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Abstract  This study considers strategic communication before voting. Voters have partially 

conflicting interests rather than common interests. That is, voters cannot tell whether a collec-

tive decision is a matter of truth, such as guilty or innocent, or a matter of taste, such as left or 

right. A set of imperfectly informed voters communicates before casting their votes. From a 

statistical perspective, truth-telling by all voters in deliberation, coupled with majority rule, 

may lead to desirable outcomes asymptotically as the population of voters increases. Thus, 

from a statistical perspective, increasing the population of voters is desirable. This study, how-

ever, shows that truthful communication is not incentive-compatible with equilibrium behavior 

when the size of the electorate is sufficiently large. In particular, truthful communication by all 

voters is inconsistent with equilibrium for any voting rule and any degree of conflict when the 

population of voters becomes arbitrarily large. On the other hand, truthful communication 

might be an equilibrium for a small population of voters. Under these circumstances, voting 

rules matter. This study shows that majority rule most promotes truthful communication before 

voting.  
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1. Introduction 

 

Many social decisions for which are not obvious which alternative is better or that entail fun-

damental differences of opinions are made by voting. Typically, voters communicate before 

they officially cast votes. Examples include legislatures, referendums, faculty meetings, 
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monetary policy committees, jury voting, and company boards.  

 There are two functions of elections: (1)preference aggregation and (2)information ag-

gregation. Following Condorcet ([1785] 1994), the information aggregation property of elec-

tions is extensively studied (Austen-smith and Banks, 1996; Feddersen and Pesendorfer, 1997; 

Wit, 1998). Most of the subsequent studies that examined the information aggregation property 

considered binary elections with voters having common interests. In particular, there is a cor-

rect alternative for all voters, but they only have partial information about which alternative is 

correct. These studies examined whether and when the elections aggregate dispersed infor-

mation and thereby identify correct alternatives. A prominent example of this common value 

election is jury voting. In such a jury metaphor, conflicts of opinion come from voters’ infor-

mation rather than the fundamental differences of ideologies.1 

 However, in real-world elections, the fundamental differences of ideologies matter in 

addition to the information. This study considers the collective decisions in which both the 

ideologies and the information matter. In particular, voters in this study have partially conflict-

ing interests rather than common interests: It might be possible for voters to reach a unanimous 

agreement once the uncertainty is fully resolved. Still, they might exhibit a disagreement even 

when the uncertainty is fully resolved. In other words, collective decisions include matters of 

truth, such as jury voting, and matters of taste, such as ideologically driven elections. Further-

more, voters cannot tell which issues are at stake. This paper is the first to develop a voting 

model with voters having partially conflicting interests. 

 As an example of collective decision-making with voters having partially conflicting 

interests, consider a polity conducting a referendum to decide whether to implement a reform. 

Unfortunately, the electorate does not know who the beneficiaries of the reform might be due 

to the complex nature of the policy. The reform might benefit all voters, or it might harm them 

and benefit only politicians. In the former case, the beneficiaries are the entire electorate, and 

thus all voters would unanimously prefer to accept the reform. On the other hand, politicians 

are the only beneficiaries in the latter case, and hence all voters would unanimously prefer to 

reject. Therefore, voters have common interests in these cases, which implies that the referen-

dum is a matter of truth. The reform, however, might only benefit some voters who engage in 

certain industries, while being harmful to others. Therefore, beneficiaries of the reform would 

prefer to accept it, while the others would not. Thus, in this case the referendum is a matter of 

taste. Voters, however, only have imperfect information regarding the beneficiaries of the re-

form due to the complex nature of the policy. This implies that voters cannot tell whether the 

election is a matter of truth or taste, and they cannot tell which outcome is better even when 

the election is a matter of truth. 

 As another example, consider elections with two candidates who differ in their ideolo-

gies/policy preferences and qualities (or valence). Suppose that voters evaluate candidates 

based on both their policy positions and their qualities. Consequently, voters decide where to 

vote based on their own ideologies if the difference in the candidates’ qualities is small. Thus, 

the election is a matter of taste if the quality difference is negligible. However, when the quality 

difference is so large that the ideological difference is negligible, all voters would prefer the 

candidate with higher quality. Thus, the election is a matter of truth when the quality difference 

is significant. However, the qualities of the candidates are unknown, while their policy posi-

tions are common knowledge. Voters, therefore, cannot tell whether the election is a matter of 

truth or taste. In these situations where many voters participate, deliberation can be interpreted 

as opinion polls conducted before the voters officially cast votes. 

 When the quality of collective decision-making depends on the underlying state (e.g., 

 
1 Other sources of conflict come from the difference in attitude toward the two types of errors: Convicting an 

innocent and acquitting the guilty (Coughlan, 2000; Gerardi, 2000). 
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the beneficiaries of the reform or the qualities of the candidates) and voters have partially con-

flicting interests, collective decisions under uncertainty should identify both correct alterna-

tives and majority-preferred alternatives depending on the underlying state. In particular, soci-

ety should choose the correct alternative if the election is a matter of truth. In contrast, society 

should choose the majority-preferred alternatives if the election is a matter of taste. 

 Intuitively, one might conjecture that sharing information truthfully via deliberation al-

lows voters to tell whether the election is a matter of truth or taste, and once they can do so, 

voting should be able to identify both correct alternatives and majority-preferred alternatives, 

depending on the outcome of the deliberation. This is because each voter has imperfect infor-

mation about the underlying state, and aggregating dispersed information reduces the uncer-

tainty of the state. Thus, sharing information truthfully in deliberation and voting sincerely after 

such deliberation should yield a better outcome.  

 This conjecture depends on the assumption that voters non-strategically share their in-

formation in deliberation and vote based on their belief about alternatives generated by the 

outcomes of deliberation. This study scrutinizes this conjecture by examining whether and 

when strategic voters with partially conflicting interests voluntarily share their information re-

garding the state. The main result (Theorem 1) is that the assumption of the conjecture is in-

consistent with equilibrium behavior when the number of voters is sufficiently large. Hence 

large elections cannot identify correct alternatives and majority-preferred alternatives simulta-

neously via truthful communication by strategic voters. 

 This study examines the model of a binary election with voters having partially con-

flicting interests. Voters collectively decide an alternative 𝐴 or 𝐵 under a given threshold 

voting rule, as in standard models of jury voting. A novel feature this model is the partially 

conflicting interests. In particular, the payoff from the collective decisions depends on the un-

known state 𝜃 ∈ [0,1], where the state space [0,1] is partitioned into three subsets Θ𝐴, Θ𝐵, 

and Θ𝑁. In state 𝜃 ∈ Θ𝑁, voters disagree which alternative is better; that is, the election is a 

matter of taste. Voters who prefer 𝐴 and 𝐵 in state 𝜃 ∈ Θ𝑁 are denoted as type 𝒜 and type 

ℬ, respectively. In state 𝜃 ∈ Θ𝐴 ∪ Θ𝐵, however, even the different types of voters have com-

mon interests. That is, the election is a matter of truth. In particular, all voters, including both 

types of voters, prefer alternative 𝐴  in state 𝜃 ∈ Θ𝐴 , while they prefer 𝐵  in 𝜃 ∈ Θ𝐵 . The 

types are private information. Although the state 𝜃 is unknown to anybody, voters receive 

private signals, 𝑎 or 𝑏, correlated with the true state. They are allowed to communicate before 

they cast votes, where communication is cheap talk. 

 The results of this study are three-fold. The first result concerns the statistical nature of 

truth-telling by all voters in deliberation. In particular, this study shows that, for any voting 

rule, truth-telling by all voters in deliberation asymptotically identifies correct alternatives. 

Moreover, under majority rule, truth-telling in deliberation asymptotically identifies majority-

preferred alternatives as well. Therefore, the above conjecture, saying that truth-telling with 

sincere voting yields better outcomes even when voters have partially conflicting interests, is 

true from a statistical perspective. These are the direct results of the Law of Large Numbers. 

Thus, from the statistical perspective, increasing the number of voters helps voters make desir-

able decisions.  

 However, the second result shows that a sufficiently large population is precisely the 

circumstance where the truth-telling is inconsistent with equilibrium behavior. In particular, 

truthful communication regarding the state by all voters never constitutes an equilibrium for 

any voting rule and any degree of conflict if the size of the electorate is sufficiently large (The-

orem 1). Therefore, from a game-theoretic perspective, large elections cannot identify correct 

alternatives and alternatives preferred by the majority simultaneously via truthful communica-

tion when voters have partially conflicting interests. 
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 To understand intuitively why truthful communication regarding the state is an equilib-

rium for small 𝑛, but not for large 𝑛, suppose that all voters truthfully reveal their private 

signals. Since voters have conflicting interests with positive probability, strategic voters may 

have incentives to misreport their signals to induce others to vote for their ex-ante biased alter-

natives. For example, a type 𝒜 voter who observed a 𝑏-signal has an incentive to misreport 

that she has observed 𝑎-signal. However, the effect of such lying is mixed. Lying, and inducing 

others to vote for one’s ex-ante biased alternative, may lead to undesirable outcomes. This is 

because lying may induce like-minded voters to vote for the wrong direction. To see this, con-

sider a voter whose signal conflicts with her type, say type 𝒜 voter 𝑖 who observe a 𝑏-signal. 

Lying (i.e., reporting that she has observed 𝑎-signal) induces the other voters to vote for 𝐴 

only when lying makes them switch to preferring alternative 𝐴. But circumstances where this 

switch occur depends on types. For example, lying induce like-minded voters (i.e., type 𝒜 

voters) to vote for 𝐴 when her lie makes them switch to preferring alternative 𝐴. However, 

this is exactly when voter 𝑖, whose private signal is 𝑏, perceives that 𝐵 is a slightly better 

alternative. Thus, her lie induces an outcome that she perceives undesirable, 𝐴, by manipulat-

ing like-minded voters to vote for 𝐴. This is the only driving force for truth-telling. However, 

the shift in the posterior belief regarding the state, conditional on her perceiving 𝐵 as slightly 

better, becomes smaller as the size of the electorate increases. Consequently, the only driving 

force for truth-telling vanishes as the population increases. 

 The third result concerns the effect of voting rules on information aggregation in delib-

eration for a small population of voters. In particular, this study shows that voting rule affects 

incentives for truthful communication in a small population of voters. In particular, the majority 

rule most promotes truthful communication among all threshold voting rules. 

 Before moving on, it is worth emphasizing that the main result, that for any voting rule 

and any degree of conflict, truth-telling in deliberation with updated sincere voting cannot be 

an equilibrium in a sufficiently large population, does not mean that for any voting rule, there 

does not exist an equilibrium in which both correct and majority-preferred outcomes are iden-

tified in the limit. There might exist an equilibrium under some voting rule in which both the 

correct and the majority-preferred outcomes are identified in the limit. This study does not 

examine the existence nor non-existence of such an equilibrium and voting rule. Although this 

is a fundamental question in a democratic society with partially conflicting interests, it is left 

for future work. 

 

1.1. Related Literature 

 

This study relates to a literature that investigates the effect of communication on voting 

(Coughlan, 2000; Austen-smith and Feddersen, 2006; Meirowitz, 2007; Schulte, 2010). Cough-

lan (2000) and Austen-smith and Feddersen (2006) studied the effect of the voting rule on vot-

ers’ incentives to share their information truthfully in deliberation. 

 Coughlan (2000) studied the model of common value election in which voters differ in 

their evaluations towards two types of errors; convicting an innocent and acquitting the guilty. 

He showed that when preference is common knowledge, truthful communication constitutes 

an equilibrium for any voting rule, including unanimity if voters’ preferences are sufficiently 

homogenous. Consequently, voting rules are irrelevant for truthful communication as long as 

preferences are common knowledge and sufficiently homogeneous. Austen-smith and Fedder-

sen (2006) examined the effect of voting rules when preferences are private information. They 

showed, in contrast to Coughlan, that the voting rule matters. In particular, they showed that 
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the unanimity rule is worst at aggregating information in deliberative committees.2 

 The most crucial difference between this study and Coughlan is the voters’ preferences. 

The voters in his model never disagree once the uncertainty is fully resolved, while voters in 

my model might exhibit a disagreement even in the absence of uncertainty. Such potential dis-

agreement enables me to considers both ideologies and information, while his study considers 

only information. Moreover, this study shows that allowing the potential disagreement dramat-

ically changes the result of Coughlan. In particular, Theorem 1 shows that truthful communi-

cation in deliberation never constitutes an equilibrium for any voting rule and any degree of 

conflict if the size of the electorate is sufficiently large.  

 As in Austen-smith and Feddersen, the voters’ preferences in my model are private in-

formation. Moreover, preferences satisfy the axioms of Consensus and Monotonicity defined 

in their paper. The former requires that even different types of voters might be able to reach an 

agreement given the full revelation of the signal profile. The latter requires that different types 

of voters respond to the information in the same direction. That is, voters’ expected payoff over 

a binary alternative given the full revelation of the signal responds to the change in the infor-

mation in the same direction even when their types differ.3 However, there are three crucial 

differences between this study and Austen-smith and Feddersen. First, in addition to voting 

rule, this study examines the effect of the size of the electorate on truthful communication in 

deliberation, while they only focus on the voting rule. Second, their model cannot consider the 

probability of desirable decisions in large elections, while my model can. Third, this study 

shows that the majority rule is the best at promoting truthful communication in small elections, 

while they only showed that the unanimity rule is the worst. 

 Meirowitz (2007) and Schulte (2010) also studied information aggregation in pre-vote 

communication, provided that preferences are heterogeneous and private information. The dif-

ference between this study and Meirowitz is two-fold. The first difference is that Meirowitz 

focused on majority rule, while this study considers all threshold voting rules. The second dif-

ference is the heterogeneity of preferences. In Meirowitz, voters always disagree in the absence 

of uncertainty, while voters in this study may or may not agree depending on the underlying 

state once the state is fully known. Meirowitz (2007) showed that when voters have such dia-

metrically opposed preferences, a bias that voters belong to the majority side makes truthful 

communication an equilibrium for any size of the electorate. Schulte (2010) considered verifi-

able communication under majority rule, while this study considers non-verifiable cheap talk 

communication under various voting rules.4 

 Like this study, Morgan and Stocken (2008) considered information aggregation in 

polls of ideologically diverse constituents. They showed that truth-telling by all agents regard-

ing the state is inconsistent with equilibrium behavior when the size of the polled constituents 

is sufficiently large. The difference between their study and mine is the decision making pro-

cess; in their model, a policy is determined by a single policymaker who uses a poll to collect 

information from the citizens, while the policy in this study is determined by subsequent voting. 

Therefore, in their model, any single citizen’s report always affects the final policy regardless 

of the signal profile of other citizens. Consequently, lying is always beneficial for a sufficiently 

large sample. On the other hand, in my model, voters’ reports only affect the policy when they 

are pivotal, and whether or not lying is beneficial depends on pivotal events. 

 
2 They show the following results: Truthful communication is not an equilibrium under unanimity rule if prefer-

ences are heterogeneous. Moreover, if truthful communication becomes an equilibrium under unanimity, it is 

indeed equilibrium for any other voting rule. 
3 See Meirowitz (2007) for models that violate the Monotonicity Axiom. 
4 Mathis (2011) also considered verifiable communication and studied the effect of the voting rule on voters’ 

incentives to share information. 
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 The remainder of this paper is organized as follows. Section 2 describes the model. 

Section 3 introduces the variables used throughout this paper. Section 4 provides the results of 

this paper. Section 5 concludes. The Appendices contain all proofs omitted in the text. 

 

2. The Model 

 

A set of voters, {1,2, . . , 𝑛} (𝑛 ≥ 3 odd), makes a collective decision 𝑜 ∈ {𝐴, 𝐵}. Voters sim-

ultaneously cast vote 𝐴 or 𝐵, and the outcome is determined by a threshold voting rule 𝑘, 

which represents a threshold for alternative 𝐴 to win. That is, alternative 𝐴 wins if at least 

𝑘 ∈ {1. . , 𝑛} voters vote for it, otherwise 𝐵 is chosen. For example, 𝑘 = 𝑛 requires a unani-

mous vote for alternative 𝐴 being chosen, while a single vote is enough for 𝐵 being chosen. 

As another example, 𝑘 = (𝑛 + 1) 2⁄  requires a majority of votes for both alternatives being 

chosen. Abstention is not allowed, and voting entails no cost.5 Before they cast votes, voters 

are allowed to communicate, which will be explained later. 

 

2.1. Preference 

2.1.1. States and Payoff 
 

The payoff from collective decision 𝑜 ∈ {𝐴, 𝐵} depends on the unknown state 𝜃, which is 

uniformly distributed on Θ ≔ [0,1]. To describe the conflict, suppose that the set of states, Θ, 

is partitioned into three subsets Θ𝐴 ≔ [0, 𝜋) , Θ𝑁 ≔ (𝜋, 1 − 𝜋) , and Θ𝐵 ≔ (1 − 𝜋, 1] , as 

shown in Figure 1, where 𝜋 ∈ (0, 1 2⁄ ). 
 

 
 

Figure 1 
  

Voters have partially conflicting interests as follows. In state 𝜃 ∈ Θ𝐴 ∪ Θ𝐵, voters have com-

mon interests: They unanimously prefer alternative 𝐴  in state 𝜃 ∈ Θ𝐴 , while they unani-

mously prefer 𝐵 in state 𝜃 ∈ Θ𝐵. In state 𝜃 ∈ Θ𝑁, they have conflicting interests: Voters who 

prefer alternative 𝐴 and 𝐵 in state 𝜃 ∈ Θ𝑁 are denoted type 𝒜 and type ℬ, respectively. 

 Let 𝑢𝑡(𝑜, 𝜃) be type 𝑡 ∈ {𝒜,ℬ} voter’s payoff from alternative 𝑜 ∈ {𝐴, 𝐵} in state 

𝜃. In particular, I assume that voters get a payoff of 1 from their preferred alternatives and 0 

otherwise.6 Therefore, 𝑢𝑡(𝑜, 𝜃) becomes 

 

⚫ 𝑢𝑡(𝐴, 𝜃) = 1 > 0 = 𝑢𝑡(𝐵, 𝜃) for all 𝑡 if 𝜃 ∈ Θ𝐴. 

 

 
5 Burke and Taylor (2008) studied voters’ incentive to truthfully share their preference in purely private value 

elections with costly voting. 
6 This zero-one specification of payoff allows me to represent the expected payoff in terms of the probability. 

However, this assumption is not essential to my main result. 
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⚫ 𝑢𝑡(𝐵, 𝜃) = 1 > 0 = 𝑢𝑡(𝐴, 𝜃) for all 𝑡 if 𝜃 ∈ Θ𝐵. 

 

⚫ 𝑢𝒜(𝐴, 𝜃) = 1 > 0 = 𝑢𝒜(𝐵, 𝜃) if 𝜃 ∈ Θ𝑁. 

 

⚫ 𝑢ℬ(𝐵, 𝜃) = 1 > 0 = 𝑢ℬ(𝐴, 𝜃) if 𝜃 ∈ Θ𝑁. 

 

The payoff of each type can be summarized by the following table: 

 

 
 

 Since I focus on individual differences in fundamental ideologies, I rule out the heter-

ogeneity of intensity of two kinds of errors; convicting an innocent and acquitting the guilty 

(Coughlan, 2000; Gerardi, 2000). 

 Since the prior on the state is uniform on the unit interval, Pr(𝜃 ∈ Θ𝐴) =
Pr(𝜃 ∈ Θ𝐵) = 𝜋, and Pr(𝜃 ∈ Θ𝑁) = 1 − 2𝜋. Thus, 1 − 2𝜋 is the prior probability of voters 

having conflicting interests. Suppose that types are private information and are identically and 

independently drawn from Pr(𝑡𝑖 = 𝒜) = 𝑧 ∈ (0,1). Types and the state are independent. 

 

2.1.2. Example of Two-Candidate Elections 
 

An example of this kind of preference structure includes a two-candidate election with candi-

dates who differ in their ideological positions and their quality or valence. If a difference in the 

quality is so large that the ideological difference is negligible, then voters have common inter-

ests; they prefer candidate with higher quality. On the other hand, if the quality difference is 

negligible, then ideology matters, which implies that voters have conflicting interests. Since 

voters know little about candidates’ qualities, they cannot distinguish whether the election is a 

matter of truth or a matter of taste. 

 Suppose that two candidates, L and R, who differ in their ideological positions and their 

qualities, compete for a single office. Voters care about ideologies and qualities of candidates. 

For ideology, there are two types of voters, L and R. Type L and type R voters prefer the ideo-

logical positions of candidate L and R, respectively. While the ideological positions of candi-

dates are fully known, their qualities are unknown to voters. Let 𝜃𝐿 and 𝜃𝑅 denote the quality 

of each candidate and assume that 𝜃 ≔ 𝜃𝑅 − 𝜃𝐿 is uniformly distributed on [−1,1], which 

corresponds to the state in my model. Voters’ ideological payoff from their preferred candidate 

is assumed to be 1 2⁄ . Then, voters’ payoff from each candidate can be summarized in Table 

1.  

Outcome

Outcome

Type ’s Payoff

Outcome

Outcome

Type ’s Payoff
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All voters prefer candidate L if 𝜃 < −1 2⁄ , while they prefer candidate R if 1 2⁄ < 𝜃. On the 

other hand, if −1 2⁄ < 𝜃 < 1 2⁄ , then type L and type R prefer candidate L and R, respectively. 

 

2.2. Information 

 

Although the underlying state is unknown to anybody, each voter receives the private signal 

𝑠𝑖 ∈ {𝑎, 𝑏} that is correlated with the true state. The following conditional probabilities deter-

mine the distribution of the signals: 

 

Pr(𝑠𝑖 = 𝑏|𝜃) = 𝜃 

 

Pr(𝑠𝑖 = 𝑎|𝜃) = 1 − 𝜃. 
 

This implies that 𝑎-signal and 𝑏-signal are more likely to be observed in state 𝜃 ∈ Θ𝐴 and 

𝜃 ∈ Θ𝐵, respectively, while signal distribution is relatively balanced in state 𝜃 ∈ Θ𝑁. The sig-

nals are drawn conditionally independent of state 𝜃. 

 Note that number of 𝑎-signals, conditional on state 𝜃, follows a binomial distribution 

with parameter (𝑛, 1 − 𝜃), where 1 − 𝜃 is success probability, and 𝑛 is the total number of 

independent trials. Conditional on observing 𝑘 𝑎-signals, the posterior distribution of 𝜃 fol-

lows a beta distribution with parameters 𝑛 − 𝑘 + 1 and 𝑘 + 1. Hereafter, I denote the beta 

distribution with parameters 𝛼 and 𝛽 by Beta(𝛼, 𝛽), and its cumulative distribution function 

by 𝐺(∙ |𝛼, 𝛽). That is, 

 

𝐺(𝑥|𝛼, 𝛽) = ∫
1

ℬ(𝛼, 𝛽)

𝑥

0

𝜃𝛼−1(1 − 𝜃)𝛽−1𝑑𝜃, 

 

where ℬ(𝛼, 𝛽) is a constant chosen so that 𝐺(1|𝛼, 𝛽) = 1. 

 

2.3. Deliberation 

 

Before they cast votes, voters communicate as non-binding straw polls (Coughlan, 2000; Aus-

ten-smith and Feddersen, 2006; Meirowitz, 2007).7 That is, each voter simultaneously sends a 

non-verifiable binary message 𝑚𝑖 ∈ ℳ ≔ {𝑎, 𝑏}, where sending messages entails no costs. A 

message profile 𝑚 = (𝑚1, . . , 𝑚𝑛) ∈ ℳ
𝑛 is publicly observed after voters send messages. 

 

 
7 Mathis (2011) and Schulte (2010) considered communication with verifiable messages. 

Candidate L Candidate R

Type L voter

Type R voter

Table 1: Voters’ Payoff from the Candidates 
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2.4. Timing and Strategies 

 

Timing: The timing of the whole game is as follows: 

 

1. Nature determines the state 𝜃 and the types of voters. Conditional on state 𝜃, each 

voter receives the private signal 𝑠𝑖 ∈ {𝑎, 𝑏}. 
 

2. Communication stage 

Each voter, privately knowing their own type and signal, sends a cheap talk mes-

sage 𝑚𝑖 ∈ ℳ = {𝑎, 𝑏} simultaneously. 

 

3. Voting stage 

The message profile 𝑚 ∈ ℳ𝑛 is publicly observed. Voters simultaneously cast 

their votes. The outcome is then determined by the threshold voting rule 𝑘. 

 

Strategy: Formally, a voter’s strategy (𝜇, 𝛾) consists of a communication strategy 𝜇 and a 

voting strategy 𝛾, where 

 

𝜇: {𝑎, 𝑏} × {𝒜,ℬ} → ℳ, 
 

𝛾: {𝑎, 𝑏} × {𝒜,ℬ} ×ℳ𝑛 → {𝐴, 𝐵}. 
 

The communication strategy 𝜇  specifies a message 𝜇(𝑠𝑖, 𝑡𝑖) ∈ ℳ  that type 𝑡𝑖  voter with 

signal 𝑠𝑖  sends. The voting strategy 𝛾  specifies an alternative 𝛾(𝑠𝑖, 𝑡𝑖, 𝑚) ∈ {𝐴, 𝐵}  that 

voter (𝑡𝑖, 𝑠𝑖) who observes message profile 𝑚 casts. The equilibrium concept is a Perfect 

Bayesian Equilibrium.  

 

3. Type-Optimal Aggregation Rule 

 

This section defines a type-optimal aggregation rule 𝑘𝑡 for each type 𝑡 ∈ {𝒜,ℬ}, which will 

be useful throughout the rest of the paper. This is defined as the total number of 𝑎-signals out 

of 𝑛  required to persuade type 𝑡  voters to prefer alternative 𝐴 . In other words, a type 𝑡 
voter prefers alternative 𝐴 if there are at least 𝑘𝑡 𝑎-signals out of 𝑛, and otherwise she pre-

fers 𝐵. 

 I first define 𝑘𝒜. Any type 𝒜 voters prefer alternative 𝐴 to 𝐵 conditional on know-

ing signal profile 𝑠 = (𝑠1, . . , 𝑠𝑛) containing 𝑘 𝑎-signals if and only if 

 

𝐸𝜃[𝑢𝒜(𝐴, 𝜃)|𝑘; 𝑛] ≥ 𝐸𝜃[𝑢𝒜(𝐵, 𝜃)|𝑘; 𝑛], 
 

which is equivalent to 

 
1

2
≤ Pr(𝜃 ∈ Θ𝐴 ∪ Θ𝑁|𝑘; 𝑛) = 𝐺(1 − 𝜋|𝑛 − 𝑘 + 1, 𝑘 + 1) . (1) 
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In other words, type 𝒜 voters prefer alternative 𝐴 to 𝐵 if and only if the posterior proba-

bility that the state lies in Θ𝐴 ∪ Θ𝑁 is greater than or equal to 1 2⁄ . Since the right-hand side 

of eq. (1) is strictly increasing in 𝑘, there uniquely exists 𝑘𝒜 ∈ {0,1, . . , 𝑛} such that 

 

Pr(𝜃 ∈ Θ𝐴 ∪ Θ𝑁|𝑘𝒜 − 1; 𝑛) <
1

2
≤ Pr(𝜃 ∈ Θ𝐴 ∪ Θ𝑁|𝑘𝒜; 𝑛), 

 

which is equivalent to 

 

𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) <
1

2
≤ 𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1). 

  

 Thus, conditional on knowing signal profile 𝑠, type 𝒜 voters prefer alternative 𝐴 if 

𝑠 contains at least 𝑘𝒜 𝑎-signals; otherwise, they prefer 𝐵. I refer to this threshold 𝑘𝒜 as a 

type 𝒜 optimal aggregation rule.8 If 𝑘𝒜 = 0, then type 𝒜 voter is said to be purely parti-

san: They prefer alternative 𝐴 regardless of signal profile. Voting for 𝐴 is weakly dominant 

for them. 

 For type ℬ voters, 𝑘ℬ is also defined such that they prefer alternative 𝐴 if and only 

if there are at least 𝑘ℬ 𝑎-signals out of 𝑛. Conditional on 𝑘 𝑎-signals, any type ℬ voter 

prefers alternative 𝐵 if and only if 

 
1

2
≥ Pr(𝜃 ∈ Θ𝐴|𝑘; 𝑛) = 𝐺(𝜋|𝑛 − 𝑘 + 1, 𝑘 + 1). 

 

In other words, type ℬ voters prefer alternative 𝐵 if and only if the posterior probability that 

the state lies in Θ𝐴 is less than or equal to 1 2⁄ . Since the right-hand side of this inequality is 

strictly increasing in 𝑘, there uniquely exists 𝑘ℬ ∈ {1, . . , 𝑛, 𝑛 + 1} such that 

 

Pr(𝜃 ∈ Θ𝐴|𝑘ℬ; 𝑛) >
1

2
≥ Pr(𝜃 ∈ Θ𝐴|𝑘ℬ − 1; 𝑛), 

 

which is equivalent to 

 

𝐺(𝜋|𝑛 − 𝑘ℬ + 1, 𝑘ℬ + 1) >
1

2
≥ 𝐺(𝜋|𝑛 − 𝑘ℬ + 2, 𝑘ℬ). 

  

 Thus, conditional on knowing signal profile 𝑠, type ℬ voters prefer alternative 𝐴 if 

𝑠 contains at least 𝑘ℬ 𝑎-signals, otherwise they prefer 𝐵. This threshold 𝑘ℬ is denoted as a 

type ℬ optimal aggregation rule. If 𝑘ℬ = 𝑛 + 1, then type ℬ voter is said to be purely par-

tisan: Voting for 𝐵 is weakly dominant for them. 

 Depending on 𝜋 and 𝑛, optimal aggregation rules of each type may coincide, that is,  

𝑘𝒜 = 𝑘ℬ. In such cases, voters are said to be perfectly homogenous. 

 

 Example 1: Suppose 𝑛 = 3 and 𝜋 = 3 10⁄ . Then, 𝑘𝒜 = 1 and 𝑘ℬ = 3.        ∎ 

 

In example 1, a single 𝑎-signal is sufficient to persuade type 𝒜 to prefer alternative 𝐴, while 

 
8 Although the type-optimal aggregation rule depends on 𝑛 and 𝜋 in general, I denote 𝑘𝒜  instead of 𝑘𝒜(𝑛, 𝜋) 
for notational convenience. 
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three 𝑎-signals are required to persuade type ℬ voters to prefer 𝐴. 

 

LEMMA 1: For any 𝜋, 𝑘𝒜 𝑛⁄  and 𝑘ℬ 𝑛⁄  has limit 

 

lim
𝑛→∞

𝑘𝒜
𝑛
= 𝜋 

 

lim
𝑛→∞

𝑘ℬ
𝑛
= 1 − 𝜋. 

 

PROOF: See Appendix A.                                                    ∎ 

  

 For example, lim(𝑘𝒜 𝑛⁄ ) = 𝜋 means that 𝑘𝒜 (i.e., the number of 𝑎-signals required 

to persuade type 𝒜  voters to prefer 𝐴 ) divided by 𝑛  converges to Pr(𝜃 ∈ Θ𝐴) = 𝜋  (i.e., 

ex-ante probability that state lies in Θ𝒜). The symmetric argument holds for lim(𝑘ℬ 𝑛⁄ ) =

1 − 𝜋.  

 Lemma 1 guarantees that voters are neither purely partisan nor perfectly homogenous 

with sufficiently large 𝑛. That is, 1 ≤ 𝑘𝒜 < 𝑘ℬ ≤ 𝑛 for sufficiently large 𝑛. 

 

4. Deliberation 

4.1. Large Elections 

 

The purpose of this section is to investigate the conjecture that sharing information truthfully 

in deliberation with sincere voting can overcome potential disagreement and hence yield desir-

able outcomes. To this end, this section begins by defining a strategy, that I call fully revealing 

sincere voting. Formally, the definition of fully revealing sincere voting strategy is as follows.9 

 

DEFINITION: Fully Revealing Sincere Voting 

 

1. At the communication stage, type 𝑡 voter 𝑖 with private signal 𝑠𝑖 truthfully reveals her 

signal. That is, 𝜇𝑖(𝑠𝑖, 𝑡) = 𝑠𝑖 for all 𝑡 ∈ {𝒜,ℬ}. 
 

2. At the voting stage, type 𝑡 voter 𝑖, who observed a (truthful) message profile, votes for 

𝐴 if and only if 𝑘𝑡 ≤ 𝑘, where 𝑘 is the number of the 𝑎-signals in the observed mes-

sage profile.10 

 

 Fully revealing sincere voting requires voters to truthfully reveal their private signals 

 
9 Schulte (2010) referred to this voting behavior given full revelation as “Bayesian sincere voting.” The concept 

is the same as mine. 
10 Under the non-unanimous rule, all voters voting for 𝐴 regardless of the messages can constitute part of an 

equilibrium. However, such voting behavior is weakly dominated by sincere voting based on updated beliefs. I 

rule out such weaky dominated voting behavior. 



12 

 

and then vote based on their own optimal aggregation rule 𝑘𝑡. This voting behavior can be 

interpreted as updated sincere voting. This is because voters, given the full revelation of the 

signal profile, update their posterior belief about the state and then vote as if they alone can 

determine the outcome. 

 If voters are not strategic agents, and hence they non-strategically follow the fully re-

vealing sincere voting profile, then the intuitive conjecture that deliberation should overcome 

potential disagreement and thereby yields desirable outcomes is indeed true. The following 

proposition states this formally. 

 

PROPOSITION 1: Suppose that all voters follow fully revealing sincere voting. Then for any 

𝜋, any 𝑧, and any voting rule, 

 

lim
𝑛→∞

Pr(𝐴 is chosen|𝜃) = 1 𝑖𝑓 𝜃 ∈ 𝛩𝐴 

 

lim
𝑛→∞

Pr(𝐵 is chosen|𝜃) = 1 𝑖𝑓 𝜃 ∈ 𝛩𝐵 

 

Moreover, under majority rule, 

 

lim
𝑛→∞

Pr(majority − preferred alternatives are chosen|𝜃) = 1 𝑖𝑓 𝜃 ∈ 𝛩𝑁. 

 

PROOF: See Appendix A.                                                    ∎ 

 

 Proposition 1 states that, given the fully revealing sincere voting profile, deliberative 

society identifies, with arbitrary precision, alternatives that would be chosen if voters fully 

knew the underlying state in the large elections. This asymptotic property follows from the 

Weak Law of Large Numbers and the fact that 𝑘𝒜 𝑛⁄  and 𝑘ℬ 𝑛⁄  converge to 𝜋 and 1 − 𝜋, 

respectively. 

 However, when voters are strategic agents, they might have incentives to misreport so 

as to manipulate others to vote for their ex-ante biased alternative. In particular, it turns out that 

voters face two different pivotal events: One in which lying induces the different types of voters 

to vote in favor of their ex-ante biased alternatives, and the other in which lying induces like-

minded voters to vote for a wrong direction. Thus, lying may or may not be beneficial. It turns 

out that the overall benefit from lying dominates the loss from it as the size of the electorate 

becomes arbitrarily large. Consequently, truthful communication by all voters is consistent with 

equilibrium behavior only with a small population of voters but not with a large one. The fol-

lowing Theorem 1 states this formally. 

 

THEOREM 1: For any 𝜋, 𝑧, and any voting rule 𝑘, there exists an 𝑛′ such that 𝑛′ ≤ 𝑛 

implies that fully revealing sincere voting strategy is never an equilibrium. 

 
PROOF: See Appendix B.                                                    ∎ 

 

 Theorem 1 establishes that information aggregation via truth-telling by all voters is im-

possible when strategic voters differ in their information and their ideologies. In large elections, 

this is true for any voting rule, 𝑘, and any degree of conflict, 𝜋 ∈ (0, 1 2⁄ ). Therefore, Theo-

rem 1 establishes that the assumption of the conjecture is violated with a large population of 

voters, although increasing the number of voters is necessary for asymptotic efficiency. 

 The effect of voting rules on incentives to share information via cheap talk 
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communication (Austen-smith and Feddersen, 2006) or verifiable disclosure (Mathis, 2011) 

has been studied.11 These studies showed that the voting rule matters for incentives to truthful 

communication when the population is small. However, they did not consider its effect asymp-

totically when the population becomes arbitrarily large. Theorem 1, in contrast, establishes that 

the voting rule is irrelevant asymptotically in large elections; truth-telling regarding the state 

by all voters is inconsistent with equilibrium for any voting rule when the size of the electorate 

is sufficiently large. 

 To gain some intuitions on Theorem 1, let us consider a case where voter 𝑖’s report 

changes the voting outcome, i.e., is pivotal.12 To simplify the discussion below, consider type 

𝒜 voter 𝑖 with a conflicting signal 𝑠𝑖 = 𝑏. Thus, lying, in this case, means that reporting that 

she observed the 𝑎 -signal. A total number of 𝑎 -signals out of 𝑛 − 1  voters is denoted as 

𝑘−𝑖 ≔ #{𝑗 ≠ 𝑖: 𝑠𝑗 = 𝑎}. 

 I argue that voter 𝑖 faces two pivotal events, one in which lying is harmful and the 

other in which it is beneficial. The voting behavior of other voters is solely determined by 

whether or not the number of 𝑎-signals out of 𝑛 reaches their optimal aggregation rule 𝑘𝑡. 
Thus, voter 𝑖’s report can manipulate the voting behavior of type 𝑡 voters when the other 𝑛 −
1  voters observe 𝑘𝑡 − 1  𝑎 -signals. This implies that she faces two pivotal events, one in 

which she can manipulate like-minded voters (i.e., type 𝒜 voters) and the other in which she 

can manipulate the opposed type of voters (i.e., type ℬ voters).  

 Lying is harmful when 𝑖’s report manipulates like-minded voters, that is, when 𝑛 − 1 

voters have observed 𝑘𝒜 − 1 𝑎-signals. This is exactly when voter 𝑖, whose signal is 𝑠𝑖 = 𝑏, 

perceives that 𝐵 is a slightly better alternative. Lying, however, induces like-minded voters to 

vote for the alternative 𝐴, which is the wrong direction. Thus, lying is harmful in this case. On 

the other hand, lying is beneficial when her report can manipulate the different type of voters 

(i.e., type ℬ). To see why it is beneficial, note that, conditional on the event of other voters 

having observed 𝑘ℬ − 1  𝑎 -signals, voter 𝑖  perceives that 𝐴  is better, and lying induces 

them to vote for 𝐴. 

 Theorem 1 shows that, for any voting rule, the benefit from lying dominates the loss 

from it as the size of the electorate becomes arbitrarily large. To gain some intuition on the 

effect of the size, consider again a type 𝒜 voter 𝑖 with 𝑠𝑖 = 𝑏. It turns out that the loss from 

lying vanishes, while the benefit from lying converges to 1 as 𝑛 grows large. First, consider 

the pivotal event in which lying is harmful, that is, 𝑘−𝑖 = 𝑘𝒜 − 1. This is exactly when 𝑖’s 

perception of the better alternative switches. Voter 𝑖, therefore, perceives that alternative 𝐵 is 

slightly better than 𝐴. However, as the size of the electorate grows large, a shift in the posterior 

belief becomes smaller.13 This implies that the loss from lying vanishes as 𝑛 becomes arbi-

trarily large. Next, consider the pivotal event in which lying is beneficial, that is, 𝑘−𝑖 = 𝑘ℬ −
1. In this case, she perceives that the alternative 𝐴 is significantly better than 𝐵. This is be-

cause 𝑘𝒜 is smaller than 𝑘ℬ. Voter 𝑖 becomes more confident that 𝐵 is better as 𝑛 grows 

large since the difference between 𝑘ℬ and 𝑘𝒜 is increasing in 𝑛. Thus, the benefit from ly-

ing converges to 1. The above discussion implies that truth-telling is not incentive compatible 

with sufficiently large 𝑛. 

 

 
11 Jackson and Tan (2003) considered the case where informed experts communicate with the voting body. Similar 

to this paper, they considered a committee with heterogeneous preferences in the sense that both private and 

common components matter. 
12 Given the full revelation at the communication stage, pivotality in the voting state does not provide any addi-

tional information about the state. Thus, I focus on pivotality at the communication stage. 
13 This is similar to the intuition behind Proposition 11 in Morgan and Stocken (2008). 
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4.2. Small Elections 

 

Although truthful communication by all voters is inconsistent with equilibrium for any voting 

rule when the population of voters is sufficiently large, it might constitute an equilibrium with 

a small population of voters. The following example 2 highlights that when the number of 

voters is small, incentives for truthful communication depend on the voting rule. 

 

 Example 2: Suppose 𝜋 = 1 4⁄  and 𝑧 = 1 2⁄  so that voters are neither purely partisan 

nor perfectly homogenous for any 𝑛. Under majority rule, fully revealing sincere voting con-

stitutes an equilibrium if 𝑛 ≤ 9. However, under unanimity rule, fully revealing sincere voting 

is not an equilibrium for any 𝑛.                                                ∎ 

 

 In example 2, the circumstances in which voters are either purely partisan or perfectly 

homogenous are excluded. Before moving on to the analysis of small elections, it is worth 

emphasizing these circumstances. One can easily verify that voters might be either purely par-

tisan or perfectly homogenous when 𝑛 is small. If so, fully revealing sincere voting constitutes 

an equilibrium under any voting rule. For purely homogenous voters, this is because they al-

ways have unanimous agreement after full revelation of any private signals (Coughlan, 2000).  

 However, Lemma 1 excludes these circumstances; for sufficiently large 𝑛, voters are 

neither purely partisan nor perfectly homogenous. Table 2 summarizes the relation between 

voting rule, size of the electorate, and truthful communication. 

 

 
 

 Voting rule matters for truthful communication when 𝑛 is small, and voters are neither 

purely partisan nor purely homogenous. Proposition 2 states that, in such non-trivial cases, the 

unanimity rule is inferior at aggregating information, via truthful communication, for any size 

of the electorate. 

 

PROPOSITION 2: Suppose that the voting rule is unanimity rule and voters are neither purely 

partisan nor perfectly homogeneous. Then fully revealing sincere voting does not constitute an 

equilibrium for any 𝑛. 

 

PROOF: Suppose that unanimous agreement is required to implement alternative 𝐴. Consider 

type 𝒜 voter 𝑖 with 𝑠𝑖 = 𝑏, and suppose that other voters follow fully revealing sincere vot-

ing. The proof is done if I show that lying yields a higher expected payoff than truth-telling. 

Small Large 

Perfectly homogeneous or 

purely partisan

Fully revealing sincere 

voting (FRSV) constitutes 

an equilibrium for any 

voting rule

Never occur

Neither perfectly 

homogeneous nor purely 

partisan

Voting rule matters

FRSV never constitutes 

an equilibrium for any 

voting rule (Theorem 1)

Table 2: Voting Rule, Size of the Electorate, and Truthful Communication
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Consider the pivotal event in which her lie induces the other type 𝒜 voters to vote for 𝐴, 

which, she perceives, is the wrong direction. In this pivotal event, she can prevent alternative 

𝐴 from winning by exercising her veto. Thus, the pivotal event in which lying is harmful never 

occurs. On the other hand, the pivotal event in which lying is beneficial occurs with positive 

probability. To see why it is positive, it should be noted that such a pivotal event is formally 

given by 𝑘−𝑖 = 𝑘𝒜 − 1  & #{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 1 , where #{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ}  is the number of 

types ℬ voters other than 𝑖. Thus, voter 𝑖 deviates from fully revealing sincere voting. An 

analogous argument can be applied to the voting rule in which unanimous agreement is required 

to implement 𝐵.                                                            ∎ 

 

 The intuition behind Proposition 2 is that voters can make the loss from lying zero by 

exercising vetoes under unanimity rule. Consider type 𝒜 voter 𝑖 with a conflicting signal 

𝑠𝑖 = 𝑏. By lying (𝑚𝑖
′ = 𝑎), she induces like-minded voters to vote for 𝐴, which, she perceives, 

is the wrong direction. However, she can implement 𝐵 by exercising veto even if she tells a 

lie. Thus, she tells a lie without worrying about the possibility that her lie induces a wrong 

alternative to win. 

 Austen-smith and Feddersen (2006) showed that truthful revelation under unanimity 

rule is never an equilibrium when voters have heterogenous preferences. Consistent with this 

observation, I show that truthful communication regarding the state is never an equilibrium 

under unanimity rule when voters have partially conflicting interest under non-trivial situations 

(i.e., 1 ≤ 𝑘𝒜 < 𝑘ℬ ≤ 𝑛). 

 Proposition 2 states that, in such non-trivial cases (i.e., voters are neither purely partisan 

nor perfectly homogenous), truth-telling by all voters is never an equilibrium under unanimity 

for any size of the electorate. To further understand how voting rules affect incentives to share 

private information truthfully, suppose 𝑧 = 1 2⁄  so that the distribution of types is symmetric. 

With this simplification, truth-telling by all voters is the most likely to become equilibrium 

under majority rule. The upper bound of the population for which truth-telling by all voters is 

an equilibrium, which depends on voting rule, is maximized under majority rule. 

 

PROPOSITION 3: Suppose 𝑧 = 1 2⁄  and voters are neither purely partisan nor perfectly ho-

mogenous. Let 𝑘 be a super-majority voting rule. If fully revealing sincere voting constitutes 

an equilibrium under 𝑘 and 𝑛, then it is also an equilibrium under majority rule and 𝑛. 

 

PROOF: See Appendix C.                                                    ∎ 

 

 Proposition 3 states that, in small elections with partially conflicting voters, such as a 

committee of experts, company boards, or faculty meetings, majority rule is the most likely to 

succeed at aggregating information if there is no ex-ante majority or minority (i.e., 𝑧 = 1 2⁄ ). 

The intuitive reason is that if voting requires a supermajority of votes to implement an alterna-

tive, say 𝐵, then type ℬ voters may be reluctant to share their private information. On the 

other hand, the majority rule is the only voting rule that treats alternatives symmetrically. It 

requires a majority of approval for both alternatives to win. 

 

5. Conclusions 

 

This study considers situations outside the jury metaphor: an electorate with partially 
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conflicting interests rather than common interests. Voters may or may not have common inter-

ests depending on the underlying state. In other words, the truth, such as guilty or innocent, 

and taste, such as left or right, can be an issue, but voters cannot tell which issues are at stake.  

 In this situations, this study investigates whether and when deliberation aggregates in-

formation dispersed among individuals, thereby identifying both correct alternatives and alter-

natives preferred by the majority simultaneously in large elections. 

 Intuitively, one can conjecture that aggregating information helps reduce uncertainty, 

and voting sincerely based on the deliberative outcome can overcome potential disagreement 

and yield desirable outcomes. Indeed, this conjecture is statistically valid, and increasing the 

number of voters asymptotically identifies desirable decisions with arbitrary precision. This 

conjecture, however, relies on the assumption that all voters behave non-strategically, that is, 

truth-telling in deliberation with sincere voting.  

 Theorem 1 shows that this assumption is false from a game-theoretic perspective when 

the number of voters is sufficiently large. In particular, Theorem 1 shows that truthful commu-

nication is inconsistent with equilibrium behavior for any voting rule and any degree of conflict 

when the number of voters becomes arbitrarily large. Therefore, this study shows that it is 

impossible for large elections to simultaneously identify both correct alternatives and alterna-

tives preferred by the majority via truthful communication when strategic voters have partially 

conflicting interests. 

 This study focuses on the existence of a fully revealing sincere voting equilibrium 

(Coughlan, 2000; Austen-smith and Feddersen, 2006; Schulte, 2010). Since Austen-smith and 

Banks (1996) pointed out that the sincere voting assumption in the Condorcet jury voting model 

is far from innocuous, subsequent work has investigated the information aggregation property 

of mixed strategy equilibria (Feddersen and Pesendorfer, 1997; Wit, 1998; Gerardi, 2000). Mor-

gan and Stocken (2006) studied the information aggregation properties of the asymmetric pure 

strategy equilibrium. An exciting question unanswered in this study is whether and when al-

lowing mixed strategies or asymmetric pure strategy profiles would simultaneously identify 

correct alternatives and majority-preferred alternatives in equilibrium in the limit under some 

voting rule. These questions are left for future research. 

 

Appendix A: Proof of Lemma 1 and Proposition 1 

Preliminaries 

 

Let 𝑀(𝛼, 𝛽)  denote a median of Beta(𝛼, 𝛽) . That is, 𝑀(𝛼, 𝛽)  is defined implicitly by 

𝐺(𝑀(𝛼, 𝛽)|𝛼, 𝛽) = 1 2⁄ . I first provide a useful lemma about the beta distribution and its me-

dian. 

 

LEMMA A1 (Payton et al., 1989) 

 The median of Beta(𝛼, 𝛽) is bounded by its mean and the mode. More specifically,  

 

(1) If 1 < 𝛼 < 𝛽 then  
𝛼 − 1

𝛼 + 𝛽 − 2
≤ 𝑀(𝛼, 𝛽) ≤

𝛼

𝛼 + 𝛽
. 

 

(2) If 1 < 𝛽 < 𝛼 then  
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𝛼 − 1

𝛼 + 𝛽 − 2
≥ 𝑀(𝛼, 𝛽) ≥

𝛼

𝛼 + 𝛽
. 

 

The following lemma is useful.  

 

LEMMA A2: 𝑘ℬ = 𝑛 + 1 − 𝑘𝒜. 

 

PROOF OF LEMMA A2: 

It follows from the symmetry between type 𝒜 and type ℬ voters concerning the informa-

tional environment.                                                          ∎ 

 

Proof of Lemma 1 

 

I first claim that for any 𝑛 and 𝜋, 

 

𝑛𝜋 − 1 < 𝑘𝒜 < 𝑛𝜋 + 1. (𝐴. 1) 
 

Eq. (A.1) implies that 𝑘𝒜 𝑛⁄   converges to 𝜋  as 𝑛 → ∞ . Moreover, the identity 𝑛 + 1 −
𝑘𝒜 = 𝑘ℬ implies that eq. (A.1) is equivalent to 

 

1 − 𝜋 <
𝑘ℬ
𝑛
< 1 − 𝜋 +

2

𝑛
, 

 

which implies that (𝑘ℬ 𝑛⁄ )𝑛 converges to 1 − 𝜋 as 𝑛 → ∞. Thus, if I prove eq. (A.1), then 

proof of Lemma 1 is done. 

 Eq. (A.1) is obtained as follows. By definition, 𝑘𝒜 satisfies Pr(𝜃 ∈ Θ𝐴 ∪ Θ𝑁|𝑘𝒜 −
1; 𝑛) < 1 2⁄ , which is equivalent to 

 

𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) <
1

2
. 

 

This implies that 1 − 𝜋  is less than 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜),  which is the median of 

Beta(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜). Moreover, from Lemma A1, 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) is bounded above 

by its mode,14 that is, 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) ≤ (𝑛 − 𝑘𝒜 + 1) 𝑛⁄ . Thus, 

 

1 − 𝜋 <
𝑛 − 𝑘𝒜 + 1

𝑛
. (𝐴. 2) 

  

 Similarly, by definition, 𝑘𝒜  satisfies 1 2⁄ ≤ Pr(𝜃 ∈ Θ𝐴 ∪ Θ𝑁|𝑘𝒜; 𝑛),  which is 

equivalent to 

 
1

2
≤ 𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1). 

 

 
14 To see this, note that the first parameter of Beta(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) is greater than the second one. 
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This implies that 1 − 𝜋  is greater than or equal to 𝑀(𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1),  while 

𝑀(𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1) is bounded below by its mean:15 

 
𝑛 − 𝑘𝒜 + 1

𝑛 + 2
≤ 𝑀(𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1). 

 

Thus, 

 
𝑛 − 𝑘𝒜 + 1

𝑛 + 2
≤ 1 − 𝜋. (𝐴. 3) 

 

Combining eq. (A.2) and (A.3), I obtain 

 
𝑛 − 𝑘𝒜 + 1

𝑛 + 2
≤ 1 − 𝜋 <

𝑛 − 𝑘𝒜 + 1

𝑛
, 

 

which is equivalent to 

 

𝑛𝜋 + 2𝜋 − 1 ≤ 𝑘𝒜 < 𝑛𝜋 + 1. 16 

 

This implies eq. (A.1) since 𝜋 ∈ (0, 1 2⁄ ).                                        ∎ 
 

Proof of Proposition 1 

 

I first prove the first part of Proposition 1. First, suppose 𝜃 ∈ Θ𝐴 = [0, 𝜋) so that 1 − 𝜋 <
1 − 𝜃 = Pr(𝑠𝑖 = 𝑎|𝜃). Let 𝑘 be the number of 𝑎-signals among 𝑛 voters conditional on 𝜃. 

Then 𝑘 𝑛⁄  is random variable with mean 1 − 𝜃. Note that the alternative 𝐴 is chosen with 

probability 1 in the event 𝑘 𝑛⁄ > 𝑘ℬ 𝑛⁄  since voters unanimously agree on voting for 𝐴 if 

𝑘 > 𝑘ℬ . I will show that Pr(𝑘 𝑛⁄ > 𝑘ℬ 𝑛⁄ |𝜃)  converges to 1 as 𝑛 → ∞  by using (1) the 

Weak Law of Large Numbers and (2) the fact that (𝑘ℬ 𝑛⁄ )𝑛 converges to 1 − 𝜋 as 𝑛 → ∞. 

Recall that (𝑘 𝑛⁄ )𝑛  is a sequence of random variables whose mean is 1 − 𝜃  for each 𝑛 , 

while (𝑘ℬ 𝑛⁄ )𝑛 is a sequence of real numbers. 

 Concerning the sequence (𝑘 𝑛⁄ )𝑛, the Weak Law of Large Numbers implies that, for 

small enough 𝜀 > 0, we have17 

 

lim
𝑛→∞

Pr (
𝑘

𝑛
> 1 − 𝜋 + 𝜀|𝜃) = 1. (𝐴. 4) 

 

Concerning the sequence (𝑘ℬ 𝑛⁄ )𝑛, from Lemma 1, it has the limit 

 

lim
𝑛→∞

𝑘ℬ
𝑛
= 1 − 𝜋. (𝐴. 5) 

  

 Take arbitrary small 𝜀 > 0 . Then, from eq. (A.4), there exists an 𝑛′ ∈ ℕ  such that 

 
15 To see this, note that the first parameter of Beta(𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1) is greater than the second one. 
16 Note that eq. (A.2) is equivalent to 𝑘𝒜 < 𝑛𝜋 + 1, and eq. (A.3) is equivalent to 𝑛𝜋 + 2𝜋 − 1 ≤ 𝑘𝒜 . 
17 More specifically, if 𝜀 is so small that 1 − 𝜋 + 𝜀 < 1 − 𝜃. 
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𝑛′ ≤ 𝑛 implies 

 

1 − 𝜀 < Pr (
𝑘

𝑛
> 1 − 𝜋 + 𝜀|𝜃) . (𝐴. 6) 

 

From eq. (A.5), there also exists an 𝑛′′ ∈ ℕ, for this 𝜀, such that 𝑛′′ ≤ 𝑛 implies 

 
𝑘ℬ
𝑛
< 1 − 𝜋 + 𝜀. (𝐴. 7) 

 

Thus, from eqs. (A.6) and (A.7), max{𝑛′, 𝑛′′} ≤ 𝑛 implies that  

 

1 − 𝜀 < Pr (
𝑘

𝑛
> 1 − 𝜋 + 𝜀|𝜃) ≤ Pr (

𝑘

𝑛
>
𝑘ℬ
𝑛
|𝜃). 

 

Since 𝜀 is arbitrary, I have shown that Pr(𝑘 𝑛⁄ > 𝑘ℬ 𝑛⁄ |𝜃) converges to 1 if 𝜃 ∈ Θ𝐴. 

 The proof for 𝜃 ∈ Θ𝐵 = (1 − 𝜋, 1] is analogous: Pr(𝑘 𝑛⁄ < 𝑘𝒜 𝑛⁄ |𝜃) converges to 

1 if 𝜃 ∈ Θ𝐵 due to (1) the Weak Law of Large Numbers and the fact that (2) (𝑘𝒜 𝑛⁄ )𝑛 con-

verges to 𝜋. 

 Next, I prove the second part, and hence suppose that voting rule is majority. Suppose 

𝜃 ∈ Θ𝑁 = (𝜋, 1 − 𝜋) so that 𝜋 < 1 − 𝜃 < 1 − 𝜋. First, note that the alternative (ex-ante) pre-

ferred by the majority always wins in the event 𝑘𝒜 𝑛⁄ < 𝑘 𝑛⁄ < 𝑘ℬ 𝑛⁄  since the voting rule is 

majority and voters vote according to their type if 𝑘𝒜 < 𝑘 < 𝑘ℬ . I will show that 

Pr(𝑘𝒜 𝑛⁄ < 𝑘 𝑛⁄ < 𝑘ℬ 𝑛⁄ |𝜃) converges to 1 if 𝜃 ∈ Θ𝑁. 

 Concerning the sequence of random variables (𝑘 𝑛⁄ )𝑛, the Weak Law of Large Num-

bers implies that, for small enough 𝜀,18 

 

lim
𝑛→∞

Pr (𝜋 + 𝜀 <
𝑘

𝑛
< 1 − 𝜋 − 𝜀|𝜃) = 1. (𝐴. 8) 

 

Concerning the sequences (𝑘𝒜 𝑛⁄ )𝑛  and (𝑘ℬ 𝑛⁄ )𝑛 , they have the limits 𝜋  and 1 − 𝜋 , re-

spectively. 

 Take arbitrary small 𝜀 > 0. Then, from eq. (A.8), there exists an 𝑛′ such that 𝑛′ ≤ 𝑛 

implies  

 

1 − 𝜀 < Pr (𝜋 + 𝜀 <
𝑘

𝑛
< 1 − 𝜋 − 𝜀|𝜃), 

 

 
18 More specifically, 𝜀 is so small that 1 − 𝜃 ∈ (𝜋 + 𝜀, 1 − 𝜋 − 𝜀). 
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𝑘𝒜
𝑛
< 𝜋 + 𝜀, 

 

and 

 

1 − 𝜋 − 𝜀 <
𝑘ℬ
𝑛
. 

 

Thus, we have 

 

1 − 𝜀 < Pr (𝜋 + 𝜀 <
𝑘

𝑛
< 1 − 𝜋 − 𝜀|𝜃) ≤ Pr (

𝑘𝒜
𝑛
<
𝑘

𝑛
<
𝑘ℬ
𝑛
|𝜃). 

 

Since 𝜀 is arbitrary, we see that 

 

lim
𝑛→∞

Pr (
𝑘𝒜
𝑛
<
𝑘

𝑛
<
𝑘ℬ
𝑛
|𝜃) = 1  𝑖𝑓 𝜃 ∈ Θ𝑁 . ∎ 

 

Appendix B: Proof of Theorem 1 

 

Preliminaries 

 

To prove Theorem 1, I first provide Lemma B1 and Lemma B2, which are used to describe 

incentive compatibility conditions and their asymptotic behavior. Let Pr(〈𝑛 − 1, 𝑘𝑡 − 1〉|𝑠𝑖) 

denote the conditional probability that 𝑛 − 1  voters receive 𝑘𝑡 − 1  𝑎 -signals, given that 

voter 𝑖 receives 𝑠𝑖 ∈ {𝑎, 𝑏}, where 𝑡 ∈ {𝒜,ℬ}. 

 

LEMMA B1: 

(𝑎) Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏) =
2𝑘ℬ

𝑛(𝑛 + 1)
 

 

(𝑏) Pr(〈𝑛 − 1, 𝑘ℬ − 1〉|𝑠𝑖 = 𝑏) =
2𝑘𝒜

𝑛(𝑛 + 1)
 

 

(𝑐) Pr(〈𝑛 − 1, 𝑘ℬ − 1〉|𝑠𝑖 = 𝑎) =
2𝑘ℬ

𝑛(𝑛 + 1)
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(𝑑) Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑎) =
2𝑘𝒜

𝑛(𝑛 + 1)
 

 

PROOF OF LEMMA B1: 

 

I only prove (𝑎) because the analogous argument shows the other cases. 

 
Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏)

= ∫(
𝑛 − 1
𝑘𝒜 − 1

) (1 − 𝜃)𝑘𝒜−1𝜃𝑛−𝑘𝒜𝑔(𝜃|2,1)𝑑𝜃

1

0

, (𝐵. 1)
 

 

where 𝑔(𝜃|2,1) is a posterior density of 𝜃 conditional on 𝑠𝑖 = 𝑏. Since 𝑔(𝜃|2,1) is a den-

sity of Beta(2,1), it has the form 

 

𝑔(𝜃|2,1) =
1

ℬ(2,1)
𝜃. 

 

Thus, eq. (B.1) becomes 

 

Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏) =
(
𝑛 − 1
𝑘𝒜 − 1

)

ℬ(2,1)
∫(1 − 𝜃)𝑘𝒜−1𝜃𝑛−𝑘𝒜+1𝑑𝜃

1

0

 

 

= (
𝑛 − 1
𝑘𝒜 − 1

)
ℬ(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)

ℬ(2,1)
 

 

=
2(𝑛 − 𝑘𝒜 + 1)

𝑛(𝑛 + 1)
=

2𝑘ℬ
𝑛(𝑛 + 1)

, 

 

where the last equality follows from the identity 𝑘ℬ = 𝑛 − 𝑘𝒜 + 1.                    ∎ 

 

LEMMA B2 (Krishnamoorthy, 2015) 

 

Let 𝐺(∙ |𝛼, 𝛽) be the cumulative distribution function of Beta(𝛼, 𝛽), where 𝛼, 𝛽 > 1. 

  
(1) 𝐺(𝑥|𝛼, 𝛽) = 1 − 𝐺(1 − 𝑥|𝛼, 𝛽)  

 
(2) 𝐺(𝑥|𝛼, 𝛽) > 𝐺(𝑥|𝛼 + 1, 𝛽)  

 
(3) 𝐺(𝑥|𝛼, 𝛽) > 𝐺(𝑥|𝛼, 𝛽 − 1)  

 

(4) 𝐺(𝑥|𝛼, 𝛼) = 𝐺(𝑥|𝛼, 𝛼) =
1

2
𝐺 (1 − 4(𝑥 − 1 2⁄ )2|𝛼,

1

2
) (𝑥 ≤ 1 2⁄ ).  

 

Proof of Theorem 1 
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From Proposition 2, it suffices to consider a non-unanimous voting rule. Since 𝑛 is allowed 

to go to infinity, it is convenient to represent the non-unanimous voting rule 𝑘 as the fraction 

of votes needed to implement alternative 𝐴, 𝑟 ∈ (0,1). The fraction 𝑟 represents 𝑘 if 𝑘 =
𝑛𝑟, which means that alternative 𝐴 is chosen if and only if 𝑛𝐴 𝑛⁄ ≥ 𝑟, where 𝑛𝐴 is the num-

ber of votes for 𝐴. Since I focus on large 𝑛, it is innocuous to assume 0 < 𝑘𝒜 < 𝑘ℬ ≤ 𝑛 

because this is true for sufficiently large 𝑛 due to Lemma 1.  

 This proof has two steps. The first step provides incentive compatibility conditions in 

the communication stage for voters whose signals contradict with their types.19 Then, the sec-

ond step proves that at least one of these conditions is violated with sufficiently large 𝑛. 

 

STEP 1: Incentive Compatibility Conditions 

 

First, consider type 𝒜 voter 𝑖 with 𝑠𝑖 = 𝑏. For truth-telling to be incentive compatible, it is 

necessary that reporting 𝑚𝑖 = 𝑏 (and then following updated sincere voting) yields higher 

payoff than the payoff from reporting 𝑚𝑖
′ = 𝑎. Given that voters other than 𝑖 follow fully 

revealing sincere voting, the events in which her report is pivotal are two-fold. One pivotal 

event is that voters other than 𝑖 receive 𝑘𝒜 − 1 𝑎-signals, and the other type 𝒜 voters alone 

can determine the outcome. The other pivotal event is that the other voters receive 𝑘ℬ − 1 𝑎-

signals and type ℬ voters can alone determine the outcome.  

 To see this, note that for 𝑖’s report to be pivotal, it must be that 𝑖’s report changes the 

voting behavior of other voters. This can happen only when the number of voters other than 𝑖 
who receive 𝑎-signal is either 𝑘𝒜 − 1 or 𝑘ℬ − 1. For example, conditional on other voters 

having received 𝑘𝒜 − 1 𝑎-signals, reporting 𝑚𝑖
′ = 𝑏 induces them to vote unanimously for 

𝐵, while reporting 𝑚𝑖 = 𝑎 induces them to vote according their type (i.e., type 𝒜 and type 

ℬ voters vote for 𝐴 and ℬ, respectively). Thus, conditional on other voters having received 

𝑘𝒜 − 1 𝑎-siganls, 𝑖’s report becomes pivotal (i.e., reporting 𝑚𝑖
′ = 𝑏 causes alternative 𝐵 to 

win, while 𝑚𝑖 = 𝑎 induces alternative 𝐴 to win) if and only if other type 𝒜 voters alone 

can induce alternative 𝐴 to win, that is, #{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘 = 𝑛𝑟. An analogous argument 

holds for the case where the other voters receive 𝑘ℬ − 1 𝑎-signals. 

 Consequently, 𝑖’s incentive compatibility condition is given by the following. 

 

Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏) ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟]

∙ (𝐸𝜃[𝑢𝒜(𝐵, 𝜃)|𝑘𝒜 − 1; 𝑛] − 𝐸𝜃[𝑢𝒜(𝐴, 𝜃)|𝑘𝒜 − 1; 𝑛]) 
 

+Pr(〈𝑛 − 1, 𝑘ℬ(𝑛) − 1〉|𝑠𝑖 = 𝑏) ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟]

∙ (𝐸𝜃[𝑢𝒜(𝐵, 𝜃)|𝑘ℬ − 1; 𝑛] − 𝐸𝜃[𝑢𝒜(𝐴, 𝜃)|𝑘ℬ − 1; 𝑛]) ≥ 0. 
 

Note that Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏) ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟]  is the probability of the 

pivotal event in which lying is harmful. To see why it is harmful, note that voter 𝑖, privately 

knowing 𝑠𝑖 = 𝑏 , perceives that 𝐵  is a better alternative conditional on 𝑘𝒜 − 1  𝑎 -signals 

among 𝑛  voters, including 𝑖 . On the other hand, Pr(〈𝑛 − 1, 𝑘ℬ − 1〉|𝑠𝑖 = 𝑏) ∙ Pr[#{𝑗 ≠

𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] is the probability of the pivotal event in which lying is beneficial. 

 
19 Note that, given full revelation of the entire signal profile, updated sincere voting behavior is weakly dominant 

for all voters and for all revealed message profiles. Thus, it suffices to consider the pivotality in communication 

stages rather pivotality in voting stages. 



23 

 

To see why it is beneficial, note that 𝑖 perceives alternative 𝐴 as better conditional on 𝑘ℬ −
1 𝑎-signals among 𝑛 voters. 

 Using the distribution function of the beta distribution, 𝐺(∙ | ∙,∙), I obtain 

 

𝐸𝜃[𝑢𝒜(𝐵, 𝜃)|𝑘𝒜 − 1; 𝑛] − 𝐸𝜃[𝑢𝒜(𝐴, 𝜃)|𝑘𝒜 − 1; 𝑛] = 1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)⏟                    
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

, 

 

and  

 

𝐸𝜃[𝑢𝒜(𝐵, 𝜃)|𝑘ℬ − 1; 𝑛] − 𝐸𝜃[𝑢𝒜(𝐴, 𝜃)|𝑘ℬ − 1; 𝑛] = 1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘ℬ + 2, 𝑘ℬ)⏟                    
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

. 

 

Therefore, 𝑖’s incentive compatibility condition becomes 

 

Pr(〈𝑛 − 1, 𝑘𝒜 − 1〉|𝑠𝑖 = 𝑏) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] (1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)) + 

Pr(〈𝑛 − 1, 𝑘ℬ − 1〉|𝑠𝑖 = 𝑏) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] (1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘ℬ + 2, 𝑘ℬ))

≥ 0. 
 

Moreover, using the identity 𝑘𝒜 = 𝑛 + 1 − 𝑘ℬ and Lemma B1, this is equivalent to 

 
𝑘ℬ
𝑛
∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] ∙ (1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)) + 

𝑘𝒜
𝑛
Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] (1 − 2𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 − 𝑘𝒜 + 1)) ≥ 0. (𝐵. 2) 

 

 

 Similarly, the incentive compatibility condition for type ℬ voter 𝑖′ with 𝑠𝑖′ = 𝑎 is 

given by 

 
𝑘ℬ
𝑛
Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] ∙ (2𝐺(𝜋|𝑛 − 𝑘ℬ + 1, 𝑘ℬ + 1) − 1) + 

𝑘𝒜
𝑛
Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] ∙ (2𝐺(𝜋|𝑛 − 𝑘𝒜 + 1, 𝑘𝒜 + 1) − 1) ≥ 0. 

 

Using the identity 𝑘𝒜 = 𝑛 + 1 − 𝑘ℬ and 𝐺(𝑥|𝛼, 𝛽) = 1 − 𝐺(1 − 𝑥|𝛼, 𝛽) in Lemma B2 (1), 

this is equivalent to 

 
𝑘ℬ
𝑛
Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] ∙ (1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)) + 

𝑘𝒜
𝑛
Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] (1 − 2𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 − 𝑘𝒜 + 1)) ≥ 0. (𝐵. 3) 

 

STEP 2: Asymptotic Behavior of Incentive Compatibility Conditions 
 

The second step contains the following three claims whose proofs are shown later. 

Here, I make the following claims: 

 

𝑪𝑳𝑨𝑰𝑴 𝟏: lim
𝑛→∞

𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 − 𝑘𝒜 + 1) = 1  
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𝑪𝑳𝑨𝑰𝑴 𝟐: lim
𝑛→∞

𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) =
1

2
 

 

CLAIM 3: If 𝑧 = 𝑟, then 

 

lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] = lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] =
1

2
. 

 

Otherwise, exactly one of the followings must be true. 

 

(1) lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] = 1 𝑎𝑛𝑑 lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] = 0  

 

(2) lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] = 0 𝑎𝑛𝑑 lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] = 1  

 

 These claims together imply that there is at least one type of voter whose incentive 

compatibility condition is violated for sufficiently large 𝑛. For instance, suppose that the fol-

lowing in Claim 3 is true. 

 

lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑛𝑟] = 0 𝑎𝑛𝑑 lim
𝑛→∞

Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑛𝑟] = 1 

 

Then the incentive compatibility condition for a type 𝒜 voter whose signal conflicts, eq. (B.2), 

is violated for sufficiently large 𝑛. In particular, the left-hand side of eq. (B.2) converges to 

−𝜋. To see this, it should be noted that Claims 1 and 2 state that (1) the loss from lying condi-

tional on pivotality converges to 0 and (2) the benefit from lying converges to 1. Moreover, by 

Claim 3, the probability that the like-minded voters can determine the outcome and the proba-

bility that the opposed type can do so converge to 0 and 1, respectively. Thus, due to lemma 1, 

the left-hand side of eq. (B.2) converges to −𝜋.                                    ∎ 

 

Proof of Claim 1 

 

Since 𝑘𝒜 + 1 ≤ 𝑛 + 1 − 𝑘𝒜, we obtain 

 

𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 + 1 − 𝑘𝒜) ≥ 𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑘𝒜 + 1) = 1 − 𝐺(𝜋|𝑘𝒜 + 1, 𝑘𝒜 + 1), 
 

where the first inequality comes from Lemma B2 (3) and the second equality comes from the 

identity 𝐺(𝑥|𝛼, 𝛽) = 1 − 𝐺(1 − 𝑥|𝛼, 𝛽) in Lemma B2 (1). Thus, it suffices to show that  

 

lim
𝑛→∞

𝐺(𝜋|𝑘𝒜 + 1, 𝑘𝒜 + 1) = 0. 

 

Here, from Lemma B2 (4), the distribution function of the symmetric beta distribution with 

parameter 𝑘𝒜 + 1, 𝐺(𝜋|𝑘𝒜 + 1, 𝑘𝒜 + 1), can be expressed as follows. 

 

𝐺(𝜋|𝑘𝒜 + 1, 𝑘𝒜 + 1) =
1

2
𝐺 (4𝜋(1 − 𝜋)|𝑘𝒜 + 1,

1

2
). 

 

Therefore, it suffices to show the following eq. (B.4). 
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lim
𝑛→∞

𝐺 (4𝜋(1 − 𝜋)|𝑘𝒜 + 1,
1

2
) = 0. (𝐵. 4) 

 

 To prove eq. (B.4), I use an 𝜀-quantile function of Beta(𝛼, 𝛽), which is denoted by 

𝑞𝜀(∙)  (Askitis, 2021). To define this function, I first define an 𝜀 -quantile of Beta(𝛼, 𝛽) : A 

value 𝑞𝜀 ∈ [0,1]  is an 𝜀 -quantile of Beta(𝛼, 𝛽)  if 𝐺(𝑞𝜀|𝛼, 𝛽) = 𝜀. 20  An 𝜀 -quantile func-

tion of Beta(𝛼, 𝛽) is defined as follows: Let 𝜀 ∈ (0,1) and the second parameter 𝛽 be fixed. 

A function 𝑞𝜀(∙) assigns to the first parameter 𝛼 an 𝜀-quantile of Beta(𝛼, 𝛽), 𝑞𝜀(𝛼). That is, 

𝑞𝜀(𝛼) is defined implicitly as follows. 

 

𝐺(𝑞𝜀(𝛼)|𝛼, 𝛽) = 𝜀. 
 

 Askitis (2021) studied the asymptotic behavior of the function 𝑞𝜀(∙) when the input 

(i.e., first parameter 𝛼) goes to infinity. 

 

LEMMA B3 (Askitis, 2021)  Let 𝜀 ∈ (0,1) and the second parameter 𝛽 > 0 be fixed. Then 

function 𝑞𝜀(∙) has the limit 

 

lim
𝛼→∞

𝑞𝜀(𝛼) = 1. 

  

 To prove eq. (B.4), I use this Lemma B3 and the fact that 𝑘𝒜 + 1 diverges as 𝑛 → ∞. 

Take 𝜀 ∈ (0,1) arbitrarily. Due to Lemma B3 and the fact that 𝑘𝒜 + 1 → ∞ as 𝑛 → ∞, we 

obtain 

  

lim
𝑛→∞

𝑞𝜀(𝑘𝒜 + 1) = 1. 

 

Therefore, since 4𝜋(1 − 𝜋) < 1, there exists an 𝑛′ such that 𝑛′ ≤ 𝑛 implies 

 

4𝜋(1 − 𝜋) < 𝑞𝜀(𝑘𝒜 + 1). 
 

Thus, 𝑛′ ≤ 𝑛 implies 

 

𝐺 (4𝜋(1 − 𝜋)|𝑘𝒜 + 1,
1

2
) < 𝐺 (𝑞𝜀(𝑘𝐴 + 1)|𝑘𝒜 + 1,

1

2
) = 𝜀. 

 

Since 𝜀 ∈ (0,1) is arbitrary, I have shown eq. (B.4).                                ∎ 

 

Proof of Claim 2 

 

In Beta(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) , the first parameter, 𝑛 − 𝑘𝒜 + 2 , is greater than the second, 𝑘𝒜 . 

Therefore, from Lemma A1 (2), the median of Beta(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜), 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜), 
satisfies 

 

 
20 1 2⁄ -quantile is called median. 
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𝑛 − 𝑘𝒜 + 2

𝑛 + 2
≤ 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) ≤

𝑛 − 1 + 𝑘𝒜
𝑛

. 

 

From the identity 𝑘ℬ = 𝑛 + 1 − 𝑘𝒜 in Lemma A2, this can be rearranged as follows. 

 
𝑘ℬ + 1

𝑛 + 2
≤ 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) ≤

𝑘ℬ
𝑛
. (𝐵. 5) 

 

Moreover, the right-hand side of eq. (B.5), 𝑘ℬ 𝑛⁄ , is bounded above as follows. 

 
𝑘ℬ
𝑛
< 1 − 𝜋 +

2

𝑛
. (𝐵. 6) 

 

This is due to the fact that 𝑛𝜋 − 1 < 𝑘𝒜 < 𝑛𝜋 + 1 and the identity 𝑘ℬ = 𝑛 + 1 − 𝑘𝒜 . 

 Concerning the left-hand side of eq. (B.5), (𝑘ℬ + 1) (𝑛 + 2)⁄ , it is bounded below as 

follows. 

 

1 − 𝜋 −
1

𝑛 + 2
<
𝑘ℬ + 1

𝑛 + 2
. (𝐵. 7) 

 

Note that eq. (B.7) can be derived from the following algebraic manipulation. 

 

1 − 𝜋 <
𝑘ℬ
𝑛
⇔
𝑛(1 − 𝑡) + 1

𝑛 + 2
<
𝑘ℬ + 1

𝑛 + 2
 

 

⇔
𝑛(1 − 𝜋) + 1 + 2(1 − 𝜋) − 2(1 − 𝜋)

𝑛 + 2
<
𝑘ℬ + 1

𝑛 + 2
 

 

⇔ 1− 𝜋 −
1 − 2𝜋

𝑛 + 2
<
𝑘ℬ + 1

𝑛 + 2
, 

 

where 1 − 𝜋 < 𝑘ℬ 𝑛⁄  is true by Lemma 1 and 𝜋 < 1 2⁄ . 

 Thus, from eqs. (B.5), (B.6), and (B.7), we obtain 

 

1 − 𝜋 −
1

𝑛 + 2
< 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) < 1 − 𝜋 +

2

𝑛
, 

 

which can be rearranged as follows. 

 

𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) −
2

𝑛
< 1 − 𝜋 < 𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) +

1

𝑛 + 2
. 

 

This implies that 

 

lim
𝑛→∞

𝐺 (𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) −
2

𝑛
|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) =

1

2
, 

 

and 
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lim
𝑛→∞

𝐺 (𝑀(𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) +
1

𝑛 + 2
|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) =

1

2
. 

 

Thus, we obtain 

 

lim
𝑛→∞

𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜) =
1

2
. ∎ 

 

Proof of Claim 3 

 

Case 1: 𝑧 ≠ 𝑟. 
Suppose 𝑧 > 𝑟. I will show that  

 

lim
𝑛→∞

Pr [
#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜}

𝑛
≥ 𝑟] = 1, (𝐵. 8) 

 

and 

 

lim
𝑛→∞

Pr [
#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ}

𝑛
≥ 1 +

1

𝑛
− 𝑟] = 0. (𝐵. 9)  

 

 First, I will show eq. (B.8). Let 𝑋𝑛  denote a random variable #{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} 𝑛⁄ , 

and its expectation and variance are denoted by 𝜇𝑛 and 𝜎𝑛
2, respectively. Take 𝛿 > 0 such 

that 𝑟 < 𝑧 − 𝛿. Then it suffices to show that 

 

lim
𝑛→∞

Pr[𝑋𝑛 ∈ [𝑧 − 𝛿, 𝑧 + 𝛿]] = 1. 

 

Take arbitrary small 𝜀 > 0. I will argue that there exists an 𝑛∗ such that 𝑛∗ ≤ 𝑛 implies that  

 

1 − 𝜀 < Pr[𝑋𝑛 ∈ [𝑧 − 𝛿, 𝑧 + 𝛿]]. 
 

First, note that 𝜇𝑛 and 𝜎𝑛
2 have the limits21 

 
lim
𝑛→∞

𝜇𝑛 = 𝑧, (𝐵. 10) 

 

lim
𝑛→∞

𝜎𝑛
2 = 0. (𝐵. 11) 

 

By Chebyshev’s inequality, we obtain 

 

1 −
𝜎𝑛
2

(𝛿 2⁄ )2
≤ Pr [𝑋𝑛 ∈ [𝜇𝑛 −

𝛿

2
, 𝜇𝑛 +

𝛿

2
]]  for any 𝑛, (𝐵. 12) 

 

where left-hand side of eq. (B.12) converges to 1 by eq. (B.11). Therefore, there exists an 𝑛1 

 
21 To see this, note that 𝜇𝑛 = (1 − 1 𝑛⁄ )𝑧, and 𝜎𝑛

2 = (1 𝑛⁄ − 1 𝑛2⁄ )𝑧(1 − 𝑧). 



28 

 

such that 𝑛1 ≤ 𝑛 implies that  

 

1 − 𝜀 < 1 −
𝜎𝑛
2

(𝛿 2⁄ )2
≤ Pr [𝑋𝑛 ∈ [𝜇𝑛 −

𝛿

2
, 𝜇𝑛 +

𝛿

2
]]. 

 

Moreover, by eq. (B.10), there exists an 𝑛2 such that 𝑛2 ≤ 𝑛 implies 𝜇𝑛 ∈ [𝑧 − 𝛿 2⁄ , 𝑧 +
𝛿 2⁄ ]. Thus, for 𝑛 ≥ 𝑛2, 𝑋𝑛 ∈ [𝜇𝑛 − 𝛿 2⁄ , 𝜇𝑛 + 𝛿 2⁄ ] implies 𝑋𝑛 ∈ [𝑧 − 𝛿, 𝑧 + 𝛿].  

 Therefore, for 𝑛 ≥ 𝑛∗ = max{𝑛1, 𝑛2}, we obtain 

 

1 − 𝜀 < Pr [𝑋𝑛 ∈ [𝜇𝑛 −
𝛿

2
, 𝜇𝑛 +

𝛿

2
]] ≤ Pr[𝑋𝑛 ∈ [𝑧 − 𝛿, 𝑧 + 𝛿]]. 

 

This completes the proof of eq. (B.8). An analogous argument shows the eq. (B.9). 

 Next, suppose 𝑧 < 𝑟. An analogous argument shows that 

 

lim
𝑛→∞

Pr [
#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜}

𝑛
≥ 𝑟] = 0, 

 

and 

 

lim
𝑛→∞

Pr [
#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ}

𝑛
≥ 1 +

1

𝑛
− 𝑟] = 1. 

 

Case 2: 𝑧 = 𝑟. 
 

This follows from the symmetry.                                               ∎ 

 

Appendix C: Proof of Proposition 3 

 

Suppose 𝑧 = 1 2⁄ .Consider type 𝒜 voter 𝑖 with private signal 𝑠𝑖 = 𝑏 and type ℬ voter 𝑗 
with 𝑠𝑗 = 𝑎. From the proof of Theorem 1, the incentive compatibility conditions for 𝑖 and 𝑗 

are given by 𝐼(𝑛, 𝜋, 𝑘) ≥ 0 and 𝐽(𝑛, 𝜋, 𝑘) ≥ 0, respectively, where 

 

𝐼(𝑛, 𝜋, 𝑘) = 𝑘ℬ ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘] ∙ (1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)⏟                    
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

) 

+𝑘𝒜 ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘] (1 − 2𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 − 𝑘𝒜 + 1)⏟                      
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

), 

 

and 

 

𝐽(𝑛, 𝜋, 𝑘) 
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= 𝑘ℬ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘](1 − 2𝐺(1 − 𝜋|𝑛 − 𝑘𝒜 + 2, 𝑘𝒜)⏟                    
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

) 

+𝑘𝒜 ∙ Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘](1 − 2𝐺(1 − 𝜋|𝑘𝒜 + 1, 𝑛 − 𝑘𝒜 + 1)⏟                      
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

). 

 

 For fully revealing sincere voting to be an equilibrium, both 𝐼(𝑛, 𝜋, 𝑘) ≥ 0  and 

𝐽(𝑛, 𝜋, 𝑘) ≥ 0  must be satisfied. That is, min{𝐼(𝑛, 𝜋, 𝑘), 𝐽(𝑛, 𝜋, 𝑘)} ≥ 0  must be satisfied. 

Fix 𝜋. For each 𝑘, let 𝑛
𝑘
∗  be the largest odd integer such that min{𝐼(𝑛, 𝜋, 𝑘), 𝐽(𝑛, 𝜋, 𝑘)} ≥ 0 

is true. That is, 𝑛
𝑘
∗  is the largest size of the population in which fully revealing sincere voting 

is an equilibrium under voting rule 𝑘. 

 I will argue that  

 

If 𝑘 is supermajority, then min {𝐼 (𝑛
𝑘
∗ ,
𝑛+1

2
) , 𝐽 (𝑛,

𝑛+1

2
)} ≥ 0. 

 

This means that if fully revealing sincere voting is an equilibrium under supermajority 𝑘 when 

there are 𝑛
𝑘
∗  voters, then it is also an equilibrium under majority rule when there are 𝑛

𝑘
∗  vot-

ers. Therefore, if this is proved, then the proof of Proposition 3 is complete. 

 First, I will show this to be true when 𝑘 < (𝑛 + 1) 2⁄  (i.e., supermajority is required 

for alternative 𝐵 to win). To show this, the following facts are useful, where these facts are 

consequences of the assumption 𝑧 = 1 2⁄ . 

 

Facts: 

 

(i) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘] = Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘] if 𝑘 is the majority rule. 

 

(ii) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘] > Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘] if 𝑘 > (𝑛 + 1) 2⁄ . 

 

(iii) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘] < Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘] if 𝑘 < (𝑛 + 1) 2⁄ . 

 

(iv) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = 𝒜} ≥ 𝑘] is strictly decreasing in 𝑘 

 

(v) Pr[#{𝑗 ≠ 𝑖: 𝑡𝑗 = ℬ} ≥ 𝑛 + 1 − 𝑘] is strictly increasing in 𝑘. 

 

 Suppose 𝑘 < (𝑛 + 1) 2⁄ . Then, from Fact (v) and (i), I obtain 

 

min {𝐼 (𝑛
𝑘
∗ ,
𝑛 + 1

2
) , 𝐽 (𝑛

𝑘
∗ ,
𝑛 + 1

2
)} = 𝐽 (𝑛

𝑘
∗ ,
𝑛 + 1

2
) > 𝐽(𝑛

𝑘
∗ , 𝑘) ≥ 0, 

 

where the first equality is due to Fact (i), second inequality is due to Fact (v), and the last 

inequality is due to the definition of 𝑛
𝑘
∗ . 

 An analogous argument shows the case 𝑘 > (𝑛 + 1) 2⁄ .                       ∎ 
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