

𝐻
− |𝜇− |. Thus, 𝜅′+

𝐻
− |𝜇′+ | = 𝜅+

𝐻
− |𝜇+ |. □

6.6 Feasibility and stability of algorithms

In this section, we will give the proofs of Proposition 6, Theorem 1, and Proposition 9.
Throughout this section, we assume that the doctors’ preferences are acceptable: i.e., Ac≻𝑑

=

𝐻 for any 𝑑 ∈ 𝐷.

6.6.1 Proof of Proposition 6

Proof. Since 𝜇0 = ∅, by Assumption 1, 𝜅0 − |𝜇0 | = 𝜅∗ ≤ |𝐷 | = |𝐷 | − 0. By Proposition
5, there exists 𝑑∗ in the algorithm and it satisfies 𝜅𝑑

∗
𝐻

− |𝜇𝑑∗ | = |𝐷 | − 𝑑∗. In addition, Since
𝜇𝑑∗

= 𝐶ℎ(𝑋𝑑∗), by Remark 5, 𝜅𝑑∗ ≤ 𝜅.
We consider induction. Suppose that some 𝑑 ∈ {𝑑∗, . . . , |𝐷 |} satisfies that 𝜅𝑑

𝐻
− |𝜇𝑑 | = |𝐷 | −𝑑

and 𝜅𝑑 ≤ 𝜅. If 𝑑 = |𝐷 |, then 𝜅
|𝐷 |
𝐻

− |𝜇 |𝑑 | | = 0. By Remark 3, 𝜇 = 𝜇 |𝐷 | is feasible.
If 𝑑 < |𝐷 |, then 𝜅𝑑

𝐻
− |𝜇𝑑 | = |𝐷 | − 𝑑 > 0. By Lemma 1, 𝐻−(𝜇𝑑) ≠ ∅. Thus, by

acceptability and definition of steps in the SD phase, 𝜇𝑑+1 = 𝜇𝑑 ∪ {(𝑑 + 1, ℎ)} for some
ℎ ∈ Ac≻𝑑

= 𝐻−(𝜇𝑑). Thus, |𝜇𝑑+1 | = |𝜇𝑑 | + 1. In addition, by Lemma 2, 𝜅𝑑+1
𝐻

= 𝜅𝑑
𝐻

. Thus,
𝜅𝑑+1
𝐻

− |𝜇𝑑+1 | = 𝜅𝑑
𝐻
− |𝜇𝑑 | − 1 = |𝐷 | − (𝑑 + 1).

By inductive assumption, 𝜅𝑑𝑟 = 𝜅𝑟 or 𝜅𝑑𝑟 ≤ 𝜅𝑟 − 1 for any 𝑟 ∈ 𝑅. Note that if 𝜅𝑑𝑟 = 𝜅𝑟 , then
𝑟 ∉ 𝑅−(𝜇𝑑). Thus, by Lemma 2, 𝜅𝑑+1 ≤ 𝜅𝑟 . By induction on 𝑑, we obtain the conclusion. □

6.6.2 Proof of Theorem 1

Let 𝜇 be the FDA+SD matching. Since the FDA matchin is individually rational and ℎ ∈ Ac⪰𝑑

for (𝑑, ℎ) in each step of the SD phase, 𝜇 is individually rational. In addition, by Proposition 6,
𝜇 is feasible.

Let 𝐴𝐷 ∪ 𝐴𝐻 block 𝜇 with 𝜇′. In this section, we will show that 𝐵 and 𝜇′ satisfy (i) and (ii)
in the definition of interval respecting stability. Since we choose any 𝜇′, this implies that 𝜇 is
interval respecting stable.

Note that for each 𝑑 ∈ {𝑑∗, . . . , |𝐷 |}, 𝜇𝑑 = 𝜇∩[𝐷𝑑×𝐻] since for each stage 𝑑 > 𝑑∗, we just add
one contract to the matching in the previous stage. In the same manner, let 𝜇′𝑚 = 𝜇′∩[𝐷𝑑×𝐻] for
each 𝑑 ∈ {𝑑∗, . . . , |𝐷 |}. In the proof, we will consider these two sequences (𝜇𝑑∗

, . . . , 𝜇 |𝐷 |−1, 𝜇)
and (𝜇′𝑑∗

, . . . , 𝜇
′ |𝐷 |−1, 𝜇′) of matchings.

Note that for every 𝑟 ∈ 𝑅, 𝜅𝑑𝑟 ≥ 𝜅𝑑
′

𝑟 if 𝑑 ≥ 𝑑 ′ ≥ 𝑑∗ because of 𝜇𝑑 ⊇ 𝜇𝑑′ and definition of 𝜅.
In the same manner, for every 𝑟 ∈ 𝑅, 𝜅′𝑑𝑟 ≥ 𝜅

′𝑑
𝑟 if 𝑑 ≥ 𝑑 ′ ≥ 𝑑∗.

Since 𝜇′ is feasible, 𝜅′
𝐻
− ∑

𝐻 𝜇′
ℎ
= 0. Since for every 𝑑 ∈ {𝑑∗, . . . , |𝐷 |}, 𝜅′

𝐻
≥ 𝜅

′𝑑
𝐻

and∑
𝐻 𝜇′

ℎ
≤ ∑

𝐻 𝜇
′𝑑
ℎ
+ 𝐷 − 𝑑, we obtain the following remark.

Remark 11. For every 𝑑∗, . . . , |𝐷 |, 𝜅′𝑑
𝐻
−∑𝐻 𝜅′𝑑

ℎ
=
∑

𝑟 ∈𝑅
(
𝜅′𝑑𝑟 −∑

𝑠 (𝑟) 𝜅
′𝑑
𝑟′
)
≤ |𝐷 |−𝑑. Especially,

𝜇′
𝑑′ ≠ ∅ for any 𝑑 ′ > 𝑑 when the equality holds.
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Define 𝑅̄−𝑑∗ ⊆ 𝑅 as 𝑟 ∈ 𝑅̄−𝑑∗ iff 𝑟 ∈ 𝑅−(𝜇𝑑∗) or there exists 𝑟 ′ ∈ 𝑅−(𝜇𝑑∗) such that 𝑟 ∈ 𝑠(𝑟 ′).
In the proof, in particular, the four matchings 𝜅𝑑∗ , 𝜅′𝑑∗ , 𝜅 and 𝜅′ play an important role. The

proof has two complements. Lemma 5 shows that for 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑟 and 𝜅′𝑟 are equal and that
doctors after 𝑑∗ + 1 are not in 𝐵. This is obtained from two claims. The first claim is the equality
of 𝜅𝑑∗ and 𝜅

′𝑑∗ . Based on this claim, the second claim inductively shows that the equality of 𝜅𝑑
and𝜅′𝑑 for every 𝑑 ≥ 𝑑∗ and that doctors after 𝑑∗ + 1 are not in 𝐵.

Note that interval respecting stability focuses on 𝑟 ∈ 𝑅 such that 𝜅𝑟 = 𝜅′𝑟 and (𝜅𝑟′)𝑠 (𝑟) ≠

(𝜅′
𝑟′)𝑠 (𝑟) . From Lemma 5, in the region on 𝑅−(𝜇𝑑∗), (𝜅𝑟′)𝑠 (𝑟) = (𝜅′

𝑟′)𝑠 (𝑟) . On the other hand,
direct subregion allocations can be different in regions other than 𝑅−(𝜇𝑑∗). In Lemma 6, in
regions other than 𝑅−(𝜇𝑑∗), from the fact that doctors after 𝑑∗ + 1 are not in 𝐵, we can show that
((𝑣𝑟′)𝑠 (𝑟) ≥ (𝜅′

𝑟′)𝑠 (𝑟) ), i.e. the final allocations under the blocking were already in the scope of
the adjusted contract quantity in stage 𝑑∗ of the FDA-SD.

Finally, we show that, for the above regions, if 𝜅𝑟 = 𝜅′𝑟 , then (𝜅𝑟′)𝑠 (𝑟) ) is at least as good as
(𝜅′

𝑟′)𝑠 (𝑟) ), and every ℎ ∈ 𝐴𝐻 is included in the region where the upper bound is reached. This
implies that 𝜇′ satisfies the conditions in the definition of interval respecting stability.

Lemma 5. For every 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑟 = 𝜅′𝑟 . Especially, 𝜇ℎ = 𝜇′
ℎ

for every ℎ ∈ 𝐻−(𝜇𝑑∗).

Proof.

Claim 1. For every 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑑∗
𝑟 ≥ 𝜅′𝑑

∗
𝑟 . Especially, 𝜇′

ℎ
⊆ 𝜇ℎ for every ℎ ∈ 𝐻−(𝜇𝑑∗).

We will show this claim by induction. Consider any ℎ ∈ 𝐻−(𝜇𝑑∗). if 𝑑 ∈ 𝜇′
ℎ
\ 𝜇ℎ for some

𝑑 ≤ 𝑑∗, by definition of blocking, 𝑑 ∈ 𝐵 and ℎ ≻𝑑 𝜇𝑑 . By definition of GFDA, 𝑑 ∈ 𝑋𝑑∗

ℎ
. Since

Lemma 4 implies 𝑋𝑑∗

ℎ
= 𝜇ℎ, we have 𝑑 ∈ 𝜇ℎ, which is a contradiction. Thus, 𝜇′

ℎ
⊆ 𝜇ℎ, or

|𝜇′
ℎ
| ≤ |𝜇ℎ |.

Suppose that for some 𝑛, for every region 𝑟 ′ ∈ 𝑅̄−𝑑∗ with |𝑟 | ≤ 𝑛, 𝜅𝑑∗
𝑟′ ≥ 𝜅′𝑑

∗
𝑟′ . Choose any

𝑟 ∈ 𝑅̄−𝑑∗ with |𝑟 | = 𝑛+1. If 𝜅𝑑∗
𝑟 = 𝜅𝑟 , since 𝜇′ is feasible, we have 𝜅𝑑∗

𝑟 = 𝜅𝑟 ≥ 𝜅′𝑟 ≥ 𝜅′𝑑
∗

𝑟 . Suppose
that 𝜅𝑑∗

𝑟 < 𝜅𝑟 . Since 𝑟 ∈ 𝑅−(𝜇𝑑∗), 𝑠(𝑟) ⊆ 𝑅̄−𝑑∗ . Since |𝑟 ′ | ≤ 𝑛 for 𝑟 ′ ∈ 𝑠(𝑟), by assumption,∑
𝑠 (𝑟) 𝜅

𝑑∗
𝑟′ ≥ ∑

𝑠 (𝑟) 𝜅
′𝑑∗
𝑟′ . Thus, 𝜅𝑑∗

𝑟 = max{𝜅
𝑟
,
∑

𝑠 (𝑟) 𝜅
𝑑∗
𝑟′ } ≥ max{𝜅

𝑟
,
∑

𝑠 (𝑟) 𝜅
′𝑑∗
𝑟′ } = 𝜅′𝑑

∗
𝑟 .

Claim 2. For every 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑑∗
𝑟 = 𝜅′𝑑

∗
𝑟 . Especially, 𝜇𝑑∗

ℎ
= 𝜇′𝑑∗

ℎ
for every ℎ ∈ 𝐻−(𝜇𝑑∗).

By Remark 11, ∑︁
𝑟 ∈𝑅− (𝜇𝑑∗ )

𝛿′𝑑
∗

𝑟 ≤
∑︁
𝑟 ∈𝑅

𝛿′𝑑
∗

𝑟 = 𝜅′𝑑
∗

𝐻 −
∑︁
𝐻

𝜅′𝑑
∗

{ℎ} ≤ |𝐷 | − 𝑑∗.

Note that for any 𝑟 ∈ 𝑅, if 𝛿𝑑∗
𝑟 > 0, then 𝑟 ∈ 𝑅−(𝜇𝑑∗). Thus,

|𝐷 | − 𝑑∗ = 𝜅𝑑
∗

𝐻 −
∑︁
𝐻

𝜅𝑑
∗

{ℎ} =
∑︁
𝑟 ∈𝑅

𝛿𝑑
∗

𝑟 =
∑︁

𝑟 ∈𝑅− (𝜇𝑑∗ )

𝛿𝑑
∗

𝑟 .

By Claim 1 and definitions of 𝜅𝑑∗
𝑟 and 𝜅′𝑑

∗
𝑟 ,

∀𝑟 ∈ 𝑅−(𝜇𝑑∗), 𝛿𝑑
∗

𝑟 = max{𝜅
𝑟
,
∑︁
𝑠 (𝑟)

𝜅𝑑
∗

𝑟′ } −
∑︁
𝑠 (𝑟)

𝜅𝑑
∗

𝑟′ ≤ max{𝜅
𝑟
,
∑︁
𝑠 (𝑟)

𝜅′𝑑
∗

𝑟′ } −
∑︁
𝑠 (𝑟)

𝜅′𝑑
∗

𝑟′ = 𝛿′𝑑
∗

𝑟 ,
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or, {𝛿𝑑∗
𝑟 }𝑅− (𝜇𝑑∗ ) ≤ {𝛿′𝑑∗

𝑟 }𝑅− (𝜇𝑑∗ ) . Thus, 𝛿𝑑∗
𝑟 = 𝛿′𝑑

∗
𝑟 for every 𝑟 ∈ 𝑅−(𝜇𝑑∗).

Now, we will show that 𝜅𝑑∗
𝑟 = 𝜅′𝑑

∗
𝑟 for every 𝑟 ∈ 𝑅̄−𝑑∗ . Suppose that 𝜅𝑑∗

𝑟0 ≠ 𝜅′𝑑
∗

𝑟0 for some
𝑟0 ∈ 𝑅̄−𝑑∗ . By Claim 1, 𝜅𝑑∗

𝑟0 > 𝜅′𝑑
∗

𝑟0 . Let (𝑟𝑛)𝑛
∗

𝑛=1 be such that 𝑟𝑛−1 ∈ 𝑠(𝑟𝑛) for each 𝑛 = 1, . . . , 𝑛∗

and 𝑟𝑛∗ = 𝐻. Suppose by induction that 𝑟𝑛−1 ∈ 𝑅̄−𝑑∗ and 𝜅𝑑
∗

𝑟𝑛−1 > 𝜅′𝑑
∗

𝑟𝑛−1 . (Note that this holds when
𝑛 = 1.) Thus, 𝛿𝑟𝑛−1 = 0. Thus, 𝑟𝑛 ∈ 𝑅−(𝜇𝑑∗) ⊆ 𝑅̄−𝑑∗ . Thus, 𝛿𝑑∗

𝑟𝑛
= 𝛿′𝑑

∗
𝑟𝑛

. Since 𝑟𝑛 ∈ 𝑅−(𝜇𝑑∗),
then 𝑠(𝑟𝑛) ⊆ 𝑅̄−𝑑∗ . By Claim 1 and the inductive assumption of 𝑟 ,

∑
𝑠 (𝑟′) 𝜅

𝑑∗
𝑟′′ >

∑
𝑠 (𝑟′) 𝜅

′𝑑∗
𝑟′′ . By

combining with 𝛿𝑑
∗

𝑟𝑛
= 𝛿′𝑑

∗
𝑟𝑛

, we have 𝜅𝑑
∗

𝑟𝑛
> 𝜅′𝑑

∗
𝑟𝑛

. By repeating the above argument, we obtain
𝐻 ∈ 𝑅̄−𝑑∗ and 𝜅𝑑

∗
𝐻

≥ 𝜅
𝐻

, which contradicts the definition of 𝑅̄−𝑑∗ . Thus, for every 𝜅𝑑
∗

𝑟 = 𝜅′𝑑
∗

𝑟 for
𝑟 ∈ 𝑅̄−𝑑∗ .

Especially, 𝜅𝑑∗

{ℎ} = 𝜅′𝑑
∗

{ℎ} for every ℎ ∈ 𝐻−(𝜇𝑑∗). By Claim 1, 𝜇𝑑∗

ℎ
= 𝜇′𝑑∗

ℎ
.

Claim 3. For every 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑟 = 𝜅′𝑟 . Especially, 𝜇ℎ = 𝜇′
ℎ

for every ℎ ∈ 𝐻−(𝜇𝑑∗).

We will show this claim by induction. Suppose by induction that there exists 𝑑 ≥ 𝑑∗ such that
for every 𝑟 ∈ 𝑅̄−𝑑∗ , 𝜅𝑑𝑟 = 𝜅′𝑑𝑟 and especially, 𝜇𝑑

ℎ
= 𝜇′𝑑

ℎ
for every ℎ ∈ 𝐻−(𝜇𝑑∗). Since 𝑑 ≥ 𝑑∗,

𝑅−(𝜇𝑑) ⊆ 𝑅−(𝜇𝑑∗). Thus, for every 𝑟 ∈ 𝑅−(𝜇𝑑), 𝑠(𝑟) ⊆ 𝑅̄−𝑑∗ . By inductive assumption,∑
𝑅− (𝜇𝑑) 𝛿

′𝑑
𝑟 =

∑
𝑅− (𝜇𝑑) 𝛿

𝑑
𝑟 = |𝐷 | − 𝑑. By Remark 11, 𝛿′𝑑𝑟 = 0 for every 𝑟 ∉ 𝑅−(𝜇𝑑). Thus, if

𝛿′𝑑𝑟 > 0, then 𝑟 ∈ 𝑅−(𝜇𝑑).
If 𝑑 + 1 ∉ 𝜇′

ℎ
for every ℎ ∈ 𝐻, then 𝜇′𝑑+1 = 𝜇′𝑑 . Thus, 𝜅′𝑑+1

𝐻
−∑

𝐻 𝜅′𝑑+1
{ℎ} = 𝜅′𝑑

𝐻
−∑

𝐻 𝜅′𝑑{ℎ} =
|𝐷 | − 𝑑 > |𝐷 | − (𝑑 + 1) which contradicts Remark 11. Thus, 𝑑 + 1 ∈ 𝜇′

{ℎ} for some ℎ ∈ 𝐻.
Next, if 𝛿′𝑑𝑟 = 0 for every 𝑟 ∈ 𝑅 with ℎ ∈ 𝑟 , by definition of 𝜅′𝑑𝑟 , then 𝜅′𝑑+1

𝐻
= 𝜅′𝑑

𝐻
+ 1. Since∑

𝐻 𝜅′𝑑+1
{ℎ} =

∑
𝐻 𝜅′𝑑{ℎ} + 1, we have 𝜅′𝑑+1

𝐻
−∑

𝐻 𝜅′𝑑+1
{ℎ} = 𝜅′𝑑

𝐻
−∑

𝐻 𝜅′𝑑{ℎ} = |𝐷 | − 𝑑 > |𝐷 | − (𝑑 + 1),
which contradicts Remark 11 again.

Let 𝑟 ∈ 𝑅 be the smallest region such that ℎ ∈ 𝑟 and 𝛿′𝑑𝑟 > 0. By definition, for any 𝑟 ′ ⊊ 𝑟 with
ℎ ∈ 𝑟 ′, 𝜅′𝑑+1

𝑟′ = 𝜅′𝑑
𝑟′ + 1. In addition, since 𝛿′𝑑𝑟 > 0, as shown in the first paragraph, 𝑟 ∈ 𝑅−(𝜇𝑑).

Consider 𝑟 ′ ∈ 𝑠(𝑟) with ℎ ∈ 𝑟 ′. Since 𝑟 ∈ 𝑅−(𝜇𝑑) ⊆ 𝑅−(𝜇𝑑∗), then 𝑟 ′ ∈ 𝑅̄−𝑑∗ . By
the inductive assumption, 𝜅′𝑑

𝑟′ = 𝜅𝑑
𝑟′. Thus, 𝜅′𝑑+1

𝑟′ = 𝜅′𝑑
𝑟′ + 1 = 𝜅𝑑

𝑟′ + 1. By feasibility of 𝜇′,∑
𝑠 (𝑟′) 𝜅

𝑑
𝑟′′ ≤ 𝜅𝑑

𝑟′ = 𝜅′𝑑+1
𝑟′ − 1 ≤ 𝜅′

𝑟′ − 1 < 𝜅𝑟′. Thus, 𝑟 ′ ∈ 𝑅−(𝜇𝑑). By repeating the above
argument, we obtain that for any 𝑟 ′ ⊆ 𝑟 with ℎ ∈ 𝑟 ′, 𝑟 ′ ∈ 𝑅̄−𝑑∗ (𝜇𝑑). Especially, {ℎ} ∈ 𝑅̄−𝑑∗ (𝜇𝑑)
means ℎ ∈ 𝐻−(𝜇𝑑). By definition of the SD procedure, 𝜇𝑑+1 ⪰𝑑+1 ℎ. By definition of blocking,
𝑑 + 1 ∉ 𝐵 and ℎ = 𝜇𝑑+1. Since by assumption, 𝜇𝑑

ℎ
= 𝜇′𝑑

ℎ
for every ℎ ∈ 𝐻−(𝜇𝑑∗), we have

𝜇𝑑+1
ℎ

= 𝜇′𝑑+1
ℎ

for every 𝐻−(𝜇𝑑∗).
For any 𝑟 ′ ⊆ 𝑟 with ℎ ∈ 𝑟 ′, since 𝑟 ′ ∈ 𝑅−(𝜇𝑑) , then 𝑠(𝑟 ′) ⊂ 𝑅̄−𝑑∗ . By the inductive

assumption, 𝛿𝑑
𝑟′ = 𝛿′𝑑

𝑟′ . Thus, 𝑟 is also the smallest region such that ℎ ∈ 𝑟 and 𝛿𝑑𝑟 > 0. By Remark
7 and the inductive assumption, for any 𝑟 ′ ∈ 𝑅̄−𝑑∗ , if ℎ ∈ 𝑟 ′ ⊆ 𝑟 , then 𝜅𝑑+1

𝑟′ = 𝜅𝑑
𝑟′ + 1 = 𝜅′𝑑

𝑟′ + 1 =

𝜅′𝑑+1
𝑟′ , otherwise 𝜅𝑑+1

𝑟′ = 𝜅𝑑
𝑟′ = 𝜅′𝑑

𝑟′ = 𝜅′𝑑+1
𝑟′ . By induction, we obtain the conclusion. □

Lemma 6. For each 𝑟 ∈ 𝑅, if {𝜅𝑟′}𝑠 (𝑟) ≠ {𝜅′
𝑟′}𝑠 (𝑟) , then {𝜅′

𝑟′}𝑠 (𝑟) ≤ {𝑣𝑑∗
𝑟′ }𝑠 (𝑟) .

Proof. If 𝑟 ∈ 𝑅−(𝑚𝑑∗), since 𝑠(𝑟) ∈ 𝑅̄−𝑑∗ , by Lemma 5, {𝜅𝑟′}𝑠 (𝑟) = {𝜅′
𝑟′}𝑠 (𝑟) . We will show

that for each 𝑟 ∉ 𝑅−(𝑚𝑑∗), we have {𝜅′
𝑟′}𝑠 (𝑟) ≤ {𝑣𝑑∗

𝑟′ }𝑠 (𝑟) by induction.
Consider any ℎ ∈ 𝐻 such that {ℎ} ∉ 𝑅−(𝑚𝑑∗). That is, ℎ ∉ 𝐻−(𝜇𝑑∗). By definition of 𝜇

and Lemma 5, for every 𝑑 ′ > 𝑑∗, 𝑑 ′ ∈ ∪𝐻− (𝜇𝑑∗ )𝜇ℎ = ∪𝐻− (𝜇𝑑∗ )𝜇
′
ℎ
. Thus, |𝜇′

ℎ
| = |𝜇′𝑑∗

ℎ
|. By

the definition of blocking, for any 𝑑 ≤ 𝑑∗, if 𝜇′𝑑∗

𝑑
≠ ∅, then 𝜇′𝑑∗

𝑑
= 𝜇′

𝑑
⪰𝑑 𝜇𝑑 = 𝜇𝑑∗

𝑑
and by
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definition of GFDA, (𝑑, 𝜇′𝑑∗

𝑑
) ∈ 𝑋𝑑∗ . Thus, |𝜇′𝑑∗

ℎ
| ≤ 𝑤𝑑∗

ℎ
. Thus, |𝜇′

ℎ
| ≤ 𝑤𝑑∗

ℎ
, which is the

desired conclusion when |𝑟 | = 1 and the induction basis.
Suppose by induction that for some 𝑛, for every 𝑟 ′ ∈ 𝑅 with |𝑟 ′ | ≤ 𝑛 such that 𝑟 ′ ∉ 𝑅−(𝑚𝑑∗),

we have {𝜅′
𝑟′′}𝑠 (𝑟′) ≤ {𝑣𝑑∗

𝑟′′}𝑠 (𝑟′) . Consider any 𝑟 with |𝑟 | = 𝑛 + 1 such that 𝑟 ∉ 𝑅−(𝑚𝑑∗).
Consider any 𝑟 ′ ∈ 𝑠(𝑟). If 𝑟 ′ ∉ 𝑅̄−𝑑∗ , by the inductive assumption, {𝜅′

𝑟′′}𝑠 (𝑟′) ≤ {𝑣𝑑∗
𝑟′′}𝑠 (𝑟′) . By

feasibility of 𝜇′, 𝜅′
𝑟′ = max{𝜅

𝑟′,min{∑𝑠 (𝑟′) 𝜅
′
𝑟′′, 𝜅𝑟′}} ≤ max{𝜅

𝑟′,min{∑𝑠 (𝑟′) 𝑣
𝑑∗
𝑟′′ , 𝜅𝑟′}} = 𝑣𝑑

∗
𝑟′ .

If 𝑟 ′ ∈ 𝑅̄−𝑑∗ , since 𝑟 ∉ 𝑅−(𝜇𝑑∗), then 𝛿𝑑
∗

𝑟′ > 0. Thus, 𝜅𝑑∗
𝑟′ = 𝜅

𝑟′ ≤ 𝑣𝑑
∗

𝑟′ . Note that for any 𝑑 ≥ 𝑑∗,
since 𝑅−(𝜇𝑑∗) ⊇ 𝑅−(𝜇𝑑), then 𝑟 ∉ 𝑅−(𝜇𝑑). Since 𝑑 + 1 ∈ 𝜇ℎ for some ℎ ∈ 𝐻−(𝜇𝑑), by Remark
7, 𝜅𝑑+1

𝑟′ = 𝜅𝑑
𝑟′. Thus, we have 𝜅𝑟′ = 𝜅𝑑

∗
𝑟′ . In addition, since 𝑟 ′ ∈ 𝑅̄−𝑑∗ , by Lemma 5, 𝜅′

𝑟′ = 𝜅𝑟′.
Therefore, 𝜅′

𝑟′ = 𝜅𝑑
∗

𝑟′ = 𝜅
𝑟′ ≤ 𝑣𝑑

∗
𝑟′ . Thus, 𝜅′

𝑟′ ≤ 𝑣𝑑
∗

𝑟′ . By induction, we obtain the conclusion. □

Proposition 11. 𝐵 and 𝜇′ satisfy the two conditions in interval respecting stability: (i) 𝑑 ′ ≻ℎ 𝑑

for every 𝑑 ′ ∈ 𝜇ℎ and 𝑑 ∈ 𝜇′
ℎ
∩ 𝐵 and (ii) for each ℎ ∈ 𝐵 ∩ 𝐻, there exist 𝑟∗ ∈ 𝑅∋ℎ satisfying

( |𝜇𝑟′ |)𝑠 (𝑟∗) ≠ ( |𝜇′
𝑟′ |)𝑠 (𝑟∗) , and it follows that |𝜇𝑟 | = 𝜅𝑟 for some 𝑟 ∈ 𝑅 with 𝑟 ⊇ 𝑟∗, and

( |𝜇𝑟′ |)𝑠 (𝑟) ≿̃𝑟 ( |𝜇′
𝑟′ |)𝑠 (𝑟) for any 𝑟 ∈ 𝑅 with 𝑟∗ ⊆ 𝑟 ⊆ 𝑟 .

Proof. Consider any ℎ ∈ 𝐵. Then, 𝜇′
ℎ
≻ℎ 𝜇ℎ. By acceptability of ℎ, 𝜇′

ℎ
\ 𝜇ℎ = 𝜇′

ℎ
∩ 𝐵 is not

empty. Choose any 𝑑 ∈ 𝜇′
ℎ
∩ 𝐵. By definition of blocking, 𝜇′

𝑑
= ℎ ≻𝑑 𝜇𝑑 . For any 𝑑 ′ > 𝑑∗,

since 𝑑 ′ ∈ 𝜇ℎ for some ℎ ∈ 𝐻−(𝜇𝑑′−1) ⊆ 𝐻−(𝜇𝑑∗), by Lemma 5, 𝜇′
𝑑′ = 𝜇𝑑′. Thus, 𝑑 ≤ 𝑑∗.

Thus, 𝜇𝑑 = 𝜇𝑑∗

𝑑
and (𝑑, ℎ) ∈ 𝑋𝑑∗ since by definition of the GFDA algorithm, (𝑑, ℎ′) ∈ 𝑋𝑑∗ for

each ℎ′ ≻𝑑 𝜇𝑑 . Since 𝑑 ∉ 𝜇ℎ, by definition of 𝐶ℎ, 𝑑 ′ ≻ℎ 𝑑 for every 𝑑 ′ ∈ 𝜇ℎ, which implies (i).
In addition, since (𝑑, ℎ) ∈ 𝑋𝑑∗ and 𝑑 ∉ 𝜇ℎ, by Lemma 4, there exists 𝑟+ ∈ 𝑅∋ℎ such that

𝜅𝑟+ = 𝜅𝑑
∗

𝑟+ ≤ 𝜅𝑟+ . By feasibility of 𝜇 and 𝜇′, 𝜇𝑟+ = 𝜅𝑟+ = 𝜅𝑟+ ≤ 𝜅′
𝑟+ = 𝜇′

𝑟+ .
Suppose that |𝜇′

ℎ
| ≤ |𝜇ℎ |. Choose any 𝐷 ′ ⊆ 𝜇ℎ \ 𝜇′

ℎ
with |𝐷 ′ | = |𝜇′

ℎ
\ 𝜇ℎ |. By (i), for any

𝑑 ′ ∈ 𝜇′
ℎ
\ 𝜇ℎ and any 𝑑 ∈ 𝐷 ′, {𝑑} ≻ℎ {𝑑 ′}. Since ≻ℎ is strict, acceptable, and responsive, then

𝜇ℎ ⪰ℎ 𝐷 ′ ∪ [𝜇′
ℎ
∩ 𝜇ℎ] ≻ℎ 𝜇′, which is a contradiction. Thus, |𝜇′

ℎ
| > |𝜇ℎ | for any ℎ ∈ 𝐴𝐻 .

Let 𝑟∗ be the largest region among all 𝑟 ∈ 𝑅∋ℎ ∩ 2𝑟+ such that ( |𝜇′
𝑟′ |)𝑠 (𝑟) ≠ ( |𝜇𝑟′ |)𝑠 (𝑟) .

By definition of 𝑟∗, for each 𝑟 ∈ 𝑅 with 𝑟∗ ⊊ 𝑟 ⊆ 𝑟+, ( |𝜇′
𝑟′ |)𝑠 (𝑟) = ( |𝜇𝑟′ |)𝑠 (𝑟) . Thus,

( |𝜇𝑟′ |)𝑠 (𝑟) ≿̃( |𝜇′
𝑟′ |)𝑠 (𝑟) .

Finally, we will show that ( |𝜇𝑟′ |)𝑠 (𝑟∗) ≿̃( |𝜇′
𝑟′ |)𝑠 (𝑟∗) .

Note that if 𝑟∗ ⊊ 𝑟+, then ( |𝜇𝑟′ |)𝑠 (𝑟∗+) = ( |𝜇′
𝑟′ |)𝑠 (𝑟∗+) for 𝑟∗+ ∈ 𝑅 with 𝑟∗ ∈ 𝑠(𝑟∗+). In particular,

𝜇𝑟∗ = 𝜇′
𝑟∗ . If 𝑟∗ = 𝑟+, since 𝜇𝑟+ ≤ 𝜇′

𝑟+ , then 𝜇𝑟∗ ≤ 𝜇′
𝑟∗ . Thus, for any case, 𝜇𝑟∗ ≤ 𝜇′

𝑟∗ . By
feasibility of 𝜇 and 𝜇′, 𝜅𝑟∗ = 𝜇𝑟∗ ≤ 𝜇′

𝑟∗ = 𝜅′
𝑟∗ . By the same reason, 𝜅′

𝑠 (𝑟) = ( |𝜇′
𝑟′ |)𝑠 (𝑟) ≠

( |𝜇𝑟′ |)𝑠 (𝑟) = 𝜅𝑠 (𝑟) .
By definition of 𝜅, 𝜅∗

𝑠 (𝑟) ≤ 𝜅′
𝑠 (𝑟) and 𝜅𝑟 ≥ 𝜅′𝑟 ≥ ∑

𝑠 (𝑟) 𝜅
′
𝑟′. In addition, since 𝜅𝑠 (𝑟) ≠ 𝜅′

𝑠 (𝑟) ,
by Lemma 6, 𝜅′

𝑠 (𝑟) ≤ 𝑣𝑑
∗

𝑠 (𝑟) . Since 𝐶ℎ𝑟 (𝜅∗𝑠 (𝑟) , 𝑣
𝑑∗

𝑠 (𝑟) ; 𝜅𝑟 ) = (𝜅𝑑∗)𝑠 (𝑟) , then (𝜅𝑑∗)𝑠 (𝑟) ≿̃𝑟 (𝜅′𝑟′)𝑠 (𝑟) .
Since 𝜅𝑠 (𝑟) ≥ 𝜅𝑑

∗

𝑠 (𝑟) , by monotonicity of ≿̃𝑟 , 𝜅𝑠 (𝑟) ≿̃𝑟 𝜅′𝑠 (𝑟) . That is, ( |𝜇′
𝑟′ |)𝑠 (𝑟) ≿̃𝑟 ( |𝜇𝑟′ |)𝑠 (𝑟) □

6.6.3 Proof of Proposition 9

Proof. By definition, 𝜅𝐻 ≤ min{𝜅𝐻 , |𝐷 |}. Thus, if 𝜅𝐻 − |𝜇 | > 0, then |𝜇 | < |𝐷 |. That is, there
exists 𝑑 ∉ 𝜇𝐷 . Since Step |𝐷 | is terminated, by acceptability, Ac⪰𝑑

= 𝐻 = 𝑋𝑑 . In addition,
by Lemma 1 and 4, 𝐻−(𝜇) ≠ ∅ and ℎ ∈ 𝐻−(𝜇) satisfies 𝜇ℎ = 𝑋ℎ. Thus, 𝑑 ∈ 𝜇ℎ, which is a
contradiction. Thus, 𝜅𝐻 − |𝜇 | = 0. By Remarks 3 and 5, 𝜇 is feasible. □
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6.7 Proof of Proposition 10

Proof. (i)⇒ (ii): By Proposition 9, if the matching 𝜇 obtained by the GFDA with ceiling |𝐷 | is
the same as that obtained by the GFDA, then 𝜇 is feasible.

(ii)⇒ (i): Suppose that the matching 𝜇 generated by the GFDA algorithm is feasible. Thus,
𝜅𝐻 − |𝜇 | = 0. Since |𝜇 | ≤ |𝐷 |, 𝜅𝐻 ≤ |𝐷 |. By Lemma 4 (ii), 𝜅𝑑,𝑛

𝐻
≤ 𝜅𝐻 for any substep (𝑑, 𝑛).

By definition of the reserved quota allocation, 𝑣𝑑,𝑛
𝐻

= 𝐶ℎ𝐻 (𝑋𝑑,𝑛) = 𝜅
𝑑,𝑛

𝐻
≤ 𝜅𝐻 ≤ |𝐷 | for any

substep (𝑑, 𝑛).
Let the matching 𝜇′ be the GFDA with ceiling |𝐷 | matching. We show by induction that 𝜇𝑑,𝑛 =

𝜇′𝑑,𝑛 for each substep (𝑑, 𝑛). Note that 𝜇0 = 𝜇′0 by definition. Suppose that 𝜇𝑑,𝑛−1 = 𝜇′𝑑,𝑛−1

for some 𝑑 ∈ 𝐷. Thus, 𝑋𝑑,𝑛−1 = 𝑋 ′𝑑,𝑛−1. Since 𝑣
𝑑,𝑛−1
𝐻

≤ |𝐷 |, 𝑣 |𝐷 |,𝑑,𝑛−1
𝐻

= min{|𝐷 |, 𝑣𝑑,𝑛−1
𝐻

} =
𝑣
𝑑,𝑛−1
𝐻

. That is, (𝐶ℎ(𝑋𝑑,𝑛−1), 𝐶ℎ(𝑋𝑑,𝑛−1)) = (𝐶ℎ
|𝐷 | (𝑋𝑑,𝑛−1), 𝐶ℎ |𝐷 | (𝑋𝑑,𝑛−1)) = (𝐶ℎ

|𝐷 | (𝑋 ′𝑑,𝑛−1), 𝐶ℎ |𝐷 | (𝑋 ′𝑑,𝑛−1)).
Thus, 𝜇𝑑,𝑛 = 𝜇′𝑑,𝑛. By induction, we have 𝜇 = 𝜇′.

(iii)→ (ii): This is obvious by definition.
(ii)→ (iii): Suppose that the matching 𝜇 generated by the GFDA algorithm is feasible. Thus,

𝜅𝐻 − |𝜇 | = 0 = |𝐷 | − |𝐷 |.
Note that the proof of Theorem 1 depend only on the facts that 𝜅𝑑∗

𝐻
− |𝜇𝑑∗ | = |𝐷 | − 𝑑∗ as the

property of Step 𝑑∗ of the GFDA phase. In addition, in that proof, acceptability is used only in
the SD phase. Thus, if we regard Step |𝐷 | of this GFDA algorithm as Step 𝑑∗ in the that proof,
we have 𝜅𝑑

∗
𝐻

− |𝜇𝑑∗ | = |𝐷 | − 𝑑∗ and we do not need acceptability since there is no step in the SD
phase. Thus, by the same proof, 𝜇 is interval respecting stable. □
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