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Abstract There is now a growing consensus among democratic theorists that

we should incorporate both ‘democratic deliberation’ and ‘aggregative vot-

ing’ into our democratic processes, where democratic deliberation precedes

aggregating people’s votes. But how should the two democratic mechanisms

of deliberation and voting interact? The question we wish to ask in this

paper is which social choice rules are consistent with successful deliberation

once it has occurred. For this purpose, we introduce a new axiom, which

we call “Non-Negative Response toward Successful Deliberation (NNRD).”

The basic idea is that if some individuals change their preferences toward

other individuals’ preferences through successful deliberation, then the so-

cial choice rule should not make everybody who has successfully persuaded

others through reasoned deliberation worse-off than what s/he would have

achieved without deliberation. We prove an impossibility theorem that shows

that there exists no aggregation rule that can simultaneously satisfy (NNRD)

along with other mild axioms that reflect deliberative democracy’s core com-

mitment to unanimous consensus and democratic equality. We offer potential

escape routes: however, it is shown that each escape route can succeed only

by compromising some core value of deliberative democracy.

Keywords Social Choice Theory; Deliberative Democracy; Deliberation;

Aggregation; NNRD
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1 Introduction

It is now widely endorsed by contemporary democratic theorists that the sole reliance

on aggregative voting procedures is insufficient to lend full democratic legitimacy or

democratic justification of its resulting outcomes. The numerous negative results of

modern social choice theory have repeatedly shown that virtually all democratic vot-

ing procedures tend to (at least sometimes) generate arbitrary and unstable voting

outcomes that make them susceptible to strategic manipulation and agenda control.

(Arrow 1951/1963; Plott 1967; McKelvey 1976, 1979; Schofield 1978; Riker 1982) This,

according to William Riker, implies that all voting outcomes are “uninterpretable and

meaningless” (Riker 1982: 237) and thus cannot be regarded as “fair and true amal-

gamations of voters’ judgments.” (Riker 1982: 238) After what scholars have called

the “deliberative turn” (Dryzek 2000: 1), democratic theorists have instead sought to

ground democratic legitimacy on a process of democratic deliberation by insisting that

“outcomes are democratically legitimate if and only if they could be the object of a free

and reasoned agreement among equals.” (Cohen 1997a: 73) The underlying thought is

an account of political justification that requires “that a person must be given a reason

that is acceptable by his or her own lights for a policy in order for that policy not to

be oppressive.” (Christiano 1997: 272) In this way, deliberative democracy “puts public

reasoning at the center of political justification.” (Cohen 1997b: 413)

Then, what exactly is the normative role of democratic deliberation and how does it

facilitate the achievement of democratic legitimacy? Many people believe that one key

function of democratic deliberation lies in its potential to change or transform people’s

preferences. According to Amy Gutmann and Dennis Thomson, “By engaging in delib-

eration, citizens acknowledge the possibility that they may change their preferences. …
The very nature of the deliberative process of justification sends a signal that its par-

ticipants are willing to enter into a dialogue in which the reasons given, and the reasons

responded to, have the capacity to change minds.” (Gutmann and Thomson 2004: 20)

By deliberating with others, participants of democratic deliberation may change and/or

transform their preferences by acquiring new factual information, detecting logical mis-

takes in their previous reasoning, seeing the issue from other participants’ perspectives,

and also by forming a newly developed “commitment to justice, which now overrides

or modifies the self-interested perspective with which they entered the deliberation.”

(Mansbridge et al. 2010: 79) In these and other ways, the point is that “[p]ublic de-

liberation transforms, modifies, and clarifies the beliefs and preferences of the citizens

of a political society.” (Christiano 1997: 244) As Jane Mansbridge and her co-authors
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explain, “[d]eliberation would have no point if it did not produce change in the views of

at least some participants.” (Mansbridge et al. 2010: 78) In such cases, “[w]hether or

not deliberation is desirable, it would be futile.” (Mackie 2006: 299)

Furthermore, we do not expect democratic deliberation to merely change people’s

preferences; we expect democratic deliberation to change people’s preferences into a

particular direction. If democratic deliberation changed people’s preferences randomly,

there would be no point in incorporating democratic deliberation into a society’s col-

lective decision-making process as we would have no reason to think that the social

choices reached through people’s post-deliberation preferences would be better than

those reached through people’s pre-deliberation preferences. The reason that we think

that incorporating deliberative institutions into our democratic process is both mean-

ingful and valuable is that, after deliberation, we expect people’s preferences to be

enlightened so that they become more logical, better-structured, consistent with known

facts, and better grounded in reasons and arguments. Moreover, as people’s preferences

change on the basis of mutual persuasion through the exchange of reasoned arguments

with other participants in deliberation, we would normally expect people’s preferences

to become closer (if not totally converge) to one another (rather than farther apart)

after deliberation than what they were prior to deliberation.

Although some critics have pointed out that “[d]iscussion only rarely eliminates differ-

ences of opinion on matters of politics” (Christiano 1997: 264) and worried that demo-

cratic deliberation may actually “[produce] more disagreement and diversity of opinion”

(ibid.) and even lead certain groups (that are engaged in “enclave deliberation”) to

shift toward more extreme positions that exacerbates “group polarizations” that may

potentially cause “danger to social stability” (Sunstein 2002: 176-177), we follow other

deliberative democratic theorists and regard this as rather a case of unsuccessful delib-

eration rather than the norm, which can be not too difficultly avoided. For instance,

according to Amy Gutmann and Dennis Thomson, if we make sure that deliberation oc-

curs prior to voting, is inclusive and “large enough to represent random samples rather

than skewed samples of opinions, have moderators who oversee the deliberations to en-

sure that all perspectives receive a fair hearing, enlist experts to answer questions and

clarify matters of fact, and have extensive information available to all participants ahead

of time,” the participants of democratic deliberation will “tend not to polarize but rather

to find greater common ground than they had before.” (Gutmann and Thomson 2004:

54) This is consistent with what Cass Sunstein finds in James Fishkin’s “deliberative

opinion polls” (Fishkin 1995: 206-207), where “the existence of monitors, an absence of

a group decision, the great heterogeneity of the people,” together with having access to
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“a set of written materials that attempted to be balanced and that contained detailed

arguments on both sides” helped prevent deliberation from having a polarizing effect.

(Sunstein 2002: 194-195)

Then, how does such a process of changing or transforming people’s preferences

through democratic deliberation help overcome the alleged pitfalls of aggregative voting

mechanisms and help us achieve democracy legitimacy? Early proponents of delibera-

tive democracy, such as Jürgen Habermas (1990), Joshua Cohen (1997a), and Jon Elster

(1997) thought that once we introduce democratic deliberation into the democratic pro-

cess “there would not be any need for an aggregating mechanism, since rational discussion

would tend to produce unanimous preferences.” (Elster 1997: 11) The basic thought was

that once we require people to engage in democratic deliberation, they will tend to “go

beyond private self-interests of the “market” and orient themselves to public interests

of the “forum”” (Bohman and Rehg 1997: xiv), and “[w]hen the private and idiosyn-

cratic wants have been shaped and purged in public discussion about the public good,

uniquely determined rational desires would emerge.” (Elster 1997: 11) If this is correct,

then democratic deliberation would be able to restore democratic legitimacy by com-

pletely replacing aggregating voting mechanisms with rationally motivated unanimous

consensus.

Many scholars have pointed out that unanimous agreement is seldom achievable even

under ideal circumstances, especially, in modern pluralistic democracies, whose basic

characteristics, according to John Rawls, is “the fact of reasonable pluralism – the fact

that a plurality of conflicting reasonable comprehensive doctrines, religious, philosophical

and moral, is the normal result of its culture of free institutions.” (Rawls 1993/2005: 441)

Of course, one important regulative ideal of deliberative democracy is that “[d]eliberation

is reasoned in that the parties to it are required to state their reasons for advancing pro-

posals, supporting them, or criticizing them … with the expectation that those reasons

(and not, for example, their power) will settle the fate of their proposal.” (Cohen 1997a:

74) However, Gerald Gaus explains that in modern pluralistic democracies, “[s]incere

reasoners will find themselves in principled disagreements,” and “[b]ecause this is so, we

will inevitably have competing judgments about what is public justified.” (Gaus 1997:

231) Gerry Mackie has also argued that unanimous consensus, even if practically achiev-

able, might not be so desirable because a deliberative environment in which unanimous

consensus is easily achieved will be “a system with extreme confirmation bias: unless

it is overwhelming, contradictory new evidence will be rejected as false, even if it is

true.” (Mackie 2006: 283) As a result, “a unanimity rule unjustifiably enshrines [the]

status quo.” (Mackie 2018: 225) Hence, “[i]n a pluralistic world,” claims John Dryzek,
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“consensus is [not only] unattainable, [but also] unnecessary and undesirable.” (Dryzek

2000: 170)

If it is neither practically feasible (nor desirable) to aim at deliberative democracy’s

regulative ideal of unanimous consensus, we would have to eventually rely on some form

of aggregative voting mechanism to reach a democratic decision. Even Joshua Cohen,

who thinks that unanimous consensus is the ultimate aim of ideal deliberation acknowl-

edges that “[e]ven under ideal conditions there is no promise that consensual reasons

will be forthcoming” and “[i]f they are not, then deliberation concludes with voting,

subject to some form of majority rule.” (Cohen 1997a: 75) However, if it is true that

we cannot completely dispense with aggregative voting mechanisms, with all its alleged

imperfections and defects, even with the introduction of ideal democratic deliberation,

what would the point of introducing deliberation into the democratic process be in the

first place?

Many people have argued that even if democratic deliberation may seldom lead to

full unanimity, it may still help us better achieve democratic legitimacy by making it

possible for aggregative voting mechanisms to avoid many of its alleged pitfalls and

shortcomings. For instance, it has been pointed out that the problems of instability and

cycling of aggregative voting mechanisms demonstrated in social choice theory usually

occur when there is more than one dimension of conflict. (Plott 1967; McKelvey 1976,

1979; Schofield 1978) To this, a number of scholars have argued that democratic delib-

eration may significantly reduce the possibilities of instability and cycling by inducing

its participants to arrive at, if not unanimous consensus toward a specific social out-

come, a shared understanding regarding the single, underlying, dimension of political

conflict. (Miller 1992; Knight and Johnson 1994, 2007) Whenever the participants’ dis-

agreements are reduced to a disagreement along a single, shared policy/issue dimension

in this way, this will facilitate the participants to restructure their preferences to become

single-peaked, (which informally means that each participant has an ideal policy point

located somewhere along the single issue/policy dimension and that his/her preferences

over various social alternatives decreases as they move farther way from his/her ideal

policy point), which makes it possible for us to avoid majority voting cycles when using

pairwise majority vote as the aggregation voting rule. (Black 1958; Miller 1992; Dryzek

and List 2003; List et al. 2013) This particular way of avoiding the problem of voting

cycles through single-peaked preferences can be seen as a case of domain restriction that

relaxes one of the conditions (namely, universal preference domain) that Arrow relies

on to derive his famous impossibility result. According to John Dryzek and Christian

List, “[e]ach condition of Arrow’s theorem and of the Gibbard-Satterthwaite theorem
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points towards a potential escape-route from the impossibility theorems” because “[i]f

any one of these conditions is relaxed, there exist social choice procedures satisfying all

the others, and such procedures can, in principle, be employed in democratic decision

making.” (Dryzek and List 2003: 7) An important value of democratic deliberation,

then, even when it fails to achieve unanimous consensus, is that “[d]eliberation facili-

tates pursuits of several escape-routes from the impossibility results commonly invoked

by social choice-theoretic critics of democracy.” (Dryzek and List 2003: 27)

So, although we cannot practically expect democratic deliberation to achieve full unan-

imous consensus, we can at least reasonably expect democratic deliberation to sufficiently

improve and restructure people’s preferences so that, later, their aggregation will lead

to stable, non-arbitrary, and meaningful democratic decisions in the voting stage. In

short, ideal democratic deliberation, when successful, enlightens and changes people’s

preferences and makes them one step closer toward reasoned consensus so that their ag-

gregation leads to better-informed, rational social outcomes than what the aggregation

of their pre-enlightened unconsidered preferences would have generated.

There is now a growing consensus among democratic theorists that ‘deliberation’ and

‘aggregation (or voting)’ have their own respective virtues and that each plays an im-

portant role in the democratic process that cannot be properly reduced to the role

performed by the other. According to Robert Goodin, although democratic delibera-

tion is excellent as a ‘discovery procedure’ that may inform the participants about what

may constitute the best alternative, it is not particularly a good ‘decision procedure’

due to its inherent path dependency. (Goodin 2008: 111; Knight and Johnson 1997:

291; see also Chung and Duggan 2020: 21-23) Conversely, we might say that although

aggregation is excellent at generating a final decision even “when interests conflict irrec-

oncilably, negation to agreement is impossible, or an assembly simply runs out of time”

(Mansbridge et al. 2010: 85), the decision so arrived will in many cases lack demo-

cratic significance and lead us astray without being properly informed by a prior stage

of reasoned deliberation. According to Gerry Mackie, “voting and discussion are com-

plements, not substitutes.”(Macike 2003: 107) Many people now think that in order to

achieve democratic legitimacy/justification of the resulting outcomes, democratic insti-

tutions should incorporate both ‘democratic deliberation’ and ‘aggregative voting’ into

its process, where democratic deliberation precedes aggregating people’s votes. Robert

Goodin neatly summarizes this into the following slogan: ‘first talk, then vote.’ (Goodin

2008: 124)

However, “[d]eliberative democrats have often downplayed the virtues and even anath-

ematized the aims and mechanisms of voting.” (Mansbridge et al. 2010 84) As Adam
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Przeworski points out, early “deliberation theorists … [have] wish[ed] away the vulgar

fact that under democracy ends in voting.” (Przeworski 1998: 141) To many deliberative

democratic theorists, the second aggregation stage after deliberation is still regarded as

an addendum or a necessary evil, which is included into the democratic process to merely

arrive at a final decision when deliberation fails to deliver full unanimity. In this way,

“deliberative democrats concede the pragmatic point [of having a second aggregation

stage of voting], typically in a spirit of resigned acceptance.” (Goodin 2008: 109) As

a result, most of the previous philosophical literature on deliberative democracy have

focused almost exclusively on investigating the deliberation stage and characterizing the

set of ideal conditions 1 that define deliberative democracy as a “regulative ideal” (Mans-

bridge et al. 2010: 65) as well as “the ideal deliberative procedure … [that is] meant

to provide a model for institutions to mirror” (Cohen 1997a: 73) rather than focusing

on the proper normative relationship between the prior deliberation stage and the post

aggregation stage.

However, we should remember that “[t]he process of voting is integrated with deliber-

ation, and not just complementary to it, when the deliberation structures the voting, for

example by ruling out options, creating single-peaked (or other) preference orderings, or,

on a more macro level, choosing the form of voting itself. The expectation of voting also

structures deliberation, for example by forcing the choices into a simple yes-or-no vote.”

(Mansbridge et al. 2010: 88-89) It has been shown in the game-theoretical literature

on deliberation that how likely the participants would reveal their private information

truthfully during the deliberation stage crucially depends on the post-deliberation voting

rule. (Austen-Smith and Feddersen 2006; Coughlan 2000; Mathis 2011) It has also been

shown through real-world case studies that the post-deliberation voting rule crucially af-

fects the substantive contents discussed in the pre-aggregation deliberation stage as well

as whether or not the participants will engage in deliberation with a strategic motive to

manipulate the outcome. (Mackie 2018: 226-229) Hence, “[a]ny “systems” approach to

deliberation should take into account not only how different kinds of deliberative forums

contribute to or detract from the broader patterns of deliberation in the system but

also how other non-deliberative mechanisms, particularly voting, can affect public de-

1The conditions that define deliberative democracy as a regulative ideal include the requirements that
deliberation be “open to all those affected by the decision”; the participants should have “equal
opportunity to influence the process, have equal resources, and be protected by basic rights”; the
participants should “treat one another with mutual respect and equal concern” and “speak truth-
fully”; the participants should “listen to one another and give reasons to one another that they think
the other can comprehend and accept”; the participants should “aim at finding fair terms of coop-
eration among free and equal persons”; and “coercive power should be absent.” (Mansbridge et al.
2010: 65-66)
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liberation in many venues. The two democratic mechanisms of voting and deliberation

interact.” (Mackie 2018: 229)

But how should the two democratic mechanisms of voting and deliberation interact?

Suppose we have achieved highly successful deliberation, and, as a result, people’s pref-

erences are changed and transformed for the better in the specific way prescribed by

our best normative theories of deliberative democracy. Even so, if we want successful

deliberation to be fully translated into better social outcomes, we should not be compla-

cent by the mere fact that our aggregative voting rule can now, by the restructuring of

people’s preferences, avoid, say, voting cycles. Rather, we should go beyond and require

that our aggregative voting rule positively generates better social outcomes that fully

respects and accommodates the direction of the preference changes and transformations

that have occurred after successful deliberation.

To our best knowledge, no prior work has specifically investigated this task; that is,

no prior work has examined what social choice rules can properly accommodate the

effects of successful deliberation once it occurs. The question we wish to ask in this

paper is which social choice rules are consistent with successful deliberation. The reason

that answering this question is fundamental to the success of deliberative democracy

is that if it turns out that no social choice function or aggregation rule is compatible

with successfully performed ideal deliberation, then the whole purpose of introducing

deliberation into the democratic process becomes futile. This would be so even if it

can be shown that, with democratic deliberation, we can avoid voting cycles and other

problems of aggregative voting rules identified by social choice theory. This is because

the normative aims of deliberative democracy is not and should not be confined to

merely finding some convenient escape routes that allow us to circumvent the many

impossibility results raised by social choice theory; rather, the true success of deliberative

democracy requires that the results of successful deliberation in the first deliberative

stage be fully incorporated and translated into better social outcomes generated by

the second aggregation stage. We require this as one important regulative ideal of

deliberation-combined social choice.

2 Motivating Example: A Social Choice Rule that Fails to

Respect Successful Deliberation

Consider the following example:
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Example 1: Suppose that our democratic society employs the plurality rule with a

tie-breaker as its aggregation rule. Specifically, each individual votes for his/her best

alternative and the alternative that receives the most number of votes gets socially

chosen; however, if there is a tie, then the alternative that comes later in the alphabetical

order is chosen. Suppose that there are three social altneratives x, y, and z, and three

social groups – viz., Group A, Group B, and Group C – each consisting of six, five, and

three members, who have the following preferences:

Group A: six individuals consider that x is the best;

Group B: five individuals consider that y is the best; and

Group C: three individuals prefer z to x to y.

Suppose that our democratic society implements the social choice rule (i.e., the plurality

rule with the specified tie-breaker) without deliberation. Then, the initial social choice

is: x.

Now, suppose that the members of each group engage in democratic deliberation.

Suppose that after deliberation, one member of Group A is persuaded and convinced

by the arguments presented by members of Group C, and now thinks that alternative

z is better than alternative x, which s/he still believes to be better than alternative y.

Then, as a result of successful deliberation, we have the following list of post-deliberation

preferences:

Group A’: five individuals consider that x is the best; and one individual prefer z

to x to y.

Group B’: five individuals consider that y is the best; and

Group C’: three individuals prefer z to x to y.

By implementing the plurality rule, it turns out that we now have a tie for the two

alternatives x and y. So, we follow our protocol and use our pre-decided tie-breaker,

which requires us to choose the alternative that comes later in the alphabetical order. As

a result, alternative y now becomes the new winner. But note: alternative y is worse than

alternative x for members of Group C. What this means is that although the members

of Group C were able to, through reasoned deliberation, persuade a member of Group

A to change her preferences toward those of the members of Group C, the resulting

social choice turned out to be what Group C considers to be their worst alternative,
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y! For the members of Group C, democratic deliberation was futile; not because it

was unsuccessful in persuading other individuals, but rather, because the success of

democratic deliberation in persuading others was not properly reflected into the final

implemented social choice. In this case, it would have been better for the members of

Group C to decide not to engage in democratic deliberation at all; surely, it would be a

normative failure of deliberative democracy if it provided incentives for participants to

avoid democratic deliberation! Hence, this example illustrates an important normative

property we wish our aggregative social choice rule to ideally incorporate:

Non-Negative Response toward (Successful) Deliberation (NNRD) If some individ-

uals, through successful deliberation, change their preferences toward other indi-

viduals’ preferences, then the aggregative voting rule (i.e., social choice function)

should non-negatively respond to the preferences of those who have successfully

persuaded others – specifically, the social choice rule should not make those who

have successfully persuaded others through reasoned deliberation worse-off than

what they would have achieved without deliberation.

We believe that it is important for a social choice rule to satisfy NNRD because if it

does not, then this implies that the results of successful deliberation that occur in the

first deliberative stage might not get properly translated into producing better social

outcomes in the second aggregation stage, which would defeat the very purpose of intro-

ducing democratic deliberation into our democratic process. As we have just seen, the

social choice rule, “use plurality rule, and when there is a tie, choose the alternative that

comes later in the alphabet order” does not satisfy NNRD. The purpose of this paper is

to investigate what social choice rules, if there are any, are able to satisfy NNRD.

3 The Model

3.1 Preliminaries

We consider a democratic society that employs a two stage democratic process to arrive

at a social decision. In the first deliberation stage, all individuals are assumed to engage

in democratic deliberation on the basis of which they update and change their prefer-

ences over the alternatives under consideration. In the second aggregation stage, our

democratic society aggregates each individual’s post-deliberation preferences to arrive at

a specific social choice.

Let N be the set of individuals. Let X be the set of alternatives. We assume that

both N and X are finite and have at least three members, i.e., |N | ≥ 3 and |X| ≥ 3.
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For each individual i ∈ N , a preference order on X is denoted by ≿i∈ Ri, where Ri is

the set of all weak orders on X, which are both complete and transitive. We assume

Ri = Rj for all i, j ∈ N . For each ≿i∈ Ri, let ≻i and ∼i denote the asymmetric and

symmetric components of ≿i∈ Ri. Let ≿= (≿i)i∈N be a preference profile that lists each

individual’s preferences on X. Let R =
∏

i∈N Ri be the set of all preference profiles.

Let ≿−i= (≿j)j ̸=i and R−i =
∏

j ̸=iRj respectively.

As already explained, we assume that the individuals can change their preferences after

engaging in democratic deliberation. For this purpose, we will use ≿0
i to represent i’s

initial pre-deliberation preferences and use ≿1
i to represent i’s post-deliberation updated

preferences, whenever we need to emphasize the distinction.

A social choice function (hereafter, SCF) is any function from R mapping to X. Here,

we take R to denote the set of all possible preference profiles after deliberation. The

reason that we take the domain of our SCF (i.e., R) to be the set of all post-deliberation

(as opposed to pre-deliberation) preferences is obvious. We want our SCF to reflect

the many positive effects of democratic deliberation that have taken place in the prior

deliberation stage and such positive effects of democratic deliberation, if there are any,

will be reflected in the individuals’ post-deliberation (as opposed to pre-deliberation)

preferences. Note further that since we are considering a social choice ‘function’ (that

produces a unique outcome) and not a social choice ‘correspondence’ (that produces a

set of outcomes) as our social aggregation mechanism, analyzing standard voting rules

will require us to supplement some kind of tie-breaking method to break ties whenever

they occur.

We now explain how the individuals are assumed to transform or change their pref-

erences through democratic deliberation. For this purpose, let Ui be the set of all util-

ity functions on X. For any ≿i∈ Ri, let U≿i
⊊ Ui be the set of all utility functions

representing ≿i. For any preference profile ≿∈ R, let U≿ =
∏

i∈N U≿i
be the set of

all profiles of utility functions representing the profile of individual preferences ≿∈ R.
Then, u = (ui)i∈N ∈ U≿ will be a profile of utility functions for each individual.

For each i ∈ N , let Ci ⊊ [0, 1]n be the standard simplex on N : i.e., Ci = {ci =

(ci1, ..., c
i
|N |) ∈ Rn

+ |
∑

j∈N cij = 1}. Note that Ci = Cj for each i, j ∈ N . We refer to

ci ∈ Ci as i’s consensus vector. Each individual’s consensus vector represents the degree

to which s/he agrees or consents with the opinions/preferences of the other participants.

That is, an individual i’s consensus vector represents how much she is willing to transform

her preferences towards the preferences of others through democratic deliberation.

One thing that we have already discussed is that deliberative democracy does not

think that democratic deliberation will change people’s preferences randomly; rather,
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deliberative democracy assumes that, once people engage in democratic deliberation,

people’s preferences, through the exchange of reasoned arguments, will become closer to

one another even if they do not arrive at full unanimous consensus.

We model this kind of directionality of deliberation-led preference change or transfor-

mation as the convex combination of each individual’s utility function obtained via each

individual’s consensus vector. Specifically, for any utility function profile u ∈ U≿ and

consensus vector ci ∈ Ci, let us define the convex combination ciu ∈ Ui of u with ci as

follows: for each x ∈ X, ciu(x) =
∑

j∈N cijuj(x). Thus, c
iu is a new utility function ob-

tained as the weighted sum of all individuals’ utility functions with weights given by the

consensus vector ci. The new utility function ciu so defined will represent individual i’s

post-deliberation preferences that s/he obtains after appropriately listening to the argu-

ments presented by the other participants with whom s/he gives positive considerations

and, thereby, changes her/his preferences during the first deliberation stage.

Let C =
∏

N Ci. Thus, C = (c1, c2, . . . , c|N |) ∈ C denotes a consensus vector

profile. For any C = (c1, c2, . . . , c|N |) ∈ C, any ≿∈ R, and any u ∈ U≿, let

Cu = (c1u, c2u, . . . , c|N |u) ∈
∏

i∈N Ui. Thus, Cu is a profile of post-deliberation utility

functions that have been obtained via the convex combinations of each individual’s pre-

deliberation utility functions contained in the profile u and each individual’s (possibly

different) consensus vectors C = (c1, c2, . . . , c|N |).

Note that although we assume that the individuals come into deliberation with their

pre-deliberation preferences and leave with their potentially difference post-deliberation

preferences, we have described the process of preference change/transformation that

occurs during deliberation (not in terms of the individuals’ preference, but) in terms of

the individuals’ utility functions and their convex combinations. The reason for this is to

precisely define the acceptable range of preference change given successful deliberation,

which we discuss in the next subsection.

3.2 Acceptable Range of Post-Deliberation Preference Change Given

Successful Deliberation

Again, we do not think that democratic deliberation, when successful, changes people’s

preferences randomly; during democratic deliberation, people’s preferences change and

are transformed on the basis of the opinions/preferences and arguments of the other par-

ticipants, and, as a result, they become closer to one another than what they were prior

to deliberation. This gives us reason to think that we should appropriately restrict the

range of acceptable preference changes from the individuals’ pre-deliberation preferences

12



≿0 to the indviduals’ post-deliberation preferences ≿1 in successful deliberation.2 The

following situation is an example of what we consider to be an unacceptable preference

change given that deliberation was successful:

Example 2: Implausible Post-Deliberation Preference Change

• X = {x, y, z}; As for ≿0, x ≻0
j y ≻0

j z for every individual j ∈ N ; As for ≿1,

x ≻1
j y ≻1

j z for all but i, and z ≻1
i y ≻1

i x for i.

Example 2 illustrates a situation in which all individuals unanimously preferred x to y

to z before deliberation, but after deliberation, a single individual, i, suddenly changed

his/her mind and started to prefer the alternatives in opposite order, i.e., i now prefers

z to y to x! The reason that this would be an implausible preference change is that,

since everybody unanimously preferred x to y to z before deliberation, there simply

existed no other individual who could have possibly persuaded and convinced i to think

that z (which was unanimously considered to be the worst alternative) is now the best

alternative and x (which was unanimously considered to be the best alternative) is now

the worst alternative! Such a preference change would be implausible under successful

deliberation.

Then, what sort of preference change would be acceptable under successful delibera-

tion? Again, let ≿0 be the profile of the individuals’ pre-deliberation preferences, and

let ≿1 be the profile of the individuals’ post-deliberation preferences. When deliberating

with other people, it is common that one is persuaded and convinced, not by every other

participant, but by the reasons and arguments presented by the members of a given

subset of the participants of deliberation. Suppose S ⊆ N denotes the subset of the

participants whose opinions and arguments individual i finds persuasive. Then, after

deliberation, we can expect that individual i’s post-deliberation preferences would be-

come more aligned with the preferences of the members of subgroup S. In other words,

we can think of individual i’s post-deliberation preferences to be a positive combination

of his/her initial preference ≿i and the profile (≿s1 ,≿s2 , . . . ,≿sm)sj∈S . If preferences

were defined on a linear space, this concept would correspond to a convex combination

of the preferences with a coefficient vector on i ∪ S. However, currently, there is no

canonical way to define a linear combination on preferences. Hence, we consider instead

2In this subsection, we treat the symbol ≿0 as denoting the actual profile of initial preferences of the
participants. In the subsequent parts of our paper, for instance, in the definition of axioms and
proofs, ≿0 will be interpretated as a possible profile of initial preference, and what the actual profile
of initial preference is will not affect any conditions or results.
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a convex combination of utility representations as an alternate way to capture this idea

of changing one’s preference toward others’ through deliberation.

Since the set of cardinal utility functions is a linear space, we can define a convex

combination of {i}∪S’s utility functions as: ciu with ci ∈ Ci such that cij > 0 for j ∈ S.

We say that ≿1
i is a convex combination preference with utility representations of ≿0

restricted to i∪S if and only if there exists some u0 representing ≿0 and u1i representing

≿1
i such that u1i is a convex combination of u0

{i}∪S obtained through some consensus

vector ci ∈ Ci. Formally, we say that ≿1
i is a convex combination preference with utility

representations of ≿0 restricted to i ∪ S if there exist u0 ∈ U≿0 , u1i ∈ U≿1
i
, and ci ∈ Ci

satisfying u1i = ciu0 and cij > 0 for j ∈ S.

So far, for ease of explanation, we have focused on just a single individual i’s preference

update. However, in most deliberative environments, preference change/update is not

a one-way process, but rather, a multi-way process that occurs simultaneously among

multiple participants. Furthermore, during deliberation, individual j ̸= i may find the

opinions and arguments of a different subset S′ ⊆ N (where S′ ̸= S) of deliberative

participants to be persuasive. We model this as individual i and individual j each

having possibly different consensus vectors ci and cj , where ci ̸= cj . Hence, although

the two individuals i and j use the same initial profile of pre-deliberation utility functions

u0 as the basis of their preference change during deliberation, since each individual uses

different consensus vectors ci and cj , the resulting post-deliberation utility functions,

which are obtained through the convex combinations ciu0 and cju0, are different, and,

hence, represent different post-deliberation preferences of individuals i and j. Let C =

(c1, . . . , c|N |) ∈ C be the profile of consensus vectors of the individuals. For any utility

function profile u0, Cu0 = (c1u0, . . . , c|N |u0) will represent the profile of the individuals’

updated post-deliberation utility functions (representing the profile of each individual’s

post-deliberation preferences ≿1) obtained through the convex combinations of the initial

utility functions contained in the profile u0 with the weights given by the profile of each

individual’s possibly different consensus vectors C = (c1, . . . , c|N |).

Definition (Acceptable Range of Successful Deliberation) : We say that the profile of

each individual’s post-deliberation preferences ≿1 is within the acceptable range of

successful deliberation if and only if Cu0 ∈ U≿1 for some C ∈ C and some u0 ∈ U≿0

representing each individual’s pre-deliberation preferences ≿0.

In other words, given a profile of initial pre-deliberation preferences ≿1, if there exists

no C ∈ C and u0 ∈ U≿0 such that Cu0 ∈ U≿1 , then the post-deliberation preference

profile ≿1 will be outside the acceptable range of successful deliberation and will be

14



considered implausible. This is because such a preference profile could not have possibly

been generated by the convex combination of any profile of utility functions represent-

ing the initial profile of pre-deliberation preferences with weights given by any possible

consensus vectors. In other words, a post-deliberation preference profile will be outside

the acceptable range of successful deliberation if there is no possible way the individ-

uals could have reached at such a profile of post-deliberation preferences by mutually

convincing and persuading one another through reasoned deliberation.

Our definition of the acceptable range of successful deliberation easily explains why i’s

post-deliberation preference change in Example 2 was unacceptable. In that example,

since everybody prior to deliberation unanimously preferred x to y to z, any utility

representation of each individual’s pre-deliberation preferences would have to assign the

highest number to x, the second highest number to y, and the lowest number to z. Given

this, there could be no convex combinations of the individuals’ utility representations

that would generate the highest number for z and the lowest number for x, which would

be required to represent individual i’s post-deliberation preferences of preferring z to y

to x. We illustrate the notion of the acceptable range of successful deliberation with

two more examples below. The first example illustrates a case in which only a single

individual i updates and changes his/her preferences after deliberation. The second

example illustrates a case where multiple individuals update and change their preferences

simultaneously after deliberation.

But before we present the examples, it is important to understand that our approach

does not require that the individuals have a particular profile of utility functions in

their minds and actually compute and perform convex combinations with their pre-

defined consensus vectors during the process of deliberation. Post-deliberation preference

change can happen naturally and automatically without any individual being consciously

aware of or understanding the concepts of utility functions, convex combinations, their

consensus vectors, etc. These concepts are simply used to model preference change and

define the acceptable range of successful deliberation, which we will later use to define

our NNRD axiom.

Example 3: The Acceptable Range of Successful Deliberation of a Single Individual

Suppose that there are three individuals i, j and k, and three alternatives x, y, and

z. Suppose that the initial pre-deliberation preference profile ≿0 is:

x ≻0
i y ≻0

i z, z ≻0
j x ≻0

j y, x ≻0
k z ≻0

k y
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Suppose that, after engaging in successful democratic deliberation, only i’s preferences

changed, while j’s and k’s preferences remained unchanged: i.e., ≿1
i ̸=≿0

i and (≿1
j ,≿1

k

) = (≿0
j ,≿0

k). Given successful deliberation, what sort of preference change would it be

admissible for i? Note that the three individuals’ initial pre-deliberation preferences ≿0

can be represented by the following three utility functions:

(u0i (x), u
0
i (y), u

0
i (z)) = (2, 1, 0),

(u0j (x), u
0
j (y), u

0
j (z)) = (1, 0, 3),

(u0k(x), u
0
k(y), u

0
k(z)) = (3, 1, 2).

Such a profile of utility representations satisfies u0 ∈ U≿0 . Suppose that, during

deliberation, i gives equal considerations to his/her own opinions/preferences as well as

those of j. This can be represented by i’s consensus vector ci = (cii, c
i
j , c

i
k) = (1/2, 1/2, 0).

Then, the convex combination ciu0 is

(ciu0(x), ciu0(y), ciu0(z)) =
1

2
(u0i (x), u

0
i (y), u

0
i (z)) +

1

2
(u0j (x), u

0
j (y), u

0
j (z)) = (

3

2
,
1

2
,
3

2
).

Thus, ciu0, which represents i’s post-deliberation preferences, represents the preference:

x ∼′
i z ≿′

i y. Here, since cij > 0 and cik = 0, we can say that j was the only person who

was able to convince i during deliberation, while k wasn’t able to convince i at all. That

is, we have: S = j. Since u0 ∈ U≿0 , ci = (cii, c
i
j , c

i
k) = (1/2, 1/2, 0) ∈ C, and ciu0 ∈ U≿′

i
,

we can say that i’s post-deliberation preference ≿′
i was within the acceptable range of

successful deliberation.

Note that u0 above is not the only utility function that represents ≿0, and the con-

sensus vector is not limited to ci above. However, if some individual’s post-deliberation

preference can be represented by a convex combination of at least one pre-deliberation

utility function profile and at least one consensus vector, then, according to our frame-

work, such a post-deliberation preference is an acceptable convex combination preference

derived from a valid utility representation of ≿0 and is thereby within the acceptable

range of successful deliberation.

Under the current profile of initial pre-deliberation preferences ≿0, the entire set of

i’s acceptable post-deliberation preference ≿′
i can be summarized as follows: 3

• xyz, x(yz), xzy, (xz)y, and zxy when S = {j, k} (i.e., i gives positive considera-

tions to both j and k.)

3Here, (xy)z means x ∼i y ≻i z.
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• xyz, x(yz), xzy, (xz)y, and zxy when S = {j} (i.e., i gives positive considerations
to only j but not k.)

• xyz, x(yz), and xzy when S = {k} (i.e., i gives positive considerations to only k

but not j.)

All of these potential post-deliberation preferences of i are within the acceptable range

of successful deliberation (with j and k.)

However, the post-deliberation preference z ≻′′
i y ≻′′

i x cannot be represented by

a convex combination of any pre-deliberation utility function profile and any consensus

vector.4 Therefore, a change from a pre-deliberation preference ≿0
i to a post-deliberation

preference ≿′′
i will be considered unacceptable and will be ruled out from the acceptable

range of successful deliberation.

Example 4: The Acceptable Range of Successful Deliberation for Multiple Agents

Updating Simultaneously Consider again the same ≿0 as that of Example 3:

x ≻0
i y ≻0

i z, z ≻0
j x ≻0

j y, x ≻0
k z ≻0

k y

Let us now consider the case where multiple individuals update their preferences

simultaneously during deliberation. As in Example 3, if a preference profile can be

represented as a convex combination of at least one utility function profile and one

consent vector profile, then it is a convex combination profile with a utility representation

of ≿0 and is, thereby, within the acceptable range of post-deliberation preference change

given successful deliberation. For example, let u0 ∈ U≿0 be:

(u0i (x), u
0
i (y), u

0
i (z)) = (2, 1, 0),

(u0j (x), u
0
j (y), u

0
j (z)) = (1, 0, 3),

(u0k(x), u
0
k(y), u

0
k(z)) = (6, 1, 5).

Let C = (ci, cj , ck) be:

(cii, c
i
j , c

i
k) = (

1

2
,
1

2
, 0), (cji , c

j
j , c

j
k) = (

1

3
,
1

3
,
1

3
), (cki , c

k
j , c

k
k) = (0,

1

2
,
1

2
).

4This is because the pre-deliberation preferences of all three individuals ≿0
i ,≿0

j and ≿0
k prefer x to y

while i’s post-deliberation preference ≿′′
i prefers y to x.
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The set of consensus vectors imply that, during deliberation, i gives equal considera-

tions only to his/her own views as well as those of j; j gives equal considerations to all

three individuals; and k gives equal considerations only to his/her own views as well as

those of i. Due to such differences in their respective consensus vectors (viz. the degree

to which each individual agrees with the opinions of other individuals), each individ-

ual’s post-deliberation preferences will be different from one another. Specifically, after

deliberation, each individual’s post-deliberation utility function becomes:

(ciu0(x), ciu0(y), ciu0(z)) = (
3

2
,
1

2
,
3

2
),

(cju0(x), cju0(y), cju0(z)) = (3,
2

3
,
8

3
),

(cku0(x), cku0(y), cku0(z)) = (
7

2
,
1

2
, 4),

which implies that the post-deliberation preference profile ≿1 after deliberation is:

x ∼1
i z ≻1

i y, x ≻1
j z ≻1

j y, z ≻1
k x ≻1

k y.

Thus, ≿1 is one of the convex combination profiles that can be obtained with utility

representations of ≿0, and, hence, the change from the pre-deliberation profile ≿0 to the

post-deliberation profile ≿1 is within the acceptable range of successful deliberation. Of

course, there are other post-deliberation preference changes that will be in the acceptable

range of successful deliberation as well. However, the following ≿1′ does not satisfy

Cu0 ∈ U≿1′ under any u0 ∈ U≿0 and any C ∈ C:

z ≻1′
i y ≻1′

i x, y ≻1′
j x ≻1′

j z, y ≻1′
k z ≻1′

k x

Thus, the change from the pre-deliberation profile ≿0 to the post-deliberation profile

≿1′ is not within the acceptable range of successful deliberation.

To sum up, a change from a pre-deliberation preference profile ≿0 to a post-

deliberation profile ≿1 when i gives positive considerations to the opinions of the in-

dividuals in the set S is in the acceptable range of successful deliberation if and only

if (i) ≿1 is a convex combination profile with a utility representation of ≿0 and, in

particular, (ii) ≿1
i is a convex combination profile of ≿0 restricted to {i} ∪ S.
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3.2.1 Two Types of (NNRD) Conditions

We now define our main axiom, Non-Negative Response toward Successful Deliberation

(NNRD), formally:

(NNRD) : For any i ∈ N , any non-empty S ⊆ N \ {i}, and any ≿0,≿1∈ R such that

Cu ∈ U≿1 for some (C,u) ∈ C × U≿0 with S = {j ̸= i |cij > 0 },

∃j ∈ S, f(≿1) ≿0
j f(≿0

i ,≿1
−i).

In words, (NNRD) says that given that the preference change from the pre-deliberation

preference profile ≿0 to the post-deliberation preference profile ≿1 is within the accept-

able range of successful deliberation, there must exist at least one individual j among

the individuals who have positively persuaded individual i during deliberation, who is

not made worse-off by the resulting social choice arrived at the later aggregation stage.

In other words, if everybody, who was able to positively persuade individual i to change

his/her preferences through reasoned deliberation, is made worse-off by the final social

decision generated by the SCF, then (NNRD) is violated, and we can say that our SCF

has, thereby, failed to accommodate the positive effects of successful deliberation. In

such cases, we can say that deliberation was futile; it would have been better for people

to choose not to engage in democratic deliberation at all and spare themselves of try-

ing to persuade individual i with reasoned arguments. That would defeat the primary

purpose of why we wish to incorporate democratic deliberation into our democratic de-

cision making process in the first place. Hence, if we wish our democratic institutions

to achieve the ideals of deliberative democracy, it is important that the SCF that we

employ in the aggregation stage satisfies the NNRD axiom.

Since non-emptiness of S = {j ̸= i |cij > 0} is equivalent to cii ̸= 1, the above definition

is mathematically equivalent to the next one:

(NNRD: Alternate Definition) : For any i ∈ N , any ≿0∈ R, any (C,u) ∈ C×U≿0 , and

any ≿1∈ R with Cu ∈ U≿1 and cii ̸= 1,

∃j ̸= i s.t. cij > 0, f(≿1) ≿0
j f(≿0

i ,≿1
−i).

Since this is clearer and also mathematically simpler than the first expression, we

adopt this as the formalization of (NNRD) in many of our subsequent analyses and

proofs.
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Note that the definition of (NNRD) allows multiple individuals to simultaneously

change their preferences during and after deliberation. We might consider a special case

of (NNRD) in which only a single individual changes his/her preferences during and

after deliberation, while everybody else’s preference remains unchanged and is the same

as his/her pre-deliberation preferences. We define this as Weak NNRD:

Weak NNRD (WNNRD) : For any i ∈ N , andy ≿0∈ R, any (ci,u) ∈ Ci × U≿0 , and

any ≿1
i∈ Ri with ciu ∈ U≿1

i
and cii ̸= 1,

∃j ̸= i s.t. cij > 0, f(≿1
i ,≿0

−i) ≿0
j f(≿0).

(WNNRD) considers the special case of NNRD where cjj = 1 for each j ̸= i, and, hence,

≿0
−i=≿1

−i. That is, it considers the special case in which the post-deliberation preference

of everybody besides individual i’s is the same as his/her pre-deliberation preference. It

represents a situation in which only individual i has changed his/her preferences by being

persuaded by other people’s opinions and arguments during democratic deliberation.

(WNNRD) requires that whenever this is so, there must exist at least one other person,

whose opinions and arguments individual i has given positive weight during deliberation,

to be made not worse-off by the resulting social choice generated by the post-deliberation

aggregation rule after individual i has changed his/her preferences. In other words, if

only individual i’s preference has changed as a result of democratic deliberation, then

(WNNRD) requires that there must exist at least one person, who has successfully

persuaded i during democratic deliberation, to be at least as good as s/he would have

been if s/he did not persuade i by the resulting social decision.

We believe that (NNRD) is not a strong normative requirement. It does not de-

mand that everybody, who has successfully persuaded another individual during de-

liberation, should be made better-off by the resulting social choice generated by the

post-deliberation aggregation rule. It merely requires that the post-deliberation aggre-

gation rule should minimally respect the results of successful deliberation so that there

should be at least one person, who has successfully persuaded another person during

deliberation, who is not made worse-off by the resulting social choice generated by the

post-deliberation aggregation rule. In this sense, (NNRD) is normatively weak. As

(NNRD) implies (WNNRD), (WNNRD) is even weaker. In Section 4, we will show

that the impossibility theorem is obtained even if we require the weaker NNRD axiom,

(WNNRD).
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3.3 Other Standard Axioms

We introduce two other categories of normative criteria besides (NNRD) that apply to

our post-deliberation aggregation rule: one that concerns respecting deliberative democ-

racy’s ideal of unanimous consensus and the other that concerns respecting deliberative

democracy’s ideal of democratic equality.

As for the axioms that are designed to respect deliberative democracy’s ideal of unan-

imous consensus, the following three axioms are stated in order of strength:

Pareto Optimality (PO) For any ≿∈ R and any x, y ∈ X, if x ≿i y for all i ∈ N and

there exists j ∈ N such that x ≻j y, then f(≿) ̸= y.

Weak Pareto Optimality (WPO) For any ≿∈ R and any x, y ∈ X, if x ≻i y for all

i ∈ N , then f(≿) ̸= y.

Top Unanimity (TU) For any ≿∈ R, any x ∈ X, if x ≻i y for all i ∈ N and all y ̸= x,

then f(≿) = x.

As explained previously, many early deliberative democratic theorists have regarded

unanimous consensus as a regulative ideal of deliberative democracy. The intuitive ap-

peal of these three axioms comes in part from our desire to respect unanimous consensus

whenever we have successfully reached at one through democratic deliberation. (PO)

requires that, for any two alternatives x and y, if everybody, after deliberation, thinks

that x is at least as good as y and there exists at least one individual who thinks that x is

strictly better than y, then our post-deliberation aggregation rule should not choose y as

its social outcome. (WPO) requires that, for any two alternatives x and y, if everybody,

after deliberation, thinks that x is strictly better than y, then our post-deliberation

aggregation rule should not choose y as its social outcome.

Whereas the two Pareto axioms incorporate deliberative democracy’s ideal of unan-

imous consensus by using unanimity as a basis to reject or eliminate universally dis-

preferred alternatives, (TU) incorporates deliberative democracy’s ideal of unanimous

consensus by requiring our second stage aggregative rule to actively choose the alterna-

tive that everybody considers to be the best whenever such an alternative exists and is

identified through democratic deliberation. It is easy to see that (PO) is the strongest

axiom, (WPO) is weaker, and (TU) is the weakest among the three axioms: that is,

(PO) implies (WPO), which in turn implies (TU), but not the other way round.

We think that the normative appeal of (WPO) and (TU) are uncontroversial: both are

very weak axioms in the sense that both operate only when there is a clear unanimity that
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one alternative is strictly better than another. However, compared to (WPO) we think

that (TU) is a bit too weak because of its very limited applicability. To see this, note

that (TU) operates only when deliberative democracy practically achieves its regulative

ideal to its fullest: that is, (TU) applies only when democratic deliberation leads to full

unanimous agreement toward a single best alternative, which every participant agrees

to be strictly better than any other alternative. But if that is the case, then there is no

reason to rely on any post-deliberation aggregation rule to reach a democratic decision in

the first place. The main reason that we are considering a two-stage democratic process,

where aggregative voting occurs after democratic deliberation, is based on our practical

understanding of the moral nature of modern pluralistic democracies that unanimous

consensus toward a single best alternative can rarely be achieved through sustained

democratic deliberation even under ideal circumstances. This means that (TU), which

is an axiom designed to apply to aggregative voting rules, can only apply to situations

where there is no need to rely on aggregative voting rules at all. Whenever we need

to rely on an aggregative voting rule to reach a collective decision – that is, whenever

democratic deliberation fails to reach full unanimous consensus toward a single best

alternative – (TU) has no bite.

Moreover, unlike (WPO), there is an important sense in which (TU) fails to incorpo-

rate deliberative democracy’s ideal of unanimous agreement. Suppose that after success-

ful democratic deliberation, everybody unanimously agrees that despite there existing

no clear winner that beats every other alternative, some alternatives are clearly worse

than other alternatives. We can say that, here, we have made some progress through

democratic deliberation because although we were not able to identify the uncontrover-

sially best alternative, we were able to at least identify through democratic deliberation

what alternatives we should not choose in the second aggregation stage. (WPO) is able

to accommodate this kind of deliberative result by eliminating such dominated or in-

ferior alternatives so that they do not get considered in the second aggregation stage.

By contrast, (TU) is unable to eliminate such dominated or inferior alternatives and

these alternatives will still be considered in the second aggregation stage. Hence, we

can say that, unlike (WPO), (TU) lacks proper responsiveness to at least one particular

way we wish our second stage aggregation rule to accommodate the results of the first

stage democratic deliberation that has successfully achieved unanimous agreement; and

that is by eliminating the unanimously agreed upon uncontroversially bad alternatives.

This is why we think that (WPO) better accommodates deliberative democracy’s ideal

of unanimous agreement than (TU). Hence, we will impose (WPO) on our aggregation

rule.
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We now talk about the other regulative ideal of deliberative democracy: democratic

equality. As a requirement of democratic equality, we would want our aggregation rule

to treat the individuals fairly by not conferring any excess political decision-making

power to any specific individual. The strongest axiom that requires the SCF to treat all

individuals symmetrically would probably be the axiom known as ‘Anonymity (AN)’:

Anonymity (AN) For any ≿∈ R and any permutation π on N , f(≿) = f((≿π(i))N ).

(AN) requires the SCF to treat all individuals completely symmetrically. However,

in many real life democratic decision making situations, requiring (AN) might be a bit

too demanding. For instance, it might not only be permissible, but actually more in

align with the aims of liberal democracies to confer a certain degree of veto power to

each individual to block certain social outcomes, which can potentially violate their

constitutionally guaranteed basic rights, from being socially imposed by the majority.

In this sense, granting a certain degree of veto power to each individual, provided that it

is within certain limits, is consistent with (and may even be required for) the protection

of each person’s basic liberal rights. The fact that such measures violate the (AN)

axiom does not necessarily mean that a SCF that grants individuals a certain degree

of veto power for the purpose of protecting their basic rights disrespects the ideals of

democratic equality. Rather, what would violate our commitment to democratic equality

is to arbitrarily extend and expand the veto power of a particular individual so that s/he

has a rather unlimited power to block almost any social alternative from being socially

chosen regardless of what everybody else prefers. Hence, even though (AN) seems a bit

too restrictive and we have good reasons to relax (AN), we would at least want our SCF

to avoid allowing the existence of such a universal vetoer.

Let us try to understand this a bit more formally. For each Y ⊆ X with |Y | ≥ 2,

let RY be such that ≿∈ RY if and only if y ≻i x for each i ∈ N , for each y ∈ Y ,

and for each x ∈ X \ Y . That is, ≿∈ RY means that every alternative in X \ Y is

considered to be strictly worse than every alternative in Y by everyone. Thus, RY

represents the situations where the alternatives in X \ Y are unanimously considered

to be “no longer worthy of further considerations.” That is, we may think of X \ Y as

the set of alternatives that did not make the “first-cut” after democratic deliberation.

Note that such a situation may occur quite frequently when the individuals engage in

a prior stage of democratic deliberation; after exchanging reasoned arguments with one

another, it is reasonable to expect that the individuals will be able to at least narrow

down their options to a few viable choices even if they cannot fully reach agreement on

which alternative would be the best.
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For an arbitrary SCF f , we say that v ∈ N is a vetoer on Y ⊆ X if and only if,

for every y ∈ Y , there exists ≿v∈ RY
v such that f(≿) ∈ Y \ {y} for every ≿−v∈ RY

−v.

That is, v ∈ N is a vetoer on Y if and only if when all the individuals, after engaging

in democratic deliberation, unanimously agree that the alternatives in X \ Y should no

longer be considered, for any alternative y ∈ Y (that is, for any alternative y that has

made the “first-cut” after democratic deliberation and is currently under consideration),

v can block the SCF from choosing y by submitting a specific preference in RY
v regardless

of the others’ preferences.

For an arbitrary SCF f , we say that v ∈ N is a universal vetoer if and only if v is a

vetoer on any Y ⊆ X with |Y | ≥ 2. The axiom No Universal Vetoer (NV) requires that

our SCF must not allow anybody to be a universal vetoer:

No Universal Vetoer (NV) f does not have a universal vetoer.

A closely related concept to a universal vetoer is that of a dictator. We say that i ∈ N

is a dictator of the SCF f if and only if, for any ≿∈ R and x ∈ X, f(≿) ≿i x. The

axiom Non-dictatorship (ND) requires that our SCF must not allow anybody to be a

dictator:

Non-Dictatorship (ND) f does not have a dictator.

A dictator can unilaterally impose his/her preferred alternative despite everybody

else’s opposition unconditionally. By contrast, a universal vetoer can unilaterally reject

any alternative s/he disprefers among any subset of alternatives that makes the “first-

cut” despite everybody else’s approval of that alternative. A universal vetoer is weaker

than a dictator; in particular, a dictator is always a universal vetoer, yet a universal

vetoer is not always a dictator. Hence, (NV) implies (ND); but (ND) does not always

imply (NV).

Nevertheless, even though a universal vetoer is weaker than a dictator, a universal

vetoer is very close to a dictator especially in the context of successful deliberation.

As already explained, when democratic deliberation is successful, it can help narrow

down the disagreement among the participants even when it falls short of generating

full unanimous consensus toward a single best alternative. One way that this may occur

is by the elimination of options that are unanimously agreed to be no longer worthy

of consideration at the aggregation stage. As deliberation becomes more successful, we

can reasonably expect that the participants will tend to converge toward a smaller set

of considered options after deliberation, and as the post-deliberation set of considered
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options become smaller, the more powerful the universal vetoer becomes. Once the post-

deliberation set of considered options is reduced to a pair of alternatives, the universal

vetoer will, in effect, have the same power as a dictator, as s/he can now unilaterally

impose his/her preferred alternative as the collective choice even when everybody votes

against it at the aggregation stage. In other words, a universal vetoer can socially

impose his/her preferred alternative between any pair of alternatives despite everybody

else’s opposition given that there exists a prior agreement (established through successful

democratic deliberation) that the specific pair of alternatives is better than all other

alternatives.

We believe that despite not being a full dictator, the existence of such a universal

vetoer goes against our commitment to democratic equality; it confers too much decision-

making power to a single individual that goes far beyond what is necessary to protect the

individual’s basic rights. Note that the existence of a universal vetoer will violate (AN).5

However, the existence of a universal vetoer does not violate (ND) and is compatible

with the axiom. This is why we think that (ND) is too weak to guarantee that our SCF

fully respects democratic equality.

In short, in terms of incorporating the ideals of democratic equality into our SCF at

the aggregation stage, we believe that (AN) is a bit too strong, while (ND) is a bit too

weak. Hence, we will work with (NV) to state and prove our impossibility theorem in

the next section.

4 Results

4.1 The main theorem

In this section, we assume that people’s initial pre-deliberation preferences are weak

orders ≿∈ R. We have the following impossibility result when |N | ≥ 4.

Theorem 1. There exists no SCF f that satisfies (WPO), (NV) and (WNNRD).

The proof is in Appendix A.1. The overall structure of the proof shows that any SCF

f that satisfies (WPO) and (WNNRD) will necessarily appoint some individual as a

5To see this, suppose that i is a universal vetoer of a SCF f . Then, i is also the vetoer on two distinctive
alternatives a and b. That is, i can reject either a or b by reporting a specific preference in R{a,b}

i

when the others’ preference profile is in R{a,b}
−i . If our SCF f satisfies (AN), then this would imply

that any individual j ̸= i can also reject either a or b by reporting the same preferences that i may
report to reject either alternative. But, then, if i vetoes a and j vetoes b and the other individuals’
preferences are in R{a,b}

k , our SCF f will be unable to choose either a or b even though a and b are
the only remaining viable alternatives. This also implies that the universal vetoer must be at most
one.
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universal vetoer, and, thereby, violate (NV): i.e., for any SCF f satisfying (WPO) and

(WNNRC), there exists an individual i ∈ N such that, for any Y ⊆ X with |Y | ≥ 2,

∃ ≿i∈≿Y
i s.t. f(≿) ̸= x, ∀(≿−i, x) ∈≿Y

−i ×X.

Here is the sketch of the proof. First, we assume that the individual preferences

form linear orders. In this environment, we show that the combination of (WPO) and

(WNNRD) implies Maskin monotonicity6 under certain conditions (which we will not go

into details). Maskin monotonicity (under the specific conditions) says that if a certain

alternative x was socially chosen from the initial preference profile, and the alternative

x does not go down in anybody’s preference ranking in the updated preference profile,

then x must continue to be socially chosen in the updated preference profile. By linking

together the situations in which these conditions are satisfied, we show that, for each

pair of distinct alternatives, there exists a vetoer. We then show that these vetoers must

be a single individual. As a final step, we show that this pairwise vetoer is actually

a universal vetoer, whose veto power is limited neither to pairs of alternatives nor to

linear preferences, but also extends more generally to preferences that are weak orders.

Note that, between the two NNRD axioms, Theorem 1 uses the weaker WNNRD

axiom (that says that if i’s preference has changed as a result of successful deliberation,

then there should be at least one person among those who have positively persuaded i

during deliberation, who is not made worse-off by the resulting social choice generated by

the post-deliberation aggregation rule.) Also, between the two Pareto optimality axioms,

Theorem 1 uses the weaker WPO axiom (that says that if everybody thinks that x is

strictly better than y, our aggregation rule should not choose y), which is normatively

easier to justify than the stronger PO in terms of respecting deliberative democracy’s

ideal of unanimous consensus. Theorem 1 shows that there exists no post-deliberation

aggregation rule that can simultaneously: (a) respect deliberative democracy’s ideal of

unanimous consensus (WPO); (b) respect our firm commitment to democratic equality

by not conferring too much political decision-making to any specific individual (NV);

and (c) non-negatively respond to the direction of people’s positive preference change

that occurs after successful deliberation (WNNRD).

We believe that our impossibility theorem derives from minimal number of relatively

weak and uncontroversial axioms. For instance, we do not impose Arrow’s condition

of Independence of Irrelevant Alternatives (IIA), which many scholars have criticized

both of its descriptive and normative force (see Mackie 2003: 156). Further note that

(WNNRD) is necessary to derive our impossibility theorem; without (WNNRD), stan-

6Maskin (1999) introduced this condition, and Reny (2001) used to show the Gibbard–Satterthwaite
theorem.
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dard voting rules with tie-breakers, such as the plurality rule or the Borda rule, become

possible voting rules that satisfy both (WPO) and (NV). (We will consider the plurality

rule and the Borda rule in detail in Section 4.4.) Thus, given that we accept (WPO) and

(NV), we can say that it is (WNNRD) that is responsible for generating the impossibil-

ity result. Yet, we want our aggregation rule to satisfy (WNNRD), because, otherwise,

incorporating democratic deliberation into our democratic process becomes futile.

In the remainder of our paper, we will consider three potential escape routes to our

impossibility theorem: the first is to assume |N | = 3; the second is to relax (WPO) and

(NV); the third is to restrict the initial pre-deliberation preference domain. It will be

argued that all of these potential escape routes face critical limitaions.

4.2 Possible Way Out 1: |N | = 3

Theorem 1 assumes four or more individuals. One way to escape the impossibility

theorem is to assume that there is only three individuals who engage in democratic

deliberation, and exactly three social alternatives under consideration.

To show this, suppose that we have exactly three individuals and three social alter-

natives: viz., |N | = 3, and X = {x, y, z}. Let Mj : R → {y, z} be such that, for any

≿∈ R,
|{i ∈ N |y ≿i z}| ≥ |{i ∈ N |z ≿i y}| ⇔ Mj(≿) = y.

In words, Mj is an aggregation rule that chooses the pairwise majority winner between

y and z, and, when there is a tie, it chooses y. Then, we may define what we call the

x-priority rule, fx, as follows:

Definition 1 (The x-priority rule, fx). For any ≿∈ R, f = fx if and only if

f(≿) =



x if ∄x′ ∈ {y, z} s.t. ∀i ∈ N, x′ ≻i x,

y if [∀i ∈ N, y ≻i x] & [∃i ∈ N, x ≿i z],

z if [∀i ∈ N, z ≻i x] & [∃i ∈ N, x ≿i y],

Mj(≿) if ∀i ∈ N, y ≻i x & z ≿i x.

According to the x-priority rule fx: If neither y nor z, strictly Pareto dominates x,

then x is chosen as the default social choice; if only one of either y or z strictly Pareto

dominates x, then that alternative is socially chosen; finally, if both y and z strictly

Pareto dominate x, then the pairwise majority winner between y and z is socially chosen,

and when there is a tie, y is socially chosen.

Proposition 1 shows that the x-priority rule fx satisfies (WP), (NV), and (WNNRC).
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Proposition 1. SCF fx satisfies (WPO), (NV), and (WNNRD).

The proof of proposition 1 is in Appendix A.2.

Although employing the x-priority rule with exactly 3 individuals and 3 social alter-

natives does provide an escape route to our impossibility theorem, we think that such

an escape route is very limited for obvious reasons. First, the escape route that relies

on the x-priority rule works only under the extremely limited situation in which there is

exactly three individuals and exactly three social alternatives. Hence, we are unable to

escape the impossibility theorem in more general democratic settings in which we have

more than three individuals and more than three social alternatives under consideration.

Second, another limitation of the x-priority rule is that it can be seen as giving a rather

unfair priority to some alternative, in particular, x, which has not been justified either

by democratic deliberation or by the individuals’ preferences; this may seem arbitrary.

Note that according to the x-priority rule, only the alternatives that every individual

(after democratic deliberation) unanimously considers to be strictly better than x can

beat x. If x is the status quo, then the x-priority rule gives a very strong bias toward

retaining the status quo and hinder social change. This might be undesirable in situa-

tions where the status quo lacks a rational basis and does not deserve to have such a

privileged status.

4.3 Possible Way Out 2: Relaxing the Axioms

Our impossibility theorem shows that (WPO) and (NV) together are incompatible with

(WNRRD). Remember that (WPO) was justified in terms of respecting deliberative

democracy’s ideal of unanimous consensus and (NV) was justified in terms of respecting

deliberative democracy’s ideal of democratic equality. We now consider whether we can

avoid the impossibility theorem if we used weaker axioms than either (WPO) or (NV).

And it will turn out that we can indeed escape the impossibility theorem with such a

strategy. This shows that our impossibility theorem is tight.

Throughout this section, we will introduce indices for alternatives: i.e., X
def
=

{x1, . . . , x|X|}. For each non-empty Y ⊆ X, let

r(Y ) = min{m ∈ {1, . . . , |X|} | xm ∈ Y },

that is, r(Y ) denotes the smallest index of alternatives in Y . r provides the tie-

breaking system, which chooses the alternative xr(Y ) ∈ Y for each Y ⊆ X. The indices

are used only to define the above tie-breaking system. (Rearranging indices has no effect

on the conclusions.)
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4.3.1 A SCF Satisfying (WNNRD), (NV), (TU)

Suppose we replace (WPO) with (TU). Recall:

Top Unanimity (TU) For any ≿∈ R, any x ∈ X, if x ≻i y for all i ∈ N and all y ̸= x,

then f(≿) = x.

Now, consider any alternative d ∈ X. We define the unanimity rule with default d in

the following way:

Definition 2 (The Unanimity Rule with default d, fd). f = fd if and only if, for each

≿∈ R,

f(≿) =

x if ∃x ∈ X such that x ≻i y, ∀i ∈ N and ∀y ̸= x

d if otherwise.

From Definition 2, fd chooses the unanimously agreed best alternative if such an alter-

native can be identified after democratic deliberation, and chooses the “default alterna-

tive” d otherwise. We can easily show that fd does not satisfy (WPO). Choose distinct

x, y ̸= d and consider a ≿∈ R such that

∃i ∈ N s.t. x ≻i y ≻i z & y ≻j x ≻j z ∀j ̸= i, ∀z /∈ {x, y}.

Then, d is Pareto dominated by both x and y. However, since there exists no alterna-

tive that everybody considers to be the best, we have fd(≿) = d. Hence, by replacing

(WPO) with (TU), we obtain the following possibility result for fd.

Proposition 2. fd satisfies (TU), (NV), and (WNNRC).

The proof of this proposition is in Appendix A.3. The escape route described in Propo-

sition 2 is not very attractive for reasons that we have already explained in the previous

sections. The aggregation rule fd gives a rather unfair advantage to some default alter-

native d, which is not justified through democratic deliberation or people’s preferences.

fd also fails to fully incorporate deliberative democracy’s regulative ideal of unanimous

consensus because, given there exist no alternative that emerges as the clear winner, fd

will still choose the default alternative d even when everybody unanimously considers d

to be uncontroversially bad after democratic deliberation. We get a possibility, but only

by compromising our ability to respond positively toward deliberative consensus.

4.3.2 A SCF Satisfying (WNNRD), (WPO), and (ND)

Next, suppose that we drop (NV) and instead add (ND). Recall:
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Non-Dictatorship (ND) f does not have a dictator. That is, there exists no i ∈ N such

that for any ≿∈ R and x ∈ X, f(≿) ≿i x.

Since we still impose both (WNNRD) and (WPO), by Theorem 1, the SCF must have a

unique universal vetoer. The basic strategy of the escape route is to define an aggregation

rule that appoints somebody as a universal vetoer, but who is, nonetheless, not fully a

dictator. Throughout the section, suppose that v ∈ N is the universal vetoer, whose

existence is implied by both (WNNRD) and (WPO) according to Theorem 1.

For each ≿∈ R, and for each non-empty N ′ ⊆ N , let

Xtop
≿N′

def
= {x ∈ X | x ≿i y ∀(y, i) ∈ X ×N ′}

Xbot
≿N′

def
= {x ∈ X | y ≿j x ∀(y, j) ∈ X ×N ′}.

Intuitively, Xtop
≿N′

is the set of alternatives that everybody in N ′ considers to be the best,

while Xbot
≿N′

is the set of alternatives that everybody in N ′ considers to be the worst.

As a notational convention, let Xtop
≿ = Xtop

≿N
and Xbot

≿ = Xbot
≿N

i.e., Xtop
≿ is the set of

alternatives that everybody considers to be the best and Xbot
≿ is the set of alternatives

that everybody considers to be the worst.

For any preference ≿v∈ R of the universal vetoer v such that Xtop
≿v
̸= X, let

Xsec
≿v

def
= {x ∈ X \Xtop

≿v
| x ≿v y ∀y ∈ X \Xtop

≿v
}.

That is, Xsec
≿v

is the set of universal vetoer v’s second-best alternatives given ≿v. We

now define what we call the v-priority rule, fv in the following way:

Definition 3 (the v-priority rule, fv). 7 For each ≿∈ R, f = fv if and only if

f(≿) =


xr(Xtop

≿v
\Xbot

≿−v
) if Xtop

≿v
\Xbot

≿−v
̸= ∅ (Case 1)

xr(Xsec
≿v

) if Xtop
≿v
\Xbot

≿−v
= ∅ & Xbot

≿ ̸= X (Case 2)

x1 if Xbot
≿ = X (Case 3).

In words, the following explains how the v-priority rule fv chooses the social alternative

in the aggregation stage. For any ≿∈ R,

7To confirm that the second line is well defined, we have to check that Xtop
≿v

̸= X holds under this

condition. The proof is as follows: Suppose that Xbot
≿ ̸= X. Then, “Xbot

≿v
̸= X” or “Xbot

≿v
= X

and Xbot
≿−v

̸= X.” Since Xbot
≿v

̸= X ⇔ Xtop
≿v

̸= X, this means that “Xtop
≿v

̸= X” or “Xtop
≿v

= X and

Xbot
≿−v

̸= X.” In other words, if Xtop
≿v

\Xbot
≿−v

= ∅, then Xtop
≿v

̸= X.
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Case 1 If there exist some alternatives in Xtop
≿v

that are not unanimously bottom-ranked

for everybody other than v, then the rule chooses one among them,

Case 2 If all alternatives in Xtop
≿v

are unanimously bottom-ranked for everybody except

v, then the rule chooses one of the second-best alternatives for ≿v, and

Case 3 If all alternatives in Xtop
≿v

are unanimously bottom-ranked for everybody except

v, and there exists no second-best alternative for v because s/he is indifferent to

every alternative in ≿v (i.e., Xtop
≿v

= X), then this rule chooses x1.

We now state our possibility result:

Proposition 3. The v-priority rule fv satisfies (WP), (ND) and (WNNRD).

The proof of the proposition is in Appendix A.4. Note that individual v designated

by the v-priority rule fv is not a full-fledge dictator because it is possible for the other

individuals to “reject” one of v’s best alternatives from being socially chosen by putting

that alternative at the very bottom of their preference ranking. Even so, the universal

vetoer v is guaranteed to get one of his/her second-best alternatives (provided that v

is not completely indifferent to every alternative in X.) Hence, despite falling slightly

short of being a full-fledge dictator, v, under the v-priority rule fv, has enormous decision

making power: specifically, v will be able to always impose one of his/her top-ranked

alternatives as long as there exists at least one other person who does not rank at least

one of v’s top-ranked alternative at the very bottom (or equivalently, as long as it is

not the case that every other individual ranks all of v’s top-ranked alternatives at the

very bottom); and even when everybody else unanimously ranks all of v’s top-ranked

alternatives at the very bottom, v will still be able to impose at least one of his/her

second best alternatives. So, the main difference between a dictator and the universal

vetoer v under the v-priority rule is that whereas a dictator is able to always impose

one of his/her best alternatives, the universal vetoer v, while being able to impose one

of his/her top-ranked alternative most of the time, can, at least fail and get one of

his/her second-best alternatives (if everybody else can successfully coordinate through

democratic deliberation to rank all of v’s top-ranked alternatives at the very bottom

of their preference rankings.) This is still an enormous undemocratic decision making

power conferred to a single individual. Hence, we can say that this particular escape route

comes at a significant democratic cost. We escape the impossibility theorem by paying

the cost of compromising one of deliberative democracy’s fundamental commitments to

democratic equality.
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4.4 Possible Way Out 3: Domain Restrictions

The third possible way to escape our impossibility theorem is by restricting our pre-

deliberation or post-deliberation preference domain. Let Di ⊂ Ri denote the set of all

dichotomous preference orders on X: specifically, ≿i∈ Di divides X into two groups H≿i

and L≿i
such that

a ∼i a
′ ∀a, a′ ∈ H≿i

; b ∼i b
′ ∀b, b′ ∈ L≿i

; a ≻i b ∀a ∈ H≿i
, ∀b ∈ L≿i

.8

In other words, an individual has dichotomous preferences if s/he is able to divide the

set of all alternatives into two broad groups H≿i
and L≿i

and consider all alternatives

in H≿i
as equally good, while considering all alternatives in L≿i

as equally bad. Let

D =
∏

i∈N Di denote the set of all profiles of dichotomous preferences. The SCF when

the domain is restricted to D is denoted by fD. Throughout section 4.4, we will consider

possible escape routes when we restrict our initial pre-deliberation preference domain to

D.
Example 5 modifies our previous Example 1 so that the participants have dichotomous

preferences both pre-deliberation and post-deliberation.

Example 5: Suppose that the initial profile, ≿∈ D, is as follows:

Group A: six individuals have H = {x}, L = {y, z};

Group B: five individuals have H = {y}, L = {x, z}; and

Group C: an individuals have H = {z}, L = {x, y}.

If the individuals do not engage in democratic deliberation and we derive the social

choice from the individuals’ pre-deliberation dichotomous preferences, any scoring rule

or any approval voting rule will generate f(≿) = x as its social outcome. Suppose, as it

was the case for Example 1, after engaging in democratic deliberation, a single individual

in Group A is persuaded by the arguments presented by the members of Group C and

changes her preferences to ‘H = {z}, L = {x, y}.’ Then, the post-deliberation preference

profile, ≿′∈ D, becomes

Group A’: five individuals have H = {x}, L = {y, z};

Group B’: five individuals have H = {y}, L = {x, z}; and
8Strictly speaking, Di ̸⊂ Ri since H≿i

or L≿i
is able to be empty. However, we assume that i has the

same preference that all alternatives are indifferent for i if H≿i
= 0 or L≿i

= 0. There is no effects
of this setting on our results in Section 4.4.
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Group C’: two individuals have H = {z}, L = {x, y}.

By using any scoring or approval voting rule with a tie-breaker, we obtain either

f(≿′) = x or f(≿′) = y as our social outcome in the aggregation stage. Since the

individuals in Group C are indifferent between x and y, there exists no individual (in

Group C) who has successfully persuaded another individual (i.e. an individual in Group

A) through democratic deliberation that has been made worse-off by the social outcome

generated by the aggregation rule. Hence, example 5 satisfies (NNRD).

Example 5 concerns a situation in which both the individuals’ pre-deliberation and

post-deliberation preferences are dichotomous; that is, the individuals all start with di-

chotomous pre-deliberation preferences before democratic deliberation and end up with

dichotomous post-deliberation preferences after democratic deliberation as well. This

can happen when each individual is either completely persuaded or completely unper-

suaded by the opinions of other individuals during democratic deliberation.

Although it is perfectly possible for such situations (of either complete persuasion or

complete inertia) to occur, a more common situation would be when the individuals

change their preferences by being partially persuaded by other people’s arguments and

opinions during democratic deliberation. And when this occurs, it is possible for the

domain of post-deliberation updated preferences to become R even when we start with

dichotomous pre-deliberation preferences in D.
For example, suppose that we have X = {x, y, z} and i’s initial pre-deliberation

preferences are x(yz), and j’s initial pre-deliberation preferences are (xy)z. If we

use (ui(x), ui(y), ui(z)) = (1, 0, 0) to represent i’s pre-deliberation preference and

(uj(x), uj(y), uj(z)) = (1, 1, 0) to represent j’s pre-deliberation preference, and assume

that i gives equal weight to his/her preference and j’s preference during deliberation (i.e.,

cii = cij = 0.5), then i’s post-deliberation preference becomes (ciu(x), ciu(y), ciu(z)) =

(1, 0.5, 0), which implies that, after deliberation, i now strictly prefers x to y to z. This

example shows that pre-deliberation preferences that start out to be dichotomous before

deliberation can very well change into weak or linear orders after deliberation.

One practical way in which this may occur is for democratic deliberation to have

an effect on refining people’s preferences. That is, people, who previously lacked the

ability to finely distinguish between similar but subtlely different alternatives may, after

being presented, during democratic deliberation, with various reasons and considerations

concerning the merits and demerits of different alternatives – considerations that were

previously unknown or not salient – may start to develop a more sophisticated assessment

over the various alternatives that allow them to now distinguish and finely rank those
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alternatives, whose overall values were largely perceived to be roughly equivalent before

they engaged in democratic deliberation.

In Section 4.4.1, we will investigate possible escape routes in such situations: that is,

when people’s pre-deliberation preferences are dichotomous while their post-deliberation

preferences are weak orders. In Section 4.4.2, we will investigate possible escape routes

in more restrictive cases where people’s pre-deliberation preferences and their post-

deliberation preference are both dichotomous.

4.4.1 Simple Scoring Rules with a Tie-Breaker: The Possibility of Plurality and

Borda Rules when D → R

Suppose that the participants start with dichotomous pre-deliberation preferences and

end up with post-deliberation preferences that are weak orders. As explained above,

this may happen when the participants update their pre-deliberation dichotomous pref-

erences during deliberation by partially agreeing with the opinions and/or preferences

of the other participants. Since we have now restricted the domain of pre-deliberation

preferences to that of the set of dichotomous preferences D, we redefine our (NNRD)

axiom as follows:

(NNRDD→R) : For any i ∈ N , for any ≿0∈ D, for any (C,u) ∈ C × U≿0 , and for any

≿1∈ R with Cu ∈ U≿1 and cii ̸= 1,

∃j ̸= i s.t. cij > 0 & f(≿1) ≿0
j f(≿0

i ,≿1
−i).

We now examine whether the two famous scoring rules9 – namely, the plurality rule

and the Borda rule – can jointly satisfy (NNRDD→R), (WPO) (or (PO)), and (NV). It

turns out that they do, and to show this, we prove that the two simple scoring rules

work even if we replace (NV) with a more stronger axiom (AN) (which implies (NV)).

Just as we explained in the beginning of 4.3., we will employ an arbitrary tie-breaking

system by indexing each alternative in X (i.e., X = {x1, ..., x|X|}) and use r(Y ) to denote

the smallest indexed alternative in Y for every Y ⊆ X. To define the plurality rule, for

each non-empty N ′ ⊆ N , suppose

9When we consider the class of simple scoring rules that Young (1975) characterized, we often assume
that the input of SCF is a profile of linear orders, ≻∈ P, as all individuals are assumed to use
the same score vector: s = (s1, ..., s|X|) such that s1 ≥ · · · ≥ s|X| and s1 > s|X|, where sr is
the score of the rth best alternative for each individual. Under the assumption that the input of
SCFs is ≻, Llamazares and Peña (2015) shows that the plurality rule with s = (1, 0, ..., 0) and the
Borda rule with s = (|X| − 1, |X| − 2, ..., 0) satisfy (WPO). However, the anti-plurality rule with
s = (0, ..., 0,−1), the best-worst rule with s = (1, 0, ..., 0,−1), and the k−approval voting rules with
k > 1 and s = 1⌢

k 0|X|−k, where 1 includes only one, 0 includes only zero, violate (WPO).
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ntop
N ′ (x,≿N ′)

def
= |{i ∈ N ′ | x ∈ Xtop

≿i
}|.

That is, ntop
N ′ (x,≿N ′) denotes the number of individuals who rank alternative x at the

top within N ′. Note that we omit N ′ if N ′ = N , ntop
{i}(x,≿i) = ntop

i (x,≿i), and ntop
N ′ (x,≿

) =
∑

i∈N ′ n
top
i (x,≿i). We now formally define the plurality rule defined over post-

deliberation preferences that are weak orders as follows:

Definition 4 (The plurality rule, fpl). f = fpl if and only if, for any ≿∈ R,

f(≿) = xr(argmaxx∈Xntop(x,≿)).

In words, the plurality rule fpl chooses the alternative that is considered to be the

best by the largest number of individuals than any other alternative (and if there are

ties, chooses the alternative with the smallest index among such alternatives.)

To formally define the Borda rule, we first define the “(extended) Borda score”10 of

each alternative x ∈ X for each non-empty N ′ ⊆ N , i.e., brN ′(x,≿N ′) as follows:

nN ′(x, y,≿N ′)
def
= |{i ∈ N ′ | x ≿i y}| − |{i ∈ N ′ | y ≿i x}|;

brN ′(x,≿N ′)
def
=

∑
y ̸=x

nN ′(x, y,≿N ′).

Note that we omit N ′ if N ′ = N , n{i}(x, y,≿i) = ni(x, y,≿i), br{i}(x,≿i) = bri(x,≿i),

and brN ′(x,≿) =
∑

i∈N ′ bri(x,≿i). In other words, the Borda score of an alternative

x ∈ X is calculated by: for each individual i ∈ N , adding the number of alternatives

that are ranked above x and then subtracting from this the number of alternatives that

are ranked below x, and, then, summing this number across all individuals. Further note

that
∑

x∈X bri(x,≿i) = 0 for all i ∈ N , therefore,
∑

x∈X br(x,≿) = 0. That is, adding

up the Borda score of every alternative has to sum to 0. (This is convenient to remember

when we check whether we have calculated the Borda scores of each alternative correctly.)

We now formally define the Borda rule defined over post-deliberation preferences that

are weak orders as follows:

Definition 5 (The Borda rule, f br). f = f br if and only if, for any ≿∈ R,

f(≿) = xr(argmaxx∈Xbr(x,≿)).

10There are several ways to define the Borda score with weak orders. We employ the extended Borda
score since it is the most straightforward extension of the Borda score with linear orders (see Black,
1976; Coughlin, 1979; Gärdenfors, 1973; and Young, 1986 among others).
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In other words, the Borda rule f br chooses the alternative that receives the highest

Borda score (and if there are ties, chooses the alternative with the smallest index among

such alternatives.)11

Propositions 4 and 5 show that the Borda rule f br is compatible with (AN), (PO), and

(NNRDD→R) (and, therefore, with (NV), (WPO), and ((WNNRDD→R)) and that the

plurality rule f br is compatible with (AN), (WPO), and (NNRDD→R) (and, therefore,

with (NV), (WPO), and (WNNRDD→R)).

Proposition 4. The Borda rule f br satisfies (AN), (PO), and (NNRDD→R).

Proposition 5. The plurality rule fpl satisfies (AN), (WPO), and (NNRDD→R).

The proofs of these proposition are in Appendices A.5 and A.6, respectively. Proposi-

tions 4 and 5 show that it is possible for us to escape the impossibility theorem and find

post-deliberation aggregation rules that respect the results of successful deliberation if

we restrict our pre-deliberation preference domain to that of dichotomous preferences.

A major limitation of this escape route is that it requires every individual to enter

democratic deliberation with dichotomous pre-deliberation preferences over the set of

alternatives – that is, everybody must be able to partition the set of alternatives into

two equivalence classes, viz., alternatives that are considered to be (relatively) ‘good’ and

alternatives that are considered to be (relatively) ‘bad.’ Of course, the framework allows

people to develop and eventually arrive at more refined and sophisticated preferences

that are weak orders during the process of deliberation; but those kinds of refined and

sophisticated preferences that form weak orders are not permitted to be used as inputs

for democratic deliberation themselves. Hence, escaping the impossibility theorem by

restricting the domain of pre-deliberation preferences to dichotomous preferences may

go against deliberative democracy’s ideal of “openness” that many deliberative demo-

cratic theorists regard as an essential feature for democratic deliberation to perform well.

(Miller 1992: 55; Sunstein 2002: 194; Rawls 1997: 93; Mansbridge et al. 2010: 65-66)

Before ending this subsection, we show that not all aggregation rules survive this

escape route of restricting the initial pre-deliberation preference domain to dichoto-

mous preferences. In particular, we show that the Kemeny rules is incompatible with

(NNRDD→R). The reason that we consider the Kemeny rule is because it is one of the

standard Condorcet rules that chooses the pairwise majority rule winner if it exists.

11Here is how we can consider Borda rule as an instance of a scoring rule. The Borda score vector is
denoted by s = (|X|−1, |X|−2, ..., 0) when ≿∈ P. If we arrange the elements of (br(x,≻i))x∈X for any
i ∈ N in descending order, we obtain a vector br = (|X|−1, |X|−3, |X|−5, ..., 5−|X|, 3−|X|, 1−|X|) =
(2s1 − (|X| − 1), ..., 2s|X| − (|X| − 1)). Thus, the scoring rules with s = (|X| − 1, |X| − 2, ..., 0) and
br are equivalent. See also Saari (1999, 2000a, 2000b).
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To define the Kemeny rule, we must first define the Kemeny distance between two

post-deliberation preferences (that are weak orders.) The Kemeny distance between two

weak orders, ≿◦ (∈ R◦) and ≿i (∈ Ri), which was introduced by Kemeny (1959) and

was characterized by Kemeny and Snell (1962) and Can and Storcken (2018), is defined

as follows:

KD(≿◦,≿i)
def
= | ≿◦ \ ≿i |+ | ≿i \ ≿◦ |.

Let us try to understand what this is saying. The Kemeny distance between two

preferences is a measure of how close (or far apart) the two preferences are. Consider

any x, y ∈ X and any preference of individual ◦, ≿◦, and any preference of individual

i, ≿i. Here is how the Kemeny distance KD is calculated: (1) if both ◦ and i have the

same preferences between x and y, for example, if x ≻◦ y and x ≻i y, then we have

(x, y) ∈≿◦, (x, y) ∈≿i and (y, x) /∈≿◦, (y, x) /∈≿i. Hence, we have (x, y), (y, x) /∈≿◦ \ ≿i

and (x, y), (y, x) /∈≿i \ ≿◦. So, with respect to the two alternatives x and y, the Kemeny

distance KD(≿◦,≿i) will not increase; (2) if one of ◦ and i is indifferent between x and y

and one has a strict preference between x and y, for example, if x ∼◦ y and x ≻i y), then

we have (x, y), (y, x) ∈≿◦ and (x, y) ∈≿i and (y, y) /∈≿i. Hence, we have (x, y) /∈≿◦ \ ≿i,

(y, x) ∈≿◦ \ ≿i, and (x, y), (y, x) /∈≿i \ ≿◦. So, with respect to the two alternatives

x and y, the Kemeny distance KD(≿◦,≿i) will increase by 1 distance; (3) if ◦ and i

have strict preferences over x and y in the opposite direction, for example, if x ≻◦ y and

y ≻i x, then we have (x, y) ∈≿◦, (x, y) /∈≿i and (y, x) /∈≿◦, (y, x) ∈≿i. Hence, we have

(x, y) ∈≿◦ \ ≿i, (y, x) /∈≿◦ \ ≿i, and (y, x) ∈≿i \ ≿◦, (x, y) /∈≿i \ ≿◦. So, with respect

to the two alternatives x and y, the Kemeny distance KD(≿◦,≿i) will increase by 2

distances. In short, the Kemeny distance KD between two identical preferences orders

will be 0; it will increase by an increment of 1 for each pair of alternatives for which

one individual is indifferent while the other individual has a strict preference; and it will

increase by an increment of 2 for each pair of alternatives for which the two individuals

have opposite strict preferences.

Utilizing the notion of Kemeny distance KD, we define the Kemeny rule as follows:

Definition 6 (The Kemeny rule, fkem). For any ≿∈ R, f = fkem if and only if

f(≿) ∈ ∪≿∗∈AX
top
≿∗

, where A = argmin≿◦∈R◦

∑
i∈N

KD(≿◦,≿i).

Intuitively, the Kemeny rule constructs a social preference relation so that it mini-

mizes the sum of the Kemeny distance between the social preference relation and each
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individual’s preference, and, then chooses the alternative that is top-ranked with respect

to that newly constructed social preference relation.

The following example illustrates that the Kemeny rule fkem violates (NNRDD→R).

Example 6: A Negative Result for the Kemeny Rule Suppose that there are 15

individuals and X = {x1, x2, x3}. Suppose that individual 13’s initial pre-deliberation

preference was: x1 ∼13 x2 ≻13 x3 (or (x1x2)x3.) We consider two possible cases in which

the 15 individuals update and change their preferences after engaging in democratic

deliberation: (a) a case in which individual 13 does not change his/her preferences by

being persuaded by nobody (≿), and (b) a case in which individual 13 does change

his/her preferences by being positively persuaded by other people.

The following describes the 15 individuals’ post-deliberation preferences where indi-

vidual 13 retains his/her initial pre-deliberation preference after deliberation:

1. x1 ≻i x2 ≻i x3, i = 1, 2, 3, 4;

2. x2 ≻j x3 ≻j x1, j = 5, 6, 7, 8;

3. x3 ≻k x1 ≻k x2, k = 9, 10, 11, 12;

4. x1 ∼13 x2 ≻13 x3;

5. x2 ∼14 x3 ≻14 x1; and

6. x3 ∼15 x1 ≻15 x2.

The following describes the 15 individuals’ post-deliberation preferences where indi-

vidual 13 has also changed his/her preference :

1. x1 ≻′
i x2 ≻′

i x3, i = 1, 2, 3, 4;

2. x2 ≻′
j x3 ≻′

j x1, j = 5, 6, 7, 8;

3. x3 ≻′
k x1 ≻′

k x2, k = 9, 10, 11, 12;

4. x1 ∼′
13 x2 ≻′

13 x3;

5. x2 ∼′
14 x3 ≻′

14 x1; and

6. x3 ∼′
15 x1 ≻′

15 x2.
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Note that the only difference between the two post-deliberation preference profiles ≿
and ≿′ is individual 13’s preference.

If we apply the Kemeny rule to post-deliberation profile ≿, then we discover that the

three linear orders, x1 ≻i x2 ≻i x3, x2 ≻j x3 ≻j x1, and x3 ≻k x1 ≻k x2 are all contained

in A = argmin≿◦∈R◦

∑
i′∈N KD(≿◦,≿i′).

12 Hence, we have: ∪≿∗∈AX
top
≿∗

= {x1, x2, x3}.
From our tie-breaking system r, we have: r({x1, x2, x3}) = x1. Hence, the Kemeny rule

chooses x1 for ≿: i.e., fkem(≿) = x1.

Now, if we apply the Kemeny rule to post-deliberation profile ≿, then we discover that

only the linear order x3 ≻k x1 ≻k x2 is contained in A = argmin≿◦∈R◦

∑
i′∈N KD(≿◦

,≿′
i′).

13 Hence, we have: ∪≿∗∈AX
top
≿∗

= {x3}. So, the Kemeny rule now chooses x3 for

≿′: i.e., fkem(≿′) = x3.

In other words, the fact that individual 13 has been persuaded by other people and

has changed his/her preference from (x1x2)x3 to x1(x2x3) affects the social outcome to

change from x1 to x3. However, in order for individual 13 to change his/her prefer-

ences from (x1x2)x3 to x1(x2x3), s/he would have had to be persuaded by those whose

preferences were either x1(x2x3) or (x1x3)x2. If individual 13 was persuaded by those

whose preferences were x1(x2x3), then since fkem(≿′) = x3 is strictly worse for these

people than fkem(≿) = x1, the fact that these people successfully persuaded individual

13 during deliberation made them all strictly worse-off. Thus, the Kemeny rule fkem

violates (NNRDD→R).

From Example 6, we can understand that restricting our pre-deliberation preferences

to be dichotomous does not automatically make every aggregation rule compatible with

(NNRDD→R).

4.4.2 The Possibility of The Approval Voting Rule with a Tie-Breaker When D → D

Finally, we show that the possibility result does not go away even if we further restrict

the post-deliberation preference profiles to be dichotomous. That is, in this frame-

work, we assume that the individuals’ initial pre-deliberation preferences and their post-

deliberation preferences are both dichotomous. As explained previously, this may happen

when each individual is either completely convinced or completely unconvinced by the

opinions and preferences of other individuals during democratic deliberation.

As before, we consider an arbitrary tie-breaking system by assuming X = {x1, ..., x|X|}

12To see this, note that
∑

i′∈N KD(≿1,≿i′) =
∑

i′∈N KD(≿5,≿i′) =
∑

i′∈N KD(≿9,≿i′) = 41, that is,
the minimum value.

13To see this, note that KD(≿′
13,≿1) − KD(≿13,≿1) = 0, KD(≿′

13,≿5) − KD(≿13,≿5) = 2, and
KD(≿′

13,≿9) − KD(≿13,≿9) = −2, argmin≿◦∈R◦

∑
i′∈N KD(≿◦,≿′

i′) includes only ≿∗=≻k, k =
9, 10, 11, 12.
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and using the function r(Y ) to denote the alternative in Y with the smallest index for

every Y ⊆ X.

Since our aggregation rule is now applied to post-deliberation preferences, whose do-

main is the set of dichotomous orders, D, we redefine our (NNRD), (PO), and (AN)

axioms accordingly in the following way:

(NNRDD→D) : For any i ∈ N , for any ≿0∈ D, for any (C,u) ∈ C × U≿0 , and for any

≿1∈ D with Cu ∈ U≿1 ,

∃j ̸= i s.t. cij > 0 & fD(≿1) ≿0
j fD(≿0

i ,≿1
−i).

(POD) For any ≻∈ D and for any x, y ∈ X, if y ≿i x for all i ∈ N , and there exists

j ∈ N such that y ≻i x, then fD(≿) ̸= x.

(AND) : For any ≿∈ D and for any permutation pi on N , fD(≿) = fD((≿π(i))i∈N ).

We then define the approval voting rule fav
D as follows:

Definition 7 (The approval voting rule, fav
D ). fD = fav

D if and only if, for any ≿∈ D,

fD(≿) = xr(argmaxx∈X |{i∈N |x∈H≿i
}|).

In words, the approval voting rule, fav
D , chooses the alternative that receives the highest

number of approvals (where an alternative x ∈ X is approved by individual i ∈ N if and

only if x ∈ H≿i
) among all individuals (and when there is a tie, chooses the alternative

with the smallest index among such alternatives.) Note that if the post-deliberation

preferences are dichotomous, then the plurality and Borda rules are equivalent to the

approval voting rule. Hence, based on Propositions 4 and 5, we immediately get a

possibility for the approval voting rule when post-deliberation preferences are restricted

to be dichotomous.

Proposition 6. The approval voting rule fav
D satisfies (AND), (POD), and (NNRDD→D)

Again, such an escape route comes with costs. As explained previously, when we

only allow dichotomous pre-deliberation preferences, that has an effect of precluding

more fine-grained and sophisticated preferences or opinions from entering democratic

deliberation. When we further require people’s post-deliberation preferences to be di-

chotomous, we are, in effect, restricting the way in which people’s preferences can po-

tentially change or transform during democratic deliberation. As already explained, in
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order for dichotomous pre-deliberation preferences to remain dichotomous after deliber-

ation, each individual must either be completely convinced or completely unconvinced

by the opinions/preferences of other deliberative participants. In other words, when we

impose both pre-deliberation preferences and post-deliberation preferences to be dichoto-

mous, this implies that total conversion or total inertia are the only kinds of preference

change/transformation that are allowed during democratic deliberation. This signifi-

cantly compromises and reduces the deliberative role of democratic deliberation itself.

This means that the possible escape route considered in this subsection makes it possible

for the second stage aggregation rule to respect the NNRD axioms and incorporate the

results of successful democratic deliberation only by restricting the role of democratic

deliberation and severely limiting the meaning of “successful democratic deliberation”

itself.

5 Concluding Remarks

Throughout this paper, we assumed that the participants of the democratic process

were sincere and participated in both the deliberative stage and the aggregation stage

without any motivation to strategically manipulate the final outcome. Our impossibility

theorem shows that even if people are sincerely committed to democratic deliberation

and democratic deliberation itself runs successfully, there are few aggregation rules that

can properly accommodate the results of such successful deliberation and at the same

time respect deliberative democracy’s ideal of unanimous consensus and democratic

equality. Of course, there are potential escape routes to the impossibility result, but, as

we have seen, each potential escape route compromises some core value of democracy.

In this paper, we interpreted the aggregation rules as social choice function that gen-

erates a unique social outcome, but we expect to obtain similar results even in the case

of social choice correspondence if (NNRD) is properly defined. From the viewpoint of

information invariance, the convex combination of utility representations is not ordinal.

To be precise, we assume that during the process of democratic deliberation, individuals

share a ratio-scale measurable utility when they update their preferences on the basis

of the preferences of other participants. However, by applying the Kemeny distance,

we can also define a convex combination based on ordinal preferences, which is different

from the convex combination of utility representations we utilized in this paper. Under

this ordinal notion of convex combinations, we get the same impossibility result. This

is because under the ordinal convex combination framework, the scope of (NNRD) is

less constrained and thus the NNRD axiom becomes more demanding. This shows that
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our impossibility result does not crucially depend on the specific modeling assumptions

employed in this paper.

We hope our paper can start a new line of research that investigates the proper

normative relationship between democratic deliberation and aggregation.
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Appendix: Proofs

A.1 Proof of Theorem 1

Proof. Take any f satisfying (WP) and (WNNRD) and fix it. We denote the set of

linear preferences for i and a linear preference profile by Pi and ≻, respectively. Let

PY = P ∩RY .

Suppose that Adj(≻i) ⊂ X2 is a pair of outcomes whose ranks on ≻i is adjacent. For

any x, y ∈ X, let (x, y) ∈ Adj(≻i) if x is the m-th best and b is the m+1-th best on ≻i,

m ∈ {1, ..., |X| − 1}. For each ≻i, and for each (x, y) ∈ Adj(≻i), suppose that ≻x⇌y
i is

a linear order obtained by reversing the order of (x, y) on ≻i (e.g. x ≻x⇌y
i y ≻x⇌y

i z if

and only if y ≻i x ≻i z).

We then prove five lemmas. Lemma 1.1 shows that (WNNRD) implies non-negative

response for pairs in Adj(≻i).

Lemma 1.1 (Local non-negative response, LNNR). For each ≻∈ P , for each i ∈ N ,

and for each (x, y) ∈ Adj(≻i), and for each j ̸= i,f(≻x⇌y
i ,≻−i) ⪰j f(≻) if y ≻j x,

f(≻) ⪰j f(≻x⇌y
i ,≻−i) if x ≻j y,

where ⪰ indicates “≻ or =.”

Proof. Suppose that y ≻j x. Let cik = 0 for k ̸= i, j, and let cij > 0 be extremely

small. Consider ui ∈ U≻i such that ui(x)− ui(y) is sufficiently small to make ciu be in

U≻x⇌y
i

. By (WNNRD) and the anti-symmetry condition of linear orders, we have that

f(≻x⇌y
i ,≻−i) ⪰j f(≻).

Next, suppose that x ≻j y. Let cik = 0 for k ̸= i, j and cij > 0 be extremely small.

Consider ui ∈ U≻x⇌y
i

such that ui(y) − ui(x) is sufficiently small to make ciu be in

U≻i . By (WNNRD) and the anti-symmetry condition of linear orders, we have that

f(≻) ⪰j f(≻x⇌y
i ,≻−i).

Lemma 1.2 shows that LNNR implies the following monotonicity condition.

Lemma 1.2 (Conditional monotonicity, CM). For any non-empty Y ⊆ X, for any

≻∈ PY , for any i ∈ N , and for any (y, x) ∈ Adj(≻i) ∩ Y 2, if (1) f(≻) = x and (2) there

exists j ̸= i such that “x ≻j y
′ for each y′ ∈ Y \ {x},” or “y′ ≻j x for each y′ ∈ Y \ {x},”

then it follows that f(≻y⇌x
i ,≻−i) = x.
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Proof. Suppose that y′ ≻j x for each y′ ∈ Y \ {x}. By (WP), f(≻y⇌x
i ,≻−i) ∈ Y . Thus,

f(≻y⇌x
i ,≻−i) ⪰j x = f(≻). Since y ≻j x and y ≻i x, f(≻) ⪰j f(≻y⇌x

i ,≻−i) ̸= f(≻) by
LNNR. Thus, we obtain that f(≻y⇌x

i ,≻−i) = f(≻) = x.

Similarly, when x ≻j y
′ for each y′ ∈ Y \{x}, we obtain that f(≻y⇌x

i ,≻−i) = f(≻) = x

by (WP) and LNNR.

For each non-empty Y ⊆ X and x ∈ Y , let PY,x···
i ⊂ PY

i and PY,···x
i ⊂ PY

i be

≻i∈ PY,x···
i ⇐⇒ x ≻i y ∀y ∈ Y \ {x},

≻i∈ PY,···x
i ⇐⇒ y ≻i x ∀y ∈ Y \ {x}.

Then, suppose that PY,···x···
i = PY

i \ (P
Y,x···
i ∪ PY,···x

i ).

For each A ⊆ X and ≻i,≻′
i∈ Pi, ≻i=|−A≻′

i if and only if, for each y, y′ ∈ X \ A,
y ≻i y

′ ⇔ y ≻′
i y

′. Additionally, we use “=|−x” instead of “=|−{x}” for any x ∈ X.

Then, Lemma 1.3 shows that LNNR implies the following invariance condition:

Lemma 1.3 (Conditional invariance, CI). For each non-empty Y ⊆ X, for each non-

empty N1, N2 ⊆ N , and for each x ∈ Y , if there exists ≻∈ PY,x···
N1

× PY,···x
N2

× PY,···x···
N3

,

where N3 = N \ (N1 ∪ N2), such that f(≻) = x, then f(≻∗
N1∪N2

,≻N3) = x for each

≻∗
N1∪N2

∈ PY,x···
N1

× PY,···x
N2

.

Proof. Let Y ′ = Y \ {x} and PY,x = PY,x···
N1

× PY,···x
N2

× {≻N3}. Choose and fix (i1, i2) ∈
N1 ×N2. We then prove the following two claims.

Claim 1.3.1. For each x ∈ X, for each ≻∈ PY,x, and for each j ∈ (N1 ∪N2) \ {i1}, if
f(≻) = x, then f(≻∗

j ,≻−j) = x for each ≻∗
j∈ P

Y,x
j with ≻∗

j=|−x≻i1 .

Proof. For each ≻′
j∈ PY ′

j with ≻i1 ̸=|−x≻′
j , there exists (y, z) ∈ Adj(≻′

j) ∩ (X \ {x})2

satisfying z ≻i1 y. Since (Y ′)2 is finite, there exists a finite sequence {≻t
j}t

∗
t=1 such that

≻1
j=≻j , ≻t∗

j =≻∗
j , and for each t ∈ {1, ..., t∗−1}, ≻t+1

j =≻t,yt⇌zt

j , where (yt, zt) ∈ Adj(≻t
j

) ∩ (X \ {x})2 satisfying zt ≻i1 yt.

Since x is the best for i1, by LMMR, f(≻t
j ,≻−j) = x implies that f(≻t+1

j ,≻−j) = x.

Since f(≻1
j ,≻−j) = f(≻) = x, we have that f(≻t∗

j ,≻−j) = f(≻∗
j ,≻−j) = x.

Claim 1.3.2. For each ≻∈ PY,x such that ≻i1=|−x≻i2 , if f(≻) = x, then f(≻∗
i1
,≻−i1

) = x for each ≻∗
i1
∈ PY,x

i1
.

Proof. If ≻∗
i1
̸=≻i1 , then ≻∗

i1
̸=|−x≻i1 . Thus, there exists a finite sequence {≻t

i1
}t∗t=1 such

that ≻1
i1
=≻∗

i1
, ≻t∗

i1
=≻i1 , and for each t ∈ {1, ..., t∗ − 1}, ≻t+1

i1
=≻t,yt⇌zt

i1
where (yt, zt) ∈

Adj(≻t
i1
) ∩ (X \ {x})2 satisfying zt ≻i2 yt.
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Since x is the worst of Y for i2 , by LNNR, f(≻t+1
i1

,≻−i1) = x implies that f(≻t
i1

,≻−i1) = x. Since f(≻t∗
i1
,≻−i1) = f(≻) = x, f(≻1

i1
,≻−i1) = f(≻∗

i1
,≻−i1) = x.

From Claims 1.3.1 and 1.3.2, we have the conclusion as follows: for any ≻∈ PY,x, for

any j ∈ (N1 ∪N2) \ {i1, i2},

f(≻) = x

⇒ f(≻i1 ,≻
i1
i2
,≻−{i1,i2}) = x, where ≻i1

i2
∈ PY,x

i2
, ≻i1

i2
=|−x≻i1 (Claim 1.3.1)

⇒ f(≻∗j
i1
,≻i1

i2
,≻−{i1,i2}) = x, where ≻∗j

i1
∈ P∗

i1 , ≻
∗j
i1
=|−x≻∗

j (Claim 1.3.2)

⇒ f(≻∗j
i1
,≻i1

i2
,≻∗

j ,≻−{i1,i2,j}) = x (Claim 1.3.1)

⇒ f(≻∗j
i1
,≻∗j

i2
,≻∗

j ,≻−{i1,i2,j}) = x, , where ≻∗j
i2
∈ PY,x

i2
, ≻∗j

i2
=|−x≻

∗j
i1

(Claim 1.3.1)

⇒ f(≻∗i2
i1

,≻∗j
i2
,≻∗

j ,≻−{i1,i2,j}) = x, , where ≻∗i2
i1
∈ PY,x

i1
, ≻∗i2

i1
=|−x≻∗

i2 (Claim 1.3.2)

⇒ f(≻∗i2
i1

,≻∗
i2 ,≻

∗
j ,≻−{i1,i2,j}) = x (Claim 1.3.1)

⇒ f(≻∗
i1 ,≻

∗
i2 ,≻

∗
j ,≻−{i1,i2,j}) = x (Claim 1.3.2)

For each distinct x, y ∈ X, i ∈ N is top-two semi-decisive for (x, y) if and only if

f(≻) = x for ≻∈ P{x,y} s.t. x ≻i y & y ≻j x ∀j ̸= i,

Let TSD(x, y) ⊆ N be the set of top-two semi-decisive individuals for (x, y).

Lemma 1.4. There exists i∗ ∈ N such that i∗ = ∩x,y∈X,x ̸=yTSD(x, y).

Proof. We prove that, for any Y ⊆ X with |Y | = 3, there exists iY = ∩x,y∈Y,x ̸=yTSD(x, y)

since (1) if there exist iY and iY
′
such that |Y ∩ Y ′| = 2, it follows that iY = iY

′
, and

(2) for any (x, y), (x′, y′) ∈ X2 with x ̸= y and x′ ̸= y′, we can construct a sequence

of 3-subsets of X, Y 1, Y 2, . . . , Y m ⊆ X, such that x, y ∈ Y 1, x′, y′ ∈ Y m, and for each

k ∈ {1, 2, . . . ,m− 1}, |Y k ∩ Y k+1| = 2.

Hereafter, we choose any Y ⊆ X with |Y | = 3 and fix it in this proof.

Claim 1.4.1. For any distinct x, y ∈ Y , i ∈ TSD(x, y), j ̸= i, and ≻∈ PY , if x ≻i y ≻i z

and y ≻j x ≻j z, then f(≻) = x.

Proof. Without loss of generality, let i = 1 and j = 2. Let ≻∈ PY be such that

x ≻1 y ≻1 z and y ≻k x ≻k z for each k ̸= 1. Since 1 ∈ TSD(x, y), f(≻) = x.
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For each k ̸= 1, 2, let ≻yzx
k ∈ P

Y
k be such that y ≻yzx

k z ≻yzx
k x. For each k ∈

{3, . . . , |N | − 1}, if f(≻{1,...,k},≻
yzx
{k+1,...,|N |}) = x, by (WP) and LNNR, f(≻{1,...,k−1}

,≻yzx
{k,...,|N |}) = x. We thus obtain that f(≻{1,2},≻

yzx
−{1,2}) = x.

By CM and CI, if any k ̸= 1, 2 changes his/her preference from ≻yzx
k to the others

in PY , the outcome will be x, therefore, for each ≻′
−{1,2}∈ P

Y
−{1,2}, f(≻{1,2},≻′

−{1,2}) =

x.

Claim 1.4.2. For any x, y, x′, y′ ∈ Y with x ̸= x′, if TSD(x, y) and TSD(x′, y′) are not

empty, then there exists i ∈ N satisfying {i} ⊇
∩

v,w∈Y,v ̸=w TSD(v, w).

Proof. First, we prove that {i} = TSD(x, y) = TSD(x′, y′). Assume that i ∈ TSD(x, y),

j ∈ TSD(x′, y′), and i ̸= j. Since |N | ≥ 4, we can find distinct i′, j′ such that {i′, j′} ∩
{i, j} = ∅ and ≻∈ PY with x ≻i y ≻i z, y ≻i′ x ≻i′ z, x

′ ≻j y
′ ≻j z

′, and y′ ≻j′ x
′ ≻j′ z

′,

where z ∈ Y \ {x, y} and z′ ∈ Y \ {x′, y′}. From Claim 1.4.1, f(≻) = x and f(≻) = x′,

which contradicts x ̸= x′.

Next, consider any (k, v, w) ∈ N × Y × Y with k ∈ TSD(v, w) and assume that i ̸= k.

Since {i} = TSD(x, y) = TSD(x′, y′) and v ̸= x or v ̸= x′, by the same argument as the

previous paragraph, we have that k = i, that is, the desired result.

Claim 1.4.3. For any {x, y, z} = Y , if there exists ≻∈ PY such that x ≻i y ≻i z and

y ≻j x ≻j z for each j ̸= i, and f(≻) = x, then i ∈ TSD(x, y).

Proof. Choose any ≻∗∈ P{xy} with x ≻∗
i y and y ≻∗

j x for each j ̸= i. Note that

≻,≻∗∈ P{x,y} and x ≻k y ⇔ x ≻∗
k y for each k ∈ N . Since f(≻∗) = x, x ≻i y, and

y ≻j x for j ̸= i, by CI on {x, y}, we have that f(≻∗) = x.

Claim 1.4.4. For any distinct x, y, z ∈ Y and any two N ’s partitions N ′, N ′′ ⊂ N with

|N ′|, |N ′′| ≥ 2, N ′ ∩ TSD(x, y) ̸= ∅, N ′′ ⊆ TSD(x, z), N ′′ ∩ TSD(y, x), or N ′ ⊆ TSD(y, z)

holds.

Proof. Let ≻∈ PY be such that x ≻i y ≻i z and ≻i=≻j for each i, j ∈ N ′, and

≻k=≻x⇌y
i for each k ∈ N ′′. By WP, f(≻) ∈ {x, y}. We will prove that if f(≻) = x,

then N ′ ∩ TSD(x, y) ̸= ∅ or N ′′ ⊆ TSD(x, z). (The proof of the fact that if f(≻) = y,

then N ′′ ∩ TSD(y, x), or N ′ ⊆ TSD(y, z) is symmetric. The conclusion follows from the

combination of them.)

Suppose that f(≻) = x and there exists j′ ∈ N ′′ \ TSD(x, z). We then prove that

there exists i′ ∈ N ′ ∩ TSD(x, y). Consider the following sequence starting from ≻ (see

Table 1).
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Table 1: A sequence from ≻
profile label N ′ j′ N ′′ \ {j′} f ∵
≻ xyz yxz yxz x assumption
≻x⇌z

N ′′\{j′} xyz yxz yzx x (WP) and LNNR

≻y⇌z
N ′ & (≻x⇌z

N ′′\{j′})
y⇌z ≻1 xzy yxz zyx x CI

(≻y⇌z
N ′ )x⇌z ≻2 zxy yxz zyx If the outcome is x, then ...

≻y⇌x
j′ zxy xyz zyx x CM

(≻y⇌x
j′ )y⇌z zxy xzy zyx x CI

((≻x⇌z
N ′′\{j′})

y⇌z)y⇌x ≻3 zxy xzy zxy x CM

From Table 1, we obtain that f(≻1) = x. Additionally, if f(≻2) = x, then f(≻3) = x.

By Claim 1.4.3, j′ ∈ TSD(x, z), which is a contradiction. Thus, f(≻1) = x ̸= f(≻2).

f(≻1) ̸= f(≻2) implies that there must exist i′ ∈ N ′ who changes the outcome from x

to z (y cannot be the outcome from CI) when we change the preference of i ∈ N ′ from

≻1
i to ≻2

i one by one since ≻1
N ′′=≻2

N ′′ . That is, there exists i′ ∈ N ′ and (possibly empty

and) disjoint N ′
i′···, N

′
···i′ ⊂ N ′ with N ′

i′···∪{i′}∪N ′
···i′ = N ′ such that f(≻1

N ′
i′···∪{i

′},≻
2
N ′

···i′

,≻1
N ′′) = x ̸= f(≻1

N ′
i′···

,≻2
{i′}∪N ′

···i′
,≻1

N ′′) (see Table 2).

Table 2: A sequence from ≻1

profile N ′
i′··· i′ N ′

···i′ j′ N ′′ \ {j′} f ∵
≻1 xzy xzy xzy yxz zyx x
...

≻1,x⇌z
N ′

···i′
=≻2

N ′
···i′

xzy xzy zxy yxz zyx x f(≻1) ̸= f(≻2)

≻1,x⇌z
i′ =≻2

i′ xzy zxy zxy yxz zyx z f(≻1) ̸= f(≻2) & CI
...

Finally, we check whether i′ is the TSD individual for (x, y) when f(≻x)
def
=

f(≻1
N ′

i′···∪{i
′},≻

2
N ′

···i′
,≻1

N ′′) = x and f(≻z)
def
= f(≻1

N ′
i′···

,≻2
{i′}∪N ′

···i′
,≻1

N ′′) = z (see Ta-

bles 3 and 4). From Tables 3 and 4, we have that i′ ∈ TSD(x, y).
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Table 3: Sequences from ≻x and ≻z

N ′
i′··· i′ N ′

···i′ j′ N ′′ \ {j′} N ′
i′··· i′ N ′

···i′ j′ N ′′ \ {j′}
≻x xzy xzy zxy yxz zyx ≻z xzy zxy zxy yxz zyx
≻x1 xyz xzy zxy yxz zyx ≻z1 xyz zxy zxy yxz zyx
≻x2 yxz xzy zxy yxz zyx ≻z2 yxz zxy zxy yxz zyx
≻x3 yxz xzy zyx yxz zyx ≻z3 yxz zyx zxy yxz zyx
≻x4 yxz xyz yzx yxz yzx
≻∗ yxz xyz yxz yxz yxz

Note: f(≻x) = f(≻x1) = · · · = f(≻x4) = f(≻∗) = x and f(≻z) = f(≻z1) = · · · = f(≻z3) = z.

Table 4: Some sequences from ≻x or ≻z to ≻∗

profile label f ∵ profile label f ∵
≻x x ≻z z
↓ ↓

≻x,z⇌y
N ′

i′···
≻x1 x CI → ≻x,z⇌y

N ′
i′···

or ≻x1,x⇌z
i′ ≻z1 z CI

↓ ↓
≻x1,x⇌y

N ′
i′···

or ≻z2,z⇌x
i′ ≻x2 x CI ← ≻z1,x⇌y

N ′
i′···

≻z2 z CI

↓ ↓
≻x2,x⇌y

N ′
···i′

or ≻z3,z⇌x
i′ ≻x3 x CI ← ≻z2,x⇌y

N ′
···i′

≻z3 z CI

↓
≻x3,z⇌y

{i′}∪N ′
···i′∪(N

′′\{j′}) ≻x4 x CI

↓
≻x4,z⇌x

N ′
···i′∪(N

′′\{j′}) ≻∗ x CM

Let {a, b, c} = Y . Consider Claim 1.4.4 when (x, y, z) = (a, b, c). Then, there exists

i ∈ N and c′ ∈ Y such that i ∈ TSD(a, c′) ∪ TSD(b, c′).

Suppose that i ∈ TSD(a, c′). Let b′ ∈ Y \ {a, c′}. Consider Claim 1.4.4 when

(x, y, z) = (b′, c′, a). Then, there exists i′ ∈ N and a′ ∈ Y such that i′ ∈
TSD(b′, a′) ∪ TSD(c′, a′). Since b′, c′ ̸= a, by Claim 1.4.2, there exists iY ∈ N such

that {iY } ⊇ ∩x′,y′∈Y,x′ ̸=y′TSD(x′, y′). For the case when i ∈ TSD(b, c′), we can ob-

tain the same conclusion by considering Claim 1.4.4 when (x, y, z) = (a′′, c′, b) where

a′′ = Y \ {c′, b}.
Choose any {x′, y′, z′} = Y . Consider Claim 1.4.4 when (x, y, z) = (x′, y′, z′) and

iY ∈ N ′. Note that N ′ \ {iY } ̸= ∅ since |N ′| ≥ 2. The conclusion of Claim 1.4.4

is consistent with by the property of iY only when N ′ ∩ TSD(x′, y′) = {iY }. Thus,

51



iY ⊆ TSD(x′, y′) for any distinct x′, y′ ∈ Y .

Finally, from Lemmas 1.1–1.4, we complete the proof of Theorem 1.

Without loss of generality, let n = i∗ of Lemma 1.4. Choose any non-empty Y ⊆ X

with |Y | ≥ 2, and x ∈ X. If x ∈ X \ Y , by (WP), f(≿) ̸= x for each ≿∈ RY .

Suppose that x ∈ Y . Let ≿n∈ PY
n ⊂ RY

n be such that x ≻n y for each y ∈ Y \ {x}.
By (WP), f(≿) ∈ Y . For any ≿−n∈ RY

−n, suppose that f(≿) = x. Choose any u ∈ U≿.
By choosing sufficiently small ϵ > 0 such that

ϵ

1− ϵ
(max
x′∈X

un(x)− min
x′∈X

un(x)) < min
x′,x′′∈X, i ̸=n s.t. ui(x′) ̸=ui(x′′)

|ui(x′)− ui(x
′′)|,

for each i ̸= n, u′i = (ui − ϵun)/(1− ϵ) satisfies that, for each x′, x′′ ∈ X,

[u′i(x
′) = u′i(x

′′)⇒ x′ = x′′] & [(x′, x′′) ∈ Y × (X \ Y )⇒ u′i(x
′) > u′i(x

′′)].

Thus, ≿′
−n∈ PY

−n, where u′
−n ∈ U≿′

−n
.

For each i ̸= n, suppose that cii = 1 − ϵ, cin = ϵ, and cij = 0 for each j ̸= n, i. Then,

ciu′ = ui. By (WNNRD),

(x =)f(≿) ≿n f(≿′
i,≿n,≿−{i,n}) ≿n f(≿′

i,≿′
i′ ,≿n,≿−{i,i′,n}) ≿n · · · ≿n f(≿n,≿′

−n).

By (WP), f(≿n,≿′
−n) ∈ Y . By definition of ≿n, f(≿n,≿′

−n) = x.

Let y ∈ Y be y ≻n x′ for each x′ ̸= y. For each i ̸= n, let ≿′x
i ,≿

′xy
i ∈ PY

i ⊂ RY
i be

∀v, w ∈ X \ {x}, [x ≻′x
i v] & [v ≿′x

i w ⇔ v ≿′
i w]

∀v, w ∈ X \ {x, y}, [x ≻′xy
i y ≻′xy

i v] & [v ≿′xy
i w ⇔ v ≿′

i w].

By CM, f(≿n≿′x
−n) = x. By CI, f(≿n,≿′xy

−n) = x. Let ≿yx
n be

∀v, w ∈ X \ {x, y}, [y ≻yx
n x ≻yx

n v] & [v ≿yx
n w ⇔ v ≿n w].

By CM, f(≿yx
n ,≿′xy

−n) = x, which contradicts the assumption that n = i∗ in Lemma 1.4

since (≿yx
n ,≿′xy

−n) ∈ P .
Thus, there exists ≿n∈ RY

n such that f(≿) ̸= x for any (≿−n, x) ∈ RY
−n ×X.

A.2 Proof of Proposition 1

Proof. (WP): Choose any x′, y′ ∈ X. Consider ≿∈ R such that y′ ≻i x
′ for each i ∈ N

and fx(≿) = x′. By definition, x′ ̸= x. Since fx(≿) = x′, (y′ ≻i)x
′ ≻i x for each i ∈ N .
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Thus, fx(≿) = Mj(≿) = y′ ̸= x′, which is a contradiction.

(NV): Choose any i ∈ N and let Y = {y, z}. Let ≿−i∈ RY
−i be such that z ≻j y ≻j x

for each j ̸= i. By definition, for each ≿i∈ RY
i , f

x(≿) = Mj(≿) = z.

(WNNRD): Choose any i ∈ N , ≿∈ R, ≿′
i∈ Ri, u ∈ U≿, and ci ∈ Ci such that

ciu ∈ U≿′
i
and cii ̸= 1.If fx(≿) = fx(≿′

i,≿−i), then fx(≿′
i,≿−i) ∼j fx(≿) for each

j ̸= i. If fx(≿) = x, then fx(≿′
i,≿−i) ≻j x = fx(≿) for each j ̸= i. For each case, the

desired conclusion holds. In the following, suppose that fx(≿) /∈ {fx(≿′
i,≿−i), x}. Let

x′ = fx(≿) and x′′ = fx(≿′
i,≿−i).

By definition of fx, x′ ≻k x for each k ∈ N . Since u ∈ U≿ and ciu ∈ U≿′
i
, x′ ≻′

i x.

Thus, (≿′
i,≿−i) does not belong to the first case of fx’s definition. Thus, x′′ = fx(≿′

i

,≿−i) ̸= x. Since x′′ ̸= x′, then (≿′
i,≿−i) belongs to the fourth case of fx’s definition.

That is, x′′ ≻j x for each j ̸= i and x′′ = Mj(≿′
i,≿−i).

Suppose x′′ ̸= Mj(≿). Then, since ≿ and (≿′
i,≿−i) are different only in i’s preference,

it follows from definition of Mj that x′ ≿i x
′′ and x′′ ≿′

i x
′. Since u ∈ U≿, ciu ∈ U≿′

i

and cii ̸= 1, there exists j ̸= i with cij > 0 and x′′ ≿j x
′. That is, fx(≿′

i,≿−i) ≿j f
x(≿).

Suppose x′′ = Mj(≿). If x′′ ≻i x, since x′′ ≻j x for each j ̸= i, then fx(≿) = x′′ =

fx(≿′
i,≿−i), which is a contradiction. Thus, x ≿i x

′′. Since x′ ≻i x, we have x′ ≻i x
′′.

Since x′′ = Mj(≿), it follows from definition of Mj that x′′ ≿j x′ for each j ̸= i. That

is, fx(≿′
i,≿−i) ≿j f

x(≿) for each j ̸= i.

A.3 Proof of Proposition 2

Proof. (TU): It is obvious since fd(≿) = x for any ≿∈ R and x ∈ X whenever x ≻i y

for any y ∈ X \ {y} and any i ∈ N .

(NV): Choose any i ∈ N and ≿−i∈ R such that d ≻j x for each x ∈ X \ {d} and

j ∈ N \ {i}. Then fd(≿) = d for any ≿i∈ Ri. Thus, any i is not the vetoer.

(WNNRD): Consider any i ∈ N , ≿∈ R, ≿′
i∈ Ri, u ∈ U≿, ci ∈ Ci such that u′i

def
=

ciu ∈ U≿′
i
and fd(≿) ̸= fd(≿′

i,≿−i). If x = fd(≿) ̸= d, then x ≻j y for each j ∈ N

and y ̸= x.Since u′i = ciu, u′i(x) > u′i(y) for any y ∈ X. Thus, x ≻′
i y for any y ̸= x.

Therefore, fd(≿′
i,≿−i) = x = fd(≿), which is a contradiction. Thus, fd(≿) = d.

Since fd(≿′
i,≿−i) ̸= fd(≿) = d, it follows that fd(≿′

i,≿−i) ≻j fd(≿) for each j ̸=
i.

A.4 Proof of Proposition 3

Proof. (WP): Consider any ≿∈ R. If ≿ belongs to Case 1, fv(≿) ≿v x for each x ∈ X.

If ≿ belongs to Case 3, since all alternatives are indifferent for all individuals, fv(≿) ≿i x
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for any i ∈ N and for any x ∈ X. Suppose that ≿ belongs to Case 2. Since fv(≿) =

xr(Xsec
≿v

), for each x ∈ X such that x ≻v fv(≿), x ∈ Xtop
≿v
⊆ Xbot

≿−v
. Thus, fv(≿) ≿i x for

any i ̸= v and for any x ∈ Xtop
≿v
⊆ Xbot

≿−v
.

(ND): For each i ∈ N , let ≿i∈ R be such that x1 ≻i
i x2 ≻i

i · · · ≻i
i x|X| and x|X| ≻i

j

x|X|−1 ≻i
j · · · ≻i

j x1 for j ̸= i. If i = v, then fv(≿) = xr(Xsec
≿v

) = x2 ̸= x1. If i ̸= v, since

x|X| ∈ Xtop
≿v
\Xbot

≿−v
, it follows that f(≿) = x|X| ̸= x1.

(WNNRD): Consider any (i,≿) ∈ N ×R, any (u, ci) ∈ U≿×Ci, and any ≿′
i∈ Ri such

that u′i = ciu ∈ U≿′
i
and fv(≿) ̸= fv(≿′

i,≿−i). We will prove that there exists j ̸= i

with cij > 0 such that fv(≿′
i,≿−i) ≿j f

v(≿).

If Xbot
≿j

= X for some j ̸= i with cij > 0, it is obvious that fv(≿′
i,≿−i) ≿j fv(≿).

Then, suppose that Xbot
≿j
̸= X for each j ̸= i with cij > 0. This assumption implies that,

for each ≿′′
i ∈ R, (≿′′

i ,≿−i) does not belong to Case 3. There are two possibilities: (a)

i = v or (b) i ̸= v.

(a) Suppose that i = v. If fv(≿) ∈ Xbot
≿−v

, then fv(≿′
v,≿−v) ≿j f

v(≿) for each j ̸= v,

which implies the desired conclusion.

Consider that fv(≿) /∈ Xbot
≿−v

. By way of contradiction, suppose that fv(≿′
v,≿−v) ∈

Xbot
≿−v

, which implies that (≿′
v,≿−v) belongs to Case 2. Thus, u′v(x) > u′v(f

v(≿′
v,≿−v))

for some x ∈ Xbot
≿−v

, and u′v(x
′) ≤ u′v(f

v(≿′
v,≿−v)) for every x′ /∈ Xbot

≿−v
. Since fv(≿) /∈

Xbot
≿−v

, u′v(f
v(≿)) ≤ u′v(f

v(≿′
v,≿−v)). Since {fv(≿′

v,≿−v), x} ⊆ Xbot
≿−v

, for each j ̸= v,

uj(x) = uj(f
v(≿′

v,≿−v)) ≤ uj(f
v(≿)). From u′v = cvu and u′v(x) > u′v(f

v(≿′
v,≿−v)),

uv(x) > uv(f
v(≿′

v,≿−v)) (1)

u′v(f
v(≿))− u′v(f

v(≿′
v,≿−v) ≥ cvv[uv(f

v(≿))− uv(f
v(≿′

v,≿−v))] (2)

By (1) and the definition of fv, fv(≿) must satisfy uv(f
v(≿)) ≥ uv(f

v(≿′
v,≿−v)). From

(2) and u′v(f
v(≿)) ≤ u′v(f

v(≿′
v,≿−v)), uv(f

v(≿)) = uv(f
v(≿′

v,≿−v)) and u′v(f
v(≿)) =

u′v(f
v(≿′

v,≿−v)). Thus, the index of fv(≿′
v,≿−v) is smaller than that of fv(≿). By (1),

uv(f
v(≿)) = uv(f

v(≿′
v,≿−v)) implies that uv(x) > uv(f

v(≿)), therefore, ≿ also belongs

to Case 2. Thus, the index of fv(≿) is smaller than that of fv(≿′
v,≿−v), which is a

contradiction.

From the above result, when fv(≿) /∈ Xbot(≿−v), f
v(≿′

v,≿−v) /∈ Xbot(≿−v) holds.

By definition of fv, it follows that uv(f
v(≿)) ≥ uv(f

v(≿′
v,≿−v)) and u′v(f

v(≿′
v,≿−v)) ≥

u′v(f
v(≿)). Since u′v = cvu, for some j ̸= v such that cvj > 0, uj(f

v(≿′
v,≿−v)) ≥ uj(f

v(≿
)), therefore, fv(≿′

v,≿−v) ≿j f
v(≿).

(b) Suppose that i ̸= v. Then, we will prove that (b-1) fv(≿) ∈ Xtop
≿v
∩Xbot

≿−{i,v}
and

fv(≿) ∈ Xbot
≿′

i
\Xbot

≿i
, or (b-2) fv(≿′

i,≿−i) ∈ Xtop
≿v
∩Xbot

≿−{i,v}
and fv(≿′

i,≿−i) ∈ Xbot
≿i
\Xbot

≿′
i
.
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Before proving that, we introduce additional notations: Let XCase 1 = Xtop
≿v
\ Xbot

≿−v

and XCase 1′ = Xtop
≿v
\Xbot

≿′
i,≿−{i,v}

. Note that (b-1) and (b-2) imply that fv(≿) ∈ XCase 1\
XCase 1′ and fv(≿′

i,≿−i) ∈ XCase 1′ \XCase 1, respectively.

If XCase 1 = XCase 1′ = ∅, since ≿ and (≿′
i,≿−i) are not Case 3, then fv(≿) = fv(≿′

i

,≿−i) = xr(Xsec
≿v

), which is a contradiction. Thus, XCase 1 ̸= ∅ or XCase 1′ ̸= ∅.
Note that XCase 1 ̸= ∅ if and only if fv(≿) ∈ XCase 1. (Similarly, XCase 1′ ̸= ∅ if and

only if fv(≿′
i,≿−i) ∈ XCase 1′).)

Suppose that XCase 1 = ∅, then XCase 1′ ̸= ∅. Thus, fv(≿′
i,≿−i) ∈ XCase 1′ \XCase 1.

In the same manner, if XCase 1′ = ∅, since XCase 1 ̸= ∅, it follows that fv(≿) ∈ XCase 1 \
XCase 1′ .

Suppose that XCase 1 ̸= ∅ and XCase 1′ ̸= ∅. Then, if the index of fv(≿′
i,≿−i) is

smaller than that of fv(≿), it follows from the definition of fv(≿) that fv(≿′
i,≿−i) ∈

XCase 1′ \ XCase 1. If the index of fv(≿) is smaller than that of fv(≿′
i,≿−i), from the

definition of fv(≿′
i,≿−i), it follows that f

v(≿) ∈ XCase 1 \XCase 1′ .

By using the above properties of XCase 1 and XCase 1′ , we consider the cases of (b-1)

and (b-2), respectively.

First, we consider (b-1). Since fv(≿) ∈ Xbot
≿−{i,v}

, if cij > 0 for some j ̸= v, i, then

fv(≿′
i,≿−i) ≿j f

v(≿). Suppose that civ > 0 and cij = 0 for any j ̸= v, i. If cii = 0, then

Xbot
≿′

i
= Xbot

≿v
. Since fv(≿) ∈ Xtop

≿v
̸= X, fv(≿) /∈ Xbot

≿v
= Xbot

≿i
, which is a contradiction.

Suppose cii > 0. Since fv(≿) /∈ Xbot
≿i

, ui(f
v(≿)) > ui(x) for any x ∈ Xbot

≿i
. Since

fv(≿) ∈ Xtop
≿v

, uv(f
v(≿)) ≥ uv(x) for any x ∈ Xbot

≿i
. Since u′i = ciu, u′i(f

v(≿)) > u′i(x)

for any x ∈ Xbot
≿i

. Thus, fv(≿) /∈ Xbot
≿′

i
, which is a contradiction.

Secondly, consider (b-2). Since fv(≿′
i,≿−i) ∈ Xtop

≿v
, fv(≿′

i,≿−i) ≿v fv(≿). Thus, the

desired conclusion holds if civ > 0. Suppose that civ = 0. Since fv(≿′
i,≿−i) ∈ Xbot

≿−v
,

uj(x) ≥ uj(f
v(≿′

i,≿−i)) for any x and j ̸= v. Since u′i = ciu, u′i(x) ≥ u′i(f
v(≿′

i,≿−i)).

Thus, fv(≿′
i,≿−i) ∈ Xbot

≿′
i
, which is a contradiction.

A.5 Proof of Proposition 4

Proof. (AN): From the definition of br, for any ≻∈ R, for any x ∈ X, and for any

permutation π on N , br(x,≿) = br(x, (≿π(i))i∈N ). Thus, f br(≿) = f br((≿π(i))i∈N ).

(PO): Suppose that there exist ≿∈ R and x ∈ X such that (1) x ≿i f
br(≿) for each

i ∈ N , and (2) for some j ∈ N , x ≻j f
br(≿).

By (1), for each x′ ∈ X and for each i ∈ N , f br(≿) ≿i x
′ implies that x ≿i x

′, and

x′ ≿i x implies that x′ ≿i f
br
R (R). By (2), x ≻j f

br(≿), therefore, f br(≿) ≿j x does not

hold. Thus, br(x,≿) > br(f br(≿),≿), which contradicts the definition of f br.
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(NNRDD→R): Take any (≿, i, C) ∈ D ×N × C such that cku ∈ U≿′
k
and ≿′

k∈ Rk for

all k ∈ N , and u ∈ U≿0 . Suppose that f br(≿i,≿′
−i) = x, and f br(≿′) = x′.

By way of contradiction, assume that x ̸= x′ and x ≻j x
′ for all j ̸= i such that cij > 0.

Since ≿∈ D,
∀j ̸= i s.t. cij > 0, (x, x′) ∈ H≿j

× L≿j
.

We will show that

br(x, (≿i,≿′
−i)) = br(x′, (≿i,≿′

−i)) & br(x′,≿′) = br(x,≿′), (3)

which contradicts x ̸= x′ since we have the fixed tie-breaker.

From Definition 5,

br(x, (≿i,≿′
−i)) ≥ br(x′, (≿i,≿′

−i)) & br(x′,≿) ≥ br(x,≿′). (4)

We consider the following two cases:

Case 1: Suppose that cii = 0. From the assumption, x ≻′
i x

′ and x ≿′
i y ≿′

i x
′ for all

y ∈ X. Since ≿i∈ Di,

bri(x,≿′
i)− bri(x

′,≿′
i) ≥ |X| ≥ bri(x,≿i)− bri(x

′,≿i).

This result and (4) imply that

0 ≥ br(x,≿′)− br(x′,≿′) ≥ br(x, (≿i,≿′
−i))− br(x′, (≿i,≿′

−i)) ≥ 0,

therefore, we obtain (3).

Case 2: Suppose that cii > 0. From the assumption,
∑

j ̸=i,cij>0 c
i
juj(x) ≥∑

j ̸=i,cij>0 c
i
juj(y), and

∑
j ̸=i,cij>0 c

i
juj(y) ≥

∑
j ̸=i,cij>0 c

i
juj(x

′) for any y ∈ X. Thus,

∀y ∈ X, ciu(x)− ciiui(x) ≥ ciu(y)− ciiui(y), (5)

∀y ∈ X, ciu(x′)− ciiui(x
′) ≤ ciu(y)− ciiui(y). (6)

Since (5) implies that bri(x,≿i) ≤ bri(x,≿′
i), and (6) implies bri(x

′,≿′
i) ≤ bri(x

′,≿i),

(4)–(6) show that

br(x, (≿i,≿′
−i)) ≤ br(x,≿′) ≤ br(x′,≿′) ≤ br(x′, (≿i,≿′

−i)) ≤ br(x, (≿i,≿′
−i)).

Thus, we obtain (3).
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A.6 Proof of Proposition 5

Proof. We can show that fpl satisfies (AN) and (NNRDD→R) by replacing f br and br

in the proof of Proposition 4 with fpl and ntop, respectively.

(WPO): For any ≿∈ R, if there exist x, y ∈ X such that x ≻i y for all i ∈ N ,

ntop(y,≿) = 0 and there exists zi ∈ X \ {y} such that ntop
i (zi,≿i) = 1 for all i ∈ N .

Thus, y ̸∈ argmaxx′∈Xntop(x′,≿).
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