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Abstract

Our objective is to analyze the relationship between the Shapley value and the core of

cooperative games with transferable utility. We first characterize balanced games, namely,

the set of games with a nonempty core, by means of geometric properties. We show that

the set of balanced games generates a polyhedral cone and that a game is balanced if and

only if it is a nonnegative linear combination of some simple games. Moreover, we show

that the set of games whose Shapley value is in the core also yields a polyhedral cone and

that a game obeys this property if and only if it is a nonnegative linear combination of some

“easy” games. In addition, we also show that the number of games that correspond to the

extreme rays of the polyhedron coincides with the number of minimal balanced collections.
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1 Introduction

One of the objectives in cooperative game theory is to explore a “desirable” solution: how to

allocate the surplus that players obtain from their cooperation. The Shapley value (Shapley,

1953b) and the core should be the most well-known solution concepts. The Shapley value is

a single-valued solution, which assigns a payoff to each player based on his/her contributions

to a coalition. Since the seminal study of Shapley (1953b), many studies have been devoted

to analyzing the properties of the Shapley value.1 The Shapley value not only has normative

properties but also a variety of applications and strategic foundations.2 In contrast, the core

is a set-valued solution, which is a set of payoff allocations from which no groups of players

have an incentive to deviate. Its axiomatic properties and strategic foundations have also been

intensively studied.3 The concept of the core is, because of its simplicity and generality, used

in a wide range of fields including microeconomics, bargaining theory and matching theory.

If the Shapley value is in the core, it can be seen as a stable allocation that is free from any

coalitional deviations. In this sense, the Shapley value should be an attractive core selection.

However, to obtain the stable Shapley allocation, we have to face the following difficulty: The

Shapley value may be outside the core for some games. In other words, what is the condition

for the Shapley value to lie in the core? One of the most eminent conditions is convexity,

introduced by Shapley (1971). He shows that if a game is convex, the Shapley value lies in the

core. Inarra and Usategui (1993) and Izawa and Takahashi (1998) propose a weaker condition

called average convexity and show that it is also a sufficient condition.4 In addition to the

1See Young (1985), Casajus (2011, 2014) and Casajus and Yokote (2017).
2Shapley and Shubik (1954) apply the Shapley value to evaluate the distribution of power among the members

of a committee system. Hart and Moore (1990) use the Shapley value as each agent’s payoff to analyze the

incomplete contract model. Gul (1989), Pérez-Castrillo and Wettstein (2001) and McQuillin and Sugden (2016)

provide implementation procedures for obtaining the Shapely value as the subgame perfect equilibrium outcome

of the game.
3Consistency properties play a central role in axiomatic characterizations of the core. Davis and Maschler

(1965), Moulin (1985), Peleg (1986) and Tadenuma (1992) introduce different types of consistencies and axiomatize

the core. Abe (2017) axiomatically characterizes the core for games with externalities. Perry and Reny (1994)

offer a noncooperative game in which a core element is implemented.
4Average convexity is also analyzed by Sprumont (1990). He calls it quasiconvexity in his work. However,

his approach is totally different from those of Inarra and Usategui (1993) and Izawa and Takahashi (1998). He

defines the Shapley value for every subset of the grand coalition and considers an allocation scheme for all possible

coalitions. He shows that an allocation scheme is population monotonic for every quasiconvex game.
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sufficient conditions above, they provide some necessary and sufficient conditions. Although

these necessary and sufficient conditions are important steps toward understanding the Shapley

value and the core, because of their complexity, it is not straightforward to derive applicable

insights from the conditions.5 Therefore, in this paper, we attempt to provide a new necessary

and sufficient condition for the Shapley value to be in the core.

To this end, we first consider a geometric property of the set of balanced games, namely, the

set of games with a nonempty core.6 Bondareva (1963) and Shapley (1967) show that a game

is balanced if and only if a weighted sum of the worth of every coalition is less than that of the

grand coalition. These weights are called balanced vectors, and the set of the balanced vectors

is a convex set. On the basis of this result, we show that the set of balanced games yields a

polar cone of a polyhedral cone that is generated from extended balanced vectors. Moreover,

we obtain the explicit representation of the generating matrix for the polyhedral cone. Then,

by applying Minkowski-Weyl’s theorem, which is often used in the theory of convex polyhedra,

we obtain the explicit characterization of the extreme rays of the set of balanced games. As

a result, we also show that a game is balanced if and only if the game has a nonnegative

linear combination of the games, each of which corresponds to the extreme rays: singleton

unanimity games, negative singleton unanimity games, and negative standard basis games with

strict subsets of the grand coalition. This result is a generalization of the decomposition result

of Abe (2019), which describes the relationship between the nonemptiness of the core and the

class of zero-normalized nonnegative games.

In addition to the decomposition result of the balanced games, we characterize the set of

games whose Shapley value is an element of the core. We show that the set of such games

also generates a certain polyhedral cone. To obtain the extreme rays of the set, we adopt the

following two steps. First, by the result of Yokote, Funaki and Kamijo (2016), we decompose

an arbitrary game into the sum of two classes of games: singleton unanimity games and the

games whose Shapley value is a zero vector. As elaborated below, the Shapley value (of the

original game) lies in the core if and only if the core of the latter class of games contains the

zero vector as its element. Considering that the latter class of games can be decomposed into

a nonnegative linear combination of negative standard basis games with strict subsets of the

5We discuss their conditions in Section 4.
6Shapley (1971) provides the geometric characterization of the core in convex games. Marinacci and Mon-

trucchio (2004) provide a similar characterization by means of the Choquet integral with respect to the underlying

game.
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grand coalition, we identify the condition by which the Shapley value of the latter class of games

coincides with the zero vector. Second, we introduce generalized balanced vectors by relaxing

some constraints of balanced vectors. We show that the set of generalized balanced vectors is a

polyhedral cone and that the games that correspond to the extreme rays of the set of generalized

balanced vectors constitutes the extreme rays of the set of latter class of games. Combining

these two steps, we conclude that the Shapley value of an arbitrary game belongs to the core

if and only if it is decomposed into a nonnegative linear combination of some “easy” games.

Moreover, we also show that the number of the abovementioned extreme rays coincides with

the number of minimal balanced collections.

The remainder of this paper is organized as follows. Section 2 provides basic definitions.

In Section 3, we introduce key results for the polyhedral cone and provide a characterization

result of balanced games. On the basis of the results discussed in Section 3, we provide our

main result in Section 4. Section 5 offers some concluding remarks.

2 Preliminaries

2.1 TU-games

Let N = {1, · · · ,n} be the set of players and a function v : 2n → R with v(∅) = 0 denote a

characteristic function. A coalition of players is a nonempty subset of the player set S ⊆ N . We

denote the cardinality of coalition S by |S |. We use n to denote |N |. A cooperative game with

transferable utility (a TU-game) is a pair (N, v). We fix the player set N throughout this paper

and typically use v instead of (N, v) to denote a game. Let GN be the set of all TU-games with

the player set N .

For each nonempty T ⊆ N , a unanimity game uT ∈ GN is defined as

uT (S) =


1 if T ⊆ S,

0 otherwise.

Shapley (1953a) shows that a game v ∈ GN is represented as a unique linear combination of

unanimity games: For every game v ∈ GN , there are unique values λvT , ∅ , T ⊆ N such that

v(S) =
∑

∅,T⊆N

λvT uT (S) =
∑

∅,R⊆S

λvR, (1)

where λvT =
∑

∅,R⊆T (−1)|T |−|R|v(R). For simplicity, we omit v and write λT instead of λvT when

there is no ambiguity. We use λ to denote the vector (λT )∅,T⊆N ∈ R2n−1.
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For each nonempty T ⊆ N , a commander game ūT ∈ GN is defined as

ūT (S) =


1 if |T ∩ S | = 1,

0 otherwise.

Yokote, Funaki and Kamijo (2016) show that {ūT }∅,T⊆N is another basis of GN : A game v is

represented as v =
∑

∅,T⊆N dT ūT , where d = (dT )∅,T⊆N is the coefficient of the corresponding

ūT . Note that ū{i} = u{i} for every i ∈ N .

2.2 Shapley value and core

Let σ be a permutation of N . For every game v, player i’s marginal contribution in σ is

mci,σ = v(ρσi ∪ {i}) − v(ρσi ) where ρσi is the set of predecessors of player i in σ. Let Π be the

set of all permutations. The Shapley value Sh(v) is given as follows: For every i ∈ N ,

Shi(v) =
1
n!

∑
σ∈Π

mci,σ .

For every unanimity game, Sh(v) satisfies

Shi(uT ) =


1/|T | if i ∈ T,

0 otherwise.

Moreover, in view of the linearity of Sh and (1), it follows that

Shi(v) =
∑

T⊆N,i∈T

λT/|T | (2)

where λT/|T | is called Harsanyi’s dividend to the members of T .7 Moreover, Yokote, Funaki,

and Kamijo (2016) show that, for every i ∈ N , d{i} = Shi(v), that is, the coefficients of singleton

commander games coincide with the Shapley value and commander games (ūT )T,|T |≥2 span the

null space of the Shapley value; Sh(ūT ) = 0 for every T ⊆ N with |T | ≥ 2. Hence, each game v

is uniquely represented as

v =
∑
i∈N

Shi(v)u{i} +
∑

∅,T⊆N,|T |≥2
dT ūT . (3)

The core C(v) is the set of allocations given by

C(v) =
x ∈ Rn

������∑j∈N

x j ≤ v(N) and
∑
j∈S

x j ≥ v(S) for all S ⊆ N
 .

7A solution f : GN → Rn is linear if for every c, c′ ∈ R and v, v′ ∈ GN , f (cv + c′v′) = c f (v) + c′ f (v′).
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A game is said to be balanced if it has a nonempty core. Let GB
N = {v ∈ GN |C(v) , ∅}

be the set of balanced games. Bondareva (1963) and Shapley (1967) provide the following

characterization of balanced games.

Theorem 1 (Bondareva, 1963; Shapley, 1967). v ∈ GB
N if and only if∑

∅,S⊊N

γSv(S) ≤ v(N)

for every γ ∈ R2n−2
+ such that for every i ∈ N∑

∅,S⊊N,i∈S

γS = 1. · · · (∗)

The condition in Theorem 1 is called the Bondareva-Shapley condition. A vector γ ∈ R2n−2
+

that satisfies the above condition (∗) is called a balanced vector, and set B = {S ⊊ N |γS > 0}

is called a balanced collection. Note that the set of balanced vectors is a convex set, so that

each balanced vector is a convex combination of its extreme points (see, for example, Peleg

and Sudhölter, 2007). A balanced collection corresponding to some extreme point of the set of

balanced vectors is called a minimal balanced collection. Let Kn be the total number of minimal

balanced collections of an n-player game.8

3 Decomposition of balanced games

In this section, we provide a geometric characterization of the set of balanced games GB
N and

show that each balanced game can be decomposed into “easier” games. We first reformulate

the Bondareva-Shapley condition as follows.

Proposition 1. v ∈ GB
N if and only if∑

∅,S⊊N

γSv(S) + γNv(N) ≤ 0

for every γ ∈ R2n−1 such that

(∗)1 · · ·



∑
∅,S⊆N,i∈S γS ≤ 0,∀i ∈ N,

−∑
∅,S⊆N,i∈S γS ≤ 0,∀i ∈ N,

−γS ≤ 0,∀S ⊊ N .

8The explicit description of each extreme point in general n-player games is still open. This is because it is

generally difficult to construct extreme points of a convex polyhedron. Peleg (1965) provides an algorithm to

calculate all extreme points.
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Proof. The Bondareva-Shapley condition is equivalent to the following:∑
∅,S⊊N

γSv(S) + γNv(N) ≤ 0

for every γ ∈ R2n−1 such that

(∗)2 · · ·



∑
∅,S⊊N,i∈S γS ≤ 1,∀i ∈ N,

−∑
∅,S⊊N,i∈S γS ≤ −1,∀i ∈ N,

−γS ≤ 0,∀S ⊊ N,

γN ≤ −1,

−γN ≤ 1.

Since γ ∈ R2n−1 satisfying (∗)2 satisfies (∗)1, the set of vectors satisfying (∗)2 is a subset of the

set of vectors satisfying (∗)1. Hence, if γ · v ≤ 0 for every γ ∈ R2n−1 satisfying (∗)1, it also

holds for all γ ∈ R2n−1 satisfying (∗)2.9

Now, suppose that γ · v ≤ 0 for every γ ∈ R2n−1 satisfying (∗)2. Take any γ ∈ R2n−1

satisfying (∗)1. Note that γN ≤ 0 because γS ≥ 0 ∀S ⊊ N . If γN = 0, then γ = 0, and γ · v ≤ 0

holds. If γN < 0, let γ′S =
γS
−γN > 0 for all S ⊊ N and γ′N = −1. Then, γ′ = (γ′S)S⊆N satisfies

(∗)2. Moreover, by the assumption,∑
S⊊N

γSv(S) + γNv(N) = (−γN )
(∑

S⊊N

( γS

−γN
)v(S) − v(N)

)
= (−γN )(γ′ · v) ≤ 0.

Hence, if γ · v ≤ 0 for every γ ∈ R2n−1 satisfying (∗)2, it also holds for all γ ∈ R2n−1 satisfying

(∗)1. □

The set P = {x ∈ Rd |Ax ≤ 0} for some matrix A × Rm×d is called a polyhedral cone,

and the Po = {y ∈ Rd |x · y ≤ 0,∀x ∈ P} is called a polar cone of P. Note that the set of

vectors γ ∈ R2n−1 satisfying the condition (∗)1 is a polyhedral cone represented as a matrix

Rt ∈ R2n+2n−2×2n−1 such that P = {γ ∈ R2n−1 |Rtγ ≤ 0}. The set of balanced vectors, which is

defined by (∗), is a cross-section of the polyhedral cone with γN = −1. Proposition 1 shows

that we can identify the set of balanced games with a polar cone of P by enlarging the set of

balanced vectors. The following result plays an important role in finding another representation

of a cone.10

9For every a, b ∈ Rk , a · b =
∑k

i=1 aibi is a standard inner product in Rk .
10For details, see Ziegler (1995).
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Theorem 2 (Minkowski-Weyl’s Theorem). For P ⊆ Rd , the following two statements are

equivalent:

(1) There exists a matrix A × Rm×d for some m such that P = {x ∈ Rd |Ax ≤ 0}.

(2) There exists a matrix R × Rd×k for some k such that P = {x ∈ Rd |x = Rµ, µ ≥ 0}.

A matrix A is called a generating matrix of P. The representation of cone P in the manner of

(1) is its H-representation and that of (2) is its V-representation. Moreover, (1) ⇒ (2) is known

as Minkowski’s Theorem and the converse, (2) ⇒ (1), is known as Weyl’s Theorem. A pair of

matrices (A,R) that represents the same cone P ⊆ Rd is called a DD-pair (double description

pair). For a DD-pair (A,R), as a corollary of Theorem 2, (Rt, At) is also a DD-pair, and the cone

Po = {y ∈ Rd |Rt y ≤ 0} = {y ∈ Rd |y = Atµ, µ ≥ 0} is the polar cone of P.

Applying the above discussion to the set of balanced games, we obtain the result that v ∈ GB
N

if and only if v is represented as

v = Rµ, µ ≥ 0.

Therefore, the column vectors of R correspond to extreme rays of GB
N . To be more specific, we

now define a negative standard basis game as follows: For every S ⊆ N ,

u−S (T) =

−1 if T = S,

0 otherwise.

By the above discussion, we obtain the following decomposition result.

Theorem 3. v ∈ GB
N if and only if it is a sum of a linear combination of singleton unanimity

games and a positive linear combination of negative standard basis games with S ⊊ N:

v =
∑
i∈N

αiu{i} +
∑

∅,S⊊N

α−S u−S

where (αi)i∈N ∈ Rn and (α−S )S⊊N ≥ 0.

Corollary 1. The number of the extreme rays of GB
N is 2n + 2n − 2. Each of them corresponds

to singleton unanimity games, negative singleton unanimity games, and negative standard basis

games with S ⊊ N .

Table 1 shows Rt for n = 3 where Rt
i is the i-th row vector of Rt . This decomposition result

is also useful for considering a certain subclass of balanced games. If we consider 0-normalized
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games,11 Rt
4,R

t
5,R

t
6,R

t
7,R

t
8 and Rt

9 are excluded as extreme rays and Rt
1 + Rt

4,R
t
2 + Rt

5,R
t
3 + Rt

6

appear as new extreme rays. In general, it can be obtained by considering the condition for the

existence of nonnegative core allocations. In the same manner as in Proposition 1, the problem

reduces to ∑
∅,S⊊N,|S |≥2

γSv(S) + γNv(N) ≤ 0

for every γ ∈ R2n−n−1 such that

(∗)′2 · · ·

∑

∅,S⊆N,|S |≥2,i∈S γS ≤ 0,∀i ∈ N,

−γS ≤ 0,∀S ⊊ N, |S | ≥ 2.

Then, 0-normalized balanced games can be written as

v = R̃µ, µ ≥ 0.

Table 2 shows R̃t for n = 3 where R̃t
i is the i-th row vector of R̃t . In addition, every nonnega-

tive 0-normalized game is represented as the nonnegative linear combination of 0-normalized

simple N-monotonic veto-controlled games, which is first shown by Abe (2019).12 We can

straightforwardly prove this characterization result by using the above corollary of Theorem 3.

Since the case of v(N) = 0 is obvious, without loss of generality, we assume that v(N) = 1.

Then, by Theorem 3, v is balanced if and only if

α{i} − α−{i} = 0,∀i ∈ N,∑
i∈N α{i} = 1,∑
i∈S α{i} − α−S ∈ [0,1],∀S ⊊ N,

αi, α
−
S ≥ 0,∀i ∈ N,S ⊊ N .

Since the set of vectors α =
(
(αi)i∈N, (α−S )S⊊N

)
∈ R2n+n−1 satisfying the above conditions is

convex, it is sufficient to consider its extreme points. Then, we can see that α is an extreme

point if and only if there is i ∈ N such that
α{i} = α

−
{i} = 1, α{ j} = 0,∀ j , i,

α−S = 0,∀S ⊆ N \ {i},

α−S ∈ {0,1},∀S ⊊ N, with i ∈ S.

11A game v is 0-normalized if v({i}) = 0 for all i ∈ N .
12A game v is simple if v(S) = 0 or 1 for all S ⊆ N . A player i ∈ N is a veto player in v if v(S) = 0 For every

S ⊂ N \ {i}. A game v is veto-controlled if there is a veto player in v. A game v is N-monotonic if v(S) ≤ v(N) or

1 for all S ⊆ N .
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Notice that i is a veto player in the game corresponding to such α, so that it is a veto-controlled

game. The game is 0-normalized, simple and N-monotonic. Table 3 shows the extreme points

in the case of n = 3.

Rt \ S 1 2 3 1,2 1,3 2,3, N

Rt
1 1 0 0 1 1 0 1

Rt
2 0 1 0 1 0 1 1

Rt
3 0 0 1 0 1 1 1

Rt
4 −1 0 0 −1 −1 0 −1

Rt
5 0 −1 0 −1 0 −1 −1

Rt
6 0 0 −1 0 −1 −1 −1

Rt
7 −1 0 0 0 0 0 0

Rt
8 0 −1 0 0 0 0 0

Rt
9 0 0 −1 0 0 0 0

Rt
10 0 0 0 −1 0 0 0

Rt
11 0 0 0 0 −1 0 0

Rt
12 0 0 0 0 0 −1 0

Table 1: Extreme points of balanced games for n = 3.

4 The Shapley value and the core

Let GSh
N = {v ∈ GN |Sh(v) ∈ C(v)} be the set of games whose Shapley value is in the core. It

follows that GSh
N ⊊ GB

N . In this section, we characterize the set GSh
N in view of the decomposition

result of GB
N discussed in Theorem 3.

For each balanced collection B and a corresponding balanced vector γB ∈ R2n−2
+ , define

vB =
∑
S⊊N

|S |γSuS .

Then, Shi(vB) = 1 for every i ∈ N because, by (2), for every i ∈ N ,

Shi(vB) =
∑

∅,S⊊N,i∈S

|S |γS

|S | =
∑

∅,S⊊N,i∈S

γS = 1.
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R̃t \ S 1 2 3 1,2 1,3 2,3, N

R̃t
1 0 0 0 1 1 0 1

R̃t
2 0 0 0 1 0 1 1

R̃t
3 0 0 0 0 1 1 1

R̃t
4 0 0 0 −1 0 0 0

R̃t
5 0 0 0 0 −1 0 0

R̃t
6 0 0 0 0 0 −1 0

Table 2: Extreme points of 0-normalized balanced games for n = 3.

\S 1 2 3 1,2 1,3 2,3, N

v1 0 0 0 1 1 0 1

v2 0 0 0 1 0 1 1

v3 0 0 0 0 1 1 1

v12 0 0 0 1 0 0 1

v13 0 0 0 0 1 0 1

v23 0 0 0 0 0 1 1

vN 0 0 0 0 0 0 1

Table 3: Extreme points of 0-normalized nonnegative balanced games for n = 3.

In other words, the balanced collection and the balanced vector (B, γB) yield a game vB in which

the Shapley value assigns 1 to every player.13 In the same vein, we construct another game that

is useful for our further analysis. We say that the vector β =
(
(βS)S⊊N, βN

)
∈ R2n−2

+ × R is a

generalized balanced vector if for every i ∈ N ,∑
∅,S⊊N,i∈S

βS + βN = 0.

Note that this condition is equivalent to (∗)1: β with βN = −1 being a balanced vector. For

every generalized balanced vector β =
(
(βS)S⊊N, βN

)
∈ R2n−2

+ × R, define

vβ− = −
∑
S⊊N

|S |βSuS − nβNuN .

13In the decision theory literature, Dillenberger and Sadowski (2019) propose a similar concept, which they call

generalized partition.
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We write vB− = vβ(B)− where β(B) = (γB,−1), and (B, γB) is a balanced collection and its

corresponding balanced vector.

Lemma 1. For every generalized balanced vector β =
(
(βS)S⊊N, βN

)
∈ R2n−2

+ × R, the game

vβ− has the following properties.

(i) Shi(vβ−) = 0 for every i ∈ N .

(ii) There is (α−S )S⊊N ≥ 0 such that vβ− =
∑

∅,S⊊N α
−
S u−S .

(iii) There is µ ∈ RKn
n such that vβ− =

∑Kn

k=1 µkv
Bk− whereBk is a minimal balanced collection.

Proof. (i) It follows by construction: For every i ∈ N ,

Shi(vβ−) = −
∑

∅,S⊆N,i∈S

|S |βS

|S | = −
( ∑
∅,S⊊N,i∈S

βS + βN
)
= 0.

(ii) we have

vβ− = −
∑
T⊊N

|T |βT uT − nβNuN

=
∑
T⊊N

|T |βT
(∑
T⊆S

u−S
)
− nβNuN

=
∑
S⊆N

(∑
T⊆S

|T |βT
)
u−S + nβNuN

=
∑
S⊊N

(∑
T⊆S

|T |βT
)
u−S

=
∑
S⊊N

α−S u−S

since−
(∑

T⊆N |T |βT+nβN

)
= −∑

i∈N

(∑
∅,T⊊N,i∈T βT+βN

)
= 0. Then, α−S =

(∑
T⊆S |T |βT

)
≥ 0

follows because (βS)S⊊N ∈ R2n−1
+ .

(iii) For each minimal balanced collection and its corresponding balanced vector, (B, γB),

let β(B) = (γB,−1). Since the set of generalized balanced vectors is a polyhedral cone whose

extreme rays are β(B) where B is a minimal balanced collection, for every generalized balanced

vector β, the corresponding game vβ− can be represented as a nonnegative linear combination

of vB−, namely, vβ− =
∑Kn

k=1 µkv
Bk− where (µk)Kn

k=1 ≥ 0. □

Lemma 1 provides the extreme rays of the subset of games

Ĝ−
N ⊂ G−

N =
{
v ∈ R2n−1 |v =

∑
∅,S⊊N

α−S u−S , (α−S )S⊊N ≥ 0, Sh(v) = 0
}
.
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By (ii) of Lemma 1, what we need to describe G−
N is the constraint

αS =
∑
T⊆S

|T |βT ≥ 0 · · · (∗∗)

for every S ⊊ N , which is a weaker condition than (βS)S⊊N ∈ R2n−1
+ . Therefore, we consider

the following vectors β ∈ R2n−1 such that
∑

∅,S⊊N,i∈S βS + βN = 0,

β satisfies (∗∗).

We call vectors β ∈ R2n−1 that satisfy the above condition weakly generalized balanced vectors.

Lemma 2. For every v ∈ G−
N , there is µk ∈ RKn

n such that v =
∑Kn

k=1 µk ṽ
Bk− where ṽBk− = v β̃(B)−

for some weakly generalized balanced vector β̃(B) with a minimal balanced collection B.

Proof. For every β̂ ∈ R2n−2, the condition β̂ ≥ 0 is equivalent to

E2n−2 β̂ ≥ 0,

where E2n−2 ∈ R2n−2×2n−2 is the identity matrix. Similarly, the condition (∗∗) is represented by

Aβ̂ ≥ 0,

where A ∈ R2n−2×2n−2 and it has full rank. Since an extreme ray of a polyhedral cone in Rk is

characterized by the k − 1 linearly independent equations of its generating matrix, an extreme

ray of the set of weakly generalized balanced vectors must satisfy

AI β̂ = 0,

where AI ∈ R|I |×2n−2 is a submatrix of A for some index set I ⊆ {1, · · · 2n − 2}. Then, for every

index set I ⊆ {1, · · · 2n − 2} and β̂ satisfying (E2n−2)I β̂ = 0, we have

0 = (E2n−2)I β̂

= (AA−1)I β̂

= AI A−1 β̂

= AI β̃

where β̃ = A−1 β̂. Conversely, for every index set I ⊆ {1, · · · 2n − 2} and β̃ satisfying AI β̃ = 0,

we have

0 = AI β̃

= (E2n−2)I Aβ̃

= (E2n−2)I β̂

13



where β̂ = Aβ̃. Therefore, there is a one-to-one relationship between an extreme ray of the

generalized balanced vectors, β(B), and that of weakly generalized balanced vectors. Therefore,

For every v ∈ G−
N , there is µk ∈ RKn

n such that v =
∑Kn

k=1 µk ṽ
Bk− where ṽBk− = v β̃(B)− with

(β̃S(B))S⊊N = A−1(βS(B))S⊊N . □

The following Tables 4 and 5 show ṽB− for n = 3,4 respectively.

B (βS)tS∈B ṽB−

{1,2,3} (1,1,1) u−{1} + u−{2} + u−{3}
{1,23} (1,1) u−{1} + u−{2,3}
{2,13} (1,1) u−{2} + u−{1,3}
{3,12} (1,1) u−{3} + u−{1,2}

{12,13,23} (1/2,1/2,1/2) u−{1,2} + u−{1,3} + u−{2,3}

Table 4: ṽB− for n = 3.

B (βS)tS∈B ṽB−

{12,34} (1,1) u−{1,2} + u−{3,4}
{123,4} (1,1) u−{1,2,3} + u−{4}
{12,3,4} (1,1,1) 2u−{1,2} + u−{3} + u−{4}

{123,124,34} (1/2,1/2,1/2) u−{1,2,3} + u−{1,2,4} + 2u−{3,4}
{1,2,3,4} (1,1,1,1) u−{1} + u−{2} + u−{3} + u−{4}

{12,13,23,4} (1/2,1/2,1/2,1) u−{1,2} + u−{1,3} + u−{2,3} + u−{4}
{123,14,24,3} (1/2,1/2,1/2,1/2) u−{1,2,3} + 2u−{1,4} + 2u−{2,4} + u−{3}
{123,14,24,34} (2/3,1/3,1/3,1/3) u−{1,2,3} + u−{1,4} + u−{2,4} + u−{3,4}

{123,124,134,234} (1/3,1/3,1/3,1/3) u−{1,2,3} + u−{1,2,4} + u−{1,3,4} + u−{2,3,4}

Table 5: ṽB− for n = 4. Each B is symmetric under permutation.

Now, we are ready to state our main result of the decomposition of GSh
N .

Theorem 4. Let v ∈ GN . We have Sh(v) ∈ C(v) if and only if it is a sum of (i) a linear

combination of singleton unanimity games and (ii) a positive linear combination of ṽB− where
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B is a minimal balanced collection:

v =
∑
i∈N

αiu{i} +
Kn∑
k=1
µk ṽ

Bk−

where (αi)i∈N = Sh(v) and (µk)Kn

k=1 ≥ 0.

Proof. Let us define

v+ =
∑
i∈N

Shi(v)u{i} .

Since game v is uniquely represented as the linear combination of commander games by (3),

we write

v = v+ + w

where Shi(w) = 0 for every i ∈ N . Then, Sh(v) ∈ C(v) if and only if Sh(w) = 0 ∈ C(w). Note

that 0 ∈ C(w) implies that w(S) ≤ 0 for all S ⊆ N and w(N) = 0. Moreover, since (u−S )S⊆N is

a basis of GN , w must be (uniquely) represented as w =
∑

∅,S⊊N α
−
S u−S for some (α−S )S⊊N ≥ 0.

Therefore, the above argument shows that v is decomposed into

v =
∑
i∈N

Shi(v)u{i} +
∑

∅,S⊊N

α−S u−S

where (α−S )S⊊N ≥ 0 and Sh(∑∅,S⊊N αSu−S ) = 0. Since w =
∑

∅,S⊊N αSu−S ∈ G−
N , by Lemma 2,

it can be represented as

w =

Kn∑
k=1
µk ṽ

Bk−

where (µk)Kn

k=1 ≥ 0. Therefore, v is decomposed as follows:

v = v+ + w =
∑
i∈N

Shi(v)u{i} +
Kn∑
k=1
µk ṽ

Bk−.

□

This result and Lemma 2 suggest that we can count the number of extreme rays of GSh
N ,

which also implies that the number of nontrivial extreme rays coincides with the number of

minimal balanced games as follows.

Corollary 2. The number of extreme rays of GSh
N is 2n + Kn. Each of them corresponds

to singleton unanimity games, negative singleton unanimity games, and the games (vBk−)Kn

k=1

corresponding to minimal balanced collections (Bk)Kn

k=1.
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Before closing this section, we compare our result with other conditions studied in the

literature. Inarra and Usategui (1993) show that v ∈ GSh
N if and only if for every T ⊆ N ,∑

∅,S⊆N

(n − s)!(s − 1)!
n!

hT (S)(v(S) − v(S \ T) − v(S ∩ T)) ≥ 0,

where

hT (S) =


|S | ·
( |S∩T |

|S | − |T\S |
|N\S |

)
if S , N,

|T | if S = N .

Izawa and Takahashi (1998) show that v ∈ GSh
N if and only if for every T ⊆ N ,∑

S⊂N

∑
i∈S∩T

(n − s)!(s − 1)!
n!

(vi(S) − vi(S ∩ T)) ≥ 0,

where vi(S) = v(S) − v(S \ {i}). Since both conditions are written as a linear transformation

of v, there is A ∈ Rm×2n−1 such that GSC
N = {v ∈ GN |Av ≥ 0}. Hence, these conditions also

show that GSh
N is a polyhedral cone. However, both conditions neither provide any information

about its extreme rays nor any reduced expression of the generating matrix. In contrast, our

approach has the following three advantages. First, we can construct each extreme ray in an

explicit way. Second, we can decompose every game in the class GSC
N into simple games, each

of which corresponds to an extreme ray. Finally, and more important, our method is applicable

to other linear solutions, whereas the two conditions above are applicable only for the Shapley

value.

In the next section, we conclude our results and elaborate the third advantage, i.e., applica-

bility, mentioned above.

5 Concluding remarks

In this paper, we provide the geometric characterization of balanced games and a new necessary

and sufficient condition for the Shapley value to be in the core. To be more specific, we show

that all balanced games and all games whose Shapley value lies in the core are decomposed

into some “easy” games. This result shows that (i) different classes of games may have

some common geometric properties and (ii) we can exploit the common properties to analyze

solution concepts in the classes. Our approach can be a powerful method when we consider the
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relationship between the core and any other linear solutions including the Shapley value.14 We

elaborate this point below.

If a solution f is linear, in view of (1), fi(v) =
∑

∅,T⊆N λT fi(uT ) for every i ∈ N . If we

can identify a new basis
(
(u{i})i∈N, (u f

S )S⊆N,|S |≥2
)

such that f (u f
S ) = 0 for every S ⊆ N with

|S | ≥ 2; then, by the same argument as in Theorem 4, we have f (v) ∈ C(v) if and only if

f (w f ) = 0 ∈ C(w f ) where v =
∑

i∈N fi(v)u{i} + w f . To find the condition for 0 ∈ C(w f ),

suppose that fi(uT ) is written as fi(uT ) = fi,T
fT

for some fi,T ∈ R and fT > 0. For instance, if

f = Sh,

fi,T =


1 if i ∈ T,

0 otherwise.
fT = |T |.

Now, consider the following constraints: For every β f =
(
(β f

S )S⊊N, β
f
N

)
∈ R2n−2

+ × R and every

i ∈ N , ∑
S⊊N

fi,Sβ
f
S + fi,N β

f
N = 0.

A vector β f satisfying the above condition can be seen as a weighted generalized balanced

vector. Now, define a game

vβ
f − = −

∑
S⊊N

fT βSuS − fT βNuN

=
∑
S⊊N

(∑
T⊆S

fT β
f
T

)
u−S .

In the same manner as Lemma 1, fi(vβ
f −) = 0 for all i ∈ N . Moreover, each vβ

f − can be

decomposed into a nonnegative linear combination of the games derived from the extreme rays

of weighted generalized balanced vectors. Hence, the remained step is to consider the extreme

rays of the following polyhedral cone
∑

S⊊N fi,Sβ
f
S + fi,N β

f
N = 0,∀i ∈ N,∑

T⊆S fT β
f
T ≥ 0,∀S ⊊ N .

14Various linear solutions are intensively studied as a complement to or a counterpart of the Shapley value: for

example, weighted Shapley values (Shapley, 1953a; Chun, 1988, 1991; Kalai and Samet, 1987; Nowak and Radzik,

1995; Yokote, 2015), egalitarian Shapley values and their generalization (Joosten, 1996; Casajus and Huettner,

2013, 2014; van den Brink, Funaki and Ju, 2013; Abe and Nakada, 2019; Yokote, Kongo and Funaki, 2018), and

the CIS/ENSC value (Driessen and Funaki, 1991). See also Yokote and Funaki (2017) for other solutions.
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Since the matrix that constitutes the inequality constraints has full rank (i.e, ignoring βN and

consider the constraints in dimension R2n−2) by fT > 0 for all T ⊆ N , the same argument as in

Lemma 2 generates the extreme rays as desired.

As a special case, Yokote, Funaki, and Kamijo (2016) propose a basis
(
(u{i})i∈N, (u f

S )S⊆N,|S |≥2
)

when f is a weighted Shapley value and a (extended version of) discounted Shapley value. We

can straightforwardly apply the above procedure even to these cases. In addition, since our

method is applicable for every linear solution as long as a suitable basis is obtained, we can

similarly obtain the core selection result for every linear solution.
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