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Abstract

Daily estimates of the effective reproduction number for new coronavirus based on
reporting dates are regressed on real household expenditures per household on eating
out, traveling, and apparel shopping, as well as mobility in public transportation, using
publicly available daily nationwide data from February 15, 2020, to February 1, 2021
in Japan. The effects of absolute humidity, the declaration of states of emergency, and
the year-end and new-year holiday period are controlled through dummy variables.
The lagged infectious effect of economic activities due to incubation periods is also
taken into account. Estimated regression coefficients indicate that real household ex-
penditures for cafe and bar had larger effects on the effective reproduction number per
value of spending than the other types of household expenditures in explanatory vari-
ables during the sample period. Thus, a loss of aggregate demand is minimized if the
effective reproduction number is lowered by restricting only household consumption of
cafe and bar. The posterior means of simulations based on the estimated regression
coefficients, however, imply that even if a self-restraint on packaged domestic travels
and an endogenous decline in mobility are taken into account, it will be necessary to
cut household consumption of cafe and bar by more than 80% of the 2019 level, in
order to keep the effective reproduction number below one on average.
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1 Introduction

Japanese pharmaceutical companies are still in the process of developing new-coronavirus

vaccines as of April 2021. Thus, the country will have to wait for the arrival of vaccines,

including imports, and contain the spread of new-coronavirus infection by intervening in

economic activities until then. To figure out a cost-effective intervention in terms of a

loss of aggregate demand, I regress the effective reproduction number on real household

expenditures per household for eating out, traveling, and apparel shopping, as well as a

measure of mobility in public transportation, using publicly available daily nationwide data in

Japan. These real household expenditures are included in the explanatory variables because

they have been regarded as likely sources of infection, or have shown a high sample correlation

with the effective reproduction number. Because the definition of the effective reproduction

number is the number of new cases per an infected person in the current population, real

household expenditures in the explanatory variables are also on a per-household basis. In this

paper, I use nationwide data because there is no publicly available household expenditure

data for each prefecture at daily frequency. Because of data availability and the spread

of mutant strains in 2021, the latter of which is likely to cause a structural change in the

regression, the sample period for the regression is set to the period between February 15,

2020, and February 1, 2021.

In the regression model, the degree of daily infectious activities is assumed to be a lin-

ear function of the explanatory variables. The model incorporates time-varying coefficients

through cross terms between the explanatory variables and time dummies. Then, infectious

activities on each date contribute to the effective reproduction number from the next day to

14 days later, according to the distribution of incubation periods for new coronavirus. To

minimize the number of parameters to estimate, I interpret the sample distribution of incu-

bation periods in Japan as the probability distribution of incubation periods, and multiply

the degree of infectious activities on each date with the probability of each incubation period
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as a weight. Thus, the effective reproduction number on each date is modeled as a weighted

sum of lagged infectious activities over the past 14 days, excluding the current date. In this

way, the regression model incorporates lagged explanatory variables without a need to create

a new coefficient for each lag.

The regression model incorporates measurement error of the effective reproduction num-

ber, and also a latent AR(1) process for unobserved infectious activities on each date. To

estimate this model, I use the Bayesian method with an uninformative, or improper, prior

distribution for each parameter.

Estimated regression coefficients imply that, among real household expenditures in the

explanatory variables, those for cafe and bar had larger effects on the effective reproduction

number per value of spending than the other household expenditures during the sample

period. Thus, a loss of aggregate demand is minimized if the effective reproduction number

is lowered by restricting only household consumption of cafe and bar. This result is consistent

with the fact that, up to the second state of emergency since the beginning of the pandemic,

the government had been focusing on limiting the opening hours of bars and restaurants up

to 8 p.m. in populated area, in order to curb infection through bar consumption at late

night. In the third state of emergency from April 25, 2021, the government aims to cut the

consumption of alcohol at bars and restaurants entirely in metropolitan area.

Given the regression model being in a linear reduced form, there remains a general

concern on an omitted variable problem and specification error due to a possible non-linear

relationship between the dependent variable and explanatory variables. To see if a bias

in the regression model is small, I generate an out-of-sample prediction of the effective

reproduction number for the case without any restriction on household consumption or

mobility by inserting the 2019 data of explanatory variables into the estimated regression

model. I will show that the simulated effective reproduction number falls within a range of

epidemiologists’ estimates of the basic reproduction number in China during an early phase
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of the pandemic between December 2019 and January 2020, when people in the country were

yet to be fully adjusted to the pandemic.

Given this relatively good fit of an out-of-sample prediction from the estimated regression

model, I use the model to run counterfactual simulations to obtain ballpark estimates of the

effect of restricting household consumption of cafe and bar on the effective reproduction

number. I find that even if a self-restraint on packaged domestic travels and an endogenous

decline in mobility are taken into account, it will be necessary to cut household consumption

of cafe and bar by more than 80% of the 2019 level, in order to keep the effective reproduction

number below one on average. This result implies that the government must impose a severe

volume restriction on not only bar consumption, but also cafe consumption, to contain the

spread of new-coronavirus infection. If it is politically difficult to impose such a severe

volume restriction on household consumption, then the government must shift the policy

focus from a volume restriction to an intervention to reduce the infectiousness of household

consumption of each type.

This paper is related to the literature on the relationship between mobility and new-

coronavirus infection, such as Glaeser, Gorback, and Redding (2020) on U.S. data, and

Watanabe and Yabu (2020), Kajitani and Hatayama (2021), and Kurita, Sugawara, and

Ohkusa (2021) on Japanese data. Given a high correlation between mobility and household

expenditures, the regression analysis in this paper can be interpreted as translating the

infectious effect of mobility, which has been confirmed in the literature, into the infectious

effect of real household expenditures. The latter measure is useful to discuss economic costs

of policy interventions, because it is equivalent to the marginal economic cost to contain the

spread of new-coronavirus infection in terms of a loss of aggregate demand.

This paper is also related to the large literature on the macroeconomic analysis of the new-

coronavirus pandemic. Examples in Japan include Hamano, Katayama, and Kubota (2020),

who endogenize a self-restraint on household consumption in an SIR-macro model, and
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Fujii and Nakata (2021), who combine a reduce-form estimate of the effect of anti-infection

social interventions on GDP with an SIR model.1 While their top-down approaches are

useful to endogenize GDP with the spread of infection, self-restricting behavior, and social

interventions, this paper takes a bottom-up approach, providing reduced-form estimates

of the effects of detailed household expenditures and mobility on new-coronavirus infection.

This paper’s approach is convenient when we discuss the marginal economic costs of detailed

social interventions to contain the spread of new-coronavirus infection.

The remainder of this paper is organized as follows: Data sources and the selection of

explanatory variables are described in section 2. The regression model is presented in section

3. The estimation of the regression model is reported in section 4. Simulations using the

estimated regression model are described in section 5. Conclusions and discussion are in

section 6.

2 Data

2.1 Data sources

Table 1 summarizes the sources of data used in this paper. The effective reproduction number

published by Toyokeizai-Shinpo-Sha, a publisher in Japan, is the week-over-week gross rate

of change in the number of new cases of new-coronavirus infection, raised to the power of

5/7, where 5 is the average generation time (i.e., the average number of days that it takes for

an infected person to cause the next infection) and 7 is the number of days in a week. This

simplified formula to estimate the effective reproduction number on the basis of reporting

dates has been widely used in Japan to update the effective reproduction number real time

daily.2 In the Family Income and Expenditure Survey, daily data on nominal household

1For more examples of research in Japan, see the list collected by the Japanese Economic Association at
https://covid19.jeaweb.org/scientific.html.

2For further discussion on the basis of this formula by Professor Hiroshi Nishiura of Kyoto University,
a theoretical epidemiologist, in Japanese, see https://github.com/contactmodel/COVID19-Japan-Reff

(accessed April 13, 2021).

5



expenditures are publicly available only for households with two or more members.

2.2 Sample correlation between the effective reproduction number
and nominal household expenditures per household

Figure 1 plots the effective reproduction number and six types of nominal household expen-

ditures per household: eating out for meals; cafe (including snack accompanying coffee and

tea); bar (including meals accompanying alcoholic drink); lodging; domestic travel packages

(i.e., bundles of lodging and transportation within the country); and clothing and footwear.3

Household expenditures in the figure are 7-day backward moving averages, given the afore-

mentioned formula for the effective reproduction number being an exponential function of

the week-over-week gross rate of change in the number of new cases. The sample period

starts from March 1, 2020, as the effective reproduction number from the data source is

published only from that date.

The first five types of household expenditures have been regarded as potentially significant

sources of infection. For example, the government shortened the opening hours of bars and

restaurants in populated area during two states of emergency from April 7, 2020, to May

25, 2020, and from January 7, 2021, to March 21, 2021. Also, the government subsidized

domestic traveling for sightseeing from July 22, 2020 to December 27, 2020, in order to make

up for a loss of revenue for the tourism industry. This subsidy program was called a “Go-

To-Travel” campaign.4 There is a controversy over whether this campaign helped spreading

new-coronavirus infection across the country.

In addition, Figure 1 includes clothing and footwear, because this item shows a high

sample correlation with the effective reproduction number, as shown in Figure 2. In fact,

clothing and footwear has a higher maximum cross correlation coefficient with the effective

reproduction number than any other large category of nominal household expenditures, and

3Nominal household expenditure for foreign travel packages was negligible during the sample period.
4This campaign is supposed to resume in the future when the spread of new-coronavirus infection is

contained, as of April 2021.
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as high a maximum cross correlation coefficient as nominal household expenditure for bar

(see Table 2).

Even though the purchase of clothing and footwear is not regarded as a potentially

significant source of infection, the observed sample correlation implies that it is necessary

to consider clothing and footwear as part of explanatory variables in the regression of the

effective reproduction number on potential determinants, which will be shown in the next

section. Not doing so may lead to a bias in the regression analysis, such that the infectious

effect of shopping is estimated as part of the effect of eating out, because people often go to

bars and restaurants after shopping on the high street.

2.3 Sample correlation between the effective reproduction number
and mobility

Figure 3 plots the effective reproduction number and the six categories of the COVID-

19 Community Mobility Reports from Google: retail and recreation; transit stations; gro-

cery and pharmacy; workplaces; parks; and residential. Among these, retail and recreation,

transit stations, grocery and pharmacy, and workplaces can cause human contacts outside

families. retail and recreation, however, is closely correlated with nominal household ex-

penditure per household on eating out for meals, as shown in Figure 4. To avoid a multi-

collinearity problem, I do not include retail and recreation as part of explanatory variables

in the regression analysis shown in the next section. Among the remaining three categories

of mobility data, transit stations will be used as a general measure of mobility. This choice

is due to convenience, as it allows me to use publicly available transportation data in 2019

for a substitute to Google data when I must use data in the period before mobility data from

Google are available.
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3 Regression model

3.1 Regression model and the definition of variables

Given the discussion described in the previous section, the log of the effective reproduction

number is regressed on real household expenditures for eating out for meals, cafe, bar,

lodging, domestic travel packages, and clothing and footwear, as well as transit stations in

the COVID-19 Community Mobility Reports from Google. Because the definition of the

effective reproduction number is the number of new cases per an infected person in the

current population, real household expenditures in the explanatory variables are also on a

per-household basis.

Even though a low inflation rate in Japan makes the distinction between nominal and

real household expenditures insignificant for most items, household expenditure for domestic

travel packages is an exception, because the proportional subsidies during the “Go-To-Travel”

campaign lowered nominal prices of traveling for sightseeing significantly during the cam-

paign period. For this reason, I use real household expenditures for explanatory variables in

the regression. Real household expenditures per household are computed by dividing nomi-

nal household expenditures per household by the corresponding categories of CPI for each,

so that their unit is 100 yen in their 2020 average prices.5

5Because only monthly CPI is available, the value of CPI for each month is used for all dates within the
same month. The CPI for eating out in general is used to convert nominal household expenditures for eating
out for meals, cafe, and bar into real terms, because there is no separate CPI exactly corresponding for each.
Because there is no corresponding CPI for domestic travel packages and because the CPI for lodging reflects
not only the prices of independent lodging, but also the prices of lodging bundled with transportation in
domestic travel packages, I use the CPI for lodging as a proxy to convert nominal household expenditure
for domestic travel packages. On the other hand, perhaps because the Go-To-Travel campaign subsidized
both costs of lodging and transportation costs, nominal household expenditure for domestic travel packages
increased substantially during the campaign period, while that for lodging did not. To remove the effect of
the Go-To-Travel campaign from the CPI for lodging, I interpolate the monthly CPI for lodging between
July 2020 and January 2021 to convert nominal household expenditure for lodging in real terms. There is a
corresponding CPI for clothing and footwear.
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The form of the regression model is as follows:

lnRt =
6∑
s=0

(Zt−s + ηt−s) (1)

Zt =
14∑
k=1

pkVt−k (2)

Vt = α0 + α1DNY,t + α2DAH,t +
2∑
j=0

βjDSE,j,t

+
7∑
i=1

[(
γi + δiDAH,t +

2∑
j=0

φj,iDSE,j,t

)
Xi,t

]
+ et (3)

et = ρet−1 + εt (4)

where

ηt ∼ N(0, σ2
η), (5)

εt ∼ N(0, σ2
ε ) (6)

γi + δi > 0, γi + δi + φj,i > 0 (7)

δi < 0 (8)

ρ ∈ (−1, 1) (9)

The initial value of et in the estimation, denoted by e0, is drawn from the unconditional

probability distribution for et, given (4):

e0 ∼ N

(
0,

σ2
ε

1− ρ2

)
(10)

The definition of variables is summarized in Table 3.

On the right-hand side of (1) is the sum of Zt−i and ηt−i in the past 7 days, including the

current date (i.e., for i = 0, 1, ..., 6), because the log of the effective reproduction number on

the left-hand side is equivalent to the sum of the rate of change in the number of new cases

in the past 7 days, multiplied by 5/7.
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On the right-hand side of (2), pk for k = 1, 2, ..., 14 is the sample distribution of incubation

periods in Japan reported by Sugishita, Kurita, Sugawara, and Ohkusa (2020). See Figure

5 for the distribution. To compute the cumulative effect of lagged infectious events on new

cases, Zt, pk is interpreted as the probability of the incubation period being k days. Then, pk

is multiplied to the degree of daily infectious events k days ago, i.e., Vt−k, for k = 1, 2, ..., 14,

to measure the contribution from infectious events in k days ago for the rate of change in the

number of new cases on each date. This use of the sample distribution of incubation periods

makes it possible to incorporate a relatively long lag length (i.e., 14) without creating a new

parameter for each lag. This is beneficial as the available sample period is less than a year

(or 365 days).

In (3), the degree of infectious events on each date, Vt, is modeled as a linear function

of real household expenditures per household and mobility in public transportation, which

are denoted by Xi,t for i = 1, 2, ..., 7. There are also time dummies for the year-end and

new-year holiday period, DNY,t, and for the period before the first state of emergency and

the two states of emergency, DSE,j,t for j = 0, 1, 2, as well as a dummy for absolute humidity,

DAH,t. Through the cross terms between these dummies and Xi,t for i = 1, 2, ..., 7, (3) implies

that the infectious effects of economic activities are state-dependent. For the estimation of

these effects, (7) imposes restrictions based on a prior expectation that in any state, economic

activities measured by Xi,t for i = 1, 2, ..., 7 spread new-coronavirus infection to some extent.

To compute DAH,t for each date, the dummy for absolute humidity no less than 9g/m3

for the capital of each prefecture is weighted by the population of the prefecture in 2019

and summed across prefectures to compute the population-weighted nationwide average of

the dummies. The threshold level of absolute humidity at 9g/m3 for DAH,t is based on

the fact that Nottmeyer and Sera (2021) report that the risk ratio of new cases of new-

coronavirus infection over absolute humidity was non-linear, and peaked around 6− 8g/m3

in their samples in England. DAH,t approximates such an effect of absolute humidity by a

10



step function. See Figure 6 for the values of DAH,t.

A caveat is that the risk ratio is just a sample correlation. Even though, to my knowledge,

it is not clear whether there is established evidence for the biological effect of absolute

humidity on the infectiousness of new coronavirus, (8) still imposes a negativity restriction

on δi, i.e., the coefficient to the cross term between DAH,t and Xi,t, for i = 1, 2, ..., 7. This

coefficient restriction is based on a prior expectation that at least the infectiousness of new

coronavirus does not increase with absolute humidity.

3.2 Sample period

The sample period for the dependent variable is from March 6, 2020, to February 1, 2021.

The beginning of the sample period is due to the availability of mobility data from Google.6

The end of the sample period is set to include explanatory variables only up to January 2021

in the regression. This cap on the sample period is due to a concern on a possible spread of

mutant strains in 2021. More specifically, the first report on the finding of a mutant strain

from an airline passenger from abroad in Japan was on December 18, 2020.7 By February 10,

2021, 108 cases of mutant strains had been found nationwide.8 Also, the Tokyo Metropolitan

Government started screening a sample of PCR-test results to detect mutant strains from

December 2020, and found two cases of mutant strains from 1719 samples by January 29,

2021.9 Thus, the spread of mutant strains was likely to be limited before the end of January

2021.

6The COVID-19 Community Mobility Reports from Google are available from February 15, 2020. There
are 21 days between the first date of the dependent variable and that of the explanatory variables in the
regression, because there are 14-day lags on the right-hand side of (2), and summation over 7 days on the
right-hand side of (1).

7See https://www.mhlw.go.jp/content/10900000/000764153.pdf (accessed on April 14, 2021.)
8See https://www3.nhk.or.jp/news/special/coronavirus/newvariant (accessed on April 19, 2021.)
9See https://www.metro.tokyo.lg.jp/tosei/hodohappyo/press/2021/01/30/01.html (accessed on

April 19, 2021.)
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3.3 Clarification of possible biases

Before moving on, let me clarify possible biases in the regression model. Household expendi-

tures and mobility may be contemporaneously affected by people’s recognition of the current

information set, including the current effective reproduction number. This channel, however,

does not cause a simultaneity bias in the regression model because all explanatory variables

lag the dependent variable due to incubation periods.

To discuss possible channels of an endogeneity bias further, Figure 7 shows a causal dia-

gram. To understand the diagram, note that the effective reproduction number is determined

by the product of three factors:10

• the rate of effective contact between an infected person and an unimmunized person;

• the probability of infection from an infected person to an unimmunized person per

contact; and

• the average period of infection from an infected person.

The current effective reproduction number affects the rate of effective contact between

an infected person and an unimmunized person in the future, because it determines the rate

of increase in the immunized share of population. Thus, the current effective reproduction

number can be a confounder for both the dependent variable and explanatory variables

through this channel. However, given the immunized share of population remaining almost

unchanged due to a relatively small number of total cases in Japan, the direct linkage between

the current and future effective reproduction numbers through this channel is likely to be

negligible during the sample period.11

10This decomposition is based on a non-technical summary of an SIR model by Suzuki and Nishiura (2020).
Note that both the rate of effective contract and the probability of infection from an infected person are
affected by social interventions.

11In contrast, Glaeser, Gorback, and Redding (2020) regress the log of the number of total cases of new-
coronavirus infection per population or the log of new cases, rather than the effective reproduction number,
on lagged mobility data across zip-code districts in New York City. Thus, even though their explanatory
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Another concern is the possibility that people’s expectations of future effective reproduc-

tion numbers affect people’s decision making on their household expenditures and mobility

today. Unlike economic variables, however, infection is never caused by a thought in human

mind, including any type of expectation of future reproduction numbers, directly. The three

determinants of the effective reproduction number are all physical factors, as listed above.

Therefore, people’s expectations do not cause an endogeneity bias if explanatory variables

in the regression model include all types of physical behavior that affects the rate of human

contacts among people.12

Nonetheless, it is difficult to include all possible physical factors for the effective repro-

duction number in the explanatory variables, given a small sample size and limited data

availability. Thus, there remains a general concern on an omitted variable problem. An-

other general concern is specification error due to a possible non-linear relationship between

the dependent variable and explanatory variables. To see if a bias in the model is small, I

will report an out-of-sample prediction of the estimated regression model in a later section,

instead of seeking a solution to all possible biases.13 There, I will simulate the effective repro-

duction number for the case without any restriction on household consumption or mobility,

and show that the simulation result is consistent with corresponding independent estimates

reported by epidemiologists in literature.

variables lag the dependent variable, there is a significant concern on an endogeneity bias in their regression,
because people may change their mobility after seeing the current number of total or new cases, and because
the future numbers of total and new cases are determined by the product of the current number of infected
people and the effective reproduction number, as implied by an SIR model. They resolve this issue by using
indicators of the essential and the telecommuting share of workers in each district for instrumental variables.
Likewise, Barro (2020) analyzes the effect of non-pharmaceutical interventions into the number of deaths
across U.S. cities during the 1918-1920 Great Influenza Epidemic. Given non-pharmaceutical interventions
by each municipal government were affected by the observed number of deaths, he uses the distance between
each city and Boston, where the first case of infection was detected, for the instrumental variable.

12In other words, the sufficient state variables for the effective reproduction number are all physical vari-
ables. This feature of the effective reproduction number contrasts with usual economic analysis.

13Instrumental-variable estimation may be useful to correct an endogeneity bias due to an omitted variable
problem, if an appropriate instrumental variable is known. Yet, it will not correct specification error in a
linear regression model.
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4 Estimation results

I apply the Bayesian method to estimate parameters in the regression. I set an uninfor-

mative, or improper, prior distribution for each parameter, that is, the density of the prior

distribution of each set of parameter values is a constant, given the coefficient restrictions

specified by (7) and (8). I use R ver. 4.0.3 (R Core Team 2020) and Rstan ver. 2.21.2 (Stan

Development Team 2020) for estimation.14

Table 4 shows the posterior mean and the 95% credible interval of each parameter value.

It is remarkable that the posterior means of γ2 and γ3, i.e., the coefficients to real household

expenditures per household for cafe and bar, respectively, are much larger than those of γi for

i = 1, 4, 5, 6, 7. This result implies that household expenditures for cafe and bar had larger

effects on the effective reproduction number per value of spending than the other types of

household expenditures in explanatory variables during the sample period. Thus, a loss of

aggregate demand is minimized if the government aims to lower the effective reproduction

number by restricting only cafe and bar consumption by households. This result is roughly

consistent with the fact that, up to the second state of emergency since the beginning of

the pandemic, the government had been focusing on limiting the opening hours of bars

and restaurants up to 8 p.m. in populated area, in order to curb infection through bar

consumption at late night. Also, the government aims to cut the consumption of alcohol at

bars and restaurants entirely in metropolitan area in the third state of emergency from April

25, 2021.

The fitted value of the log of the effective reproduction number and also the residuals of

the regression are shown in Figure 8. The fitted value deviates from the observed effective

reproduction number substantially in the summer of 2020 and in November 2020. The bot-

tom panels of the figure imply that these anomalies are mostly due to shocks to unobserved

infectious events, rather than measurement error.

14The codes and data set for the estimation are available at https://github.com/hajimetomura/R_

HHexp.
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Even though the posterior mean of εt looks like having a serial correlation, the distribu-

tions of auto-correlation functions of residuals, i.e., ηt and εt, in the mcmc samples plotted

in Figure 9 imply that serial correlation is mostly removed from residuals by the inclusion

of an AR(1) process for unobserved infectious events, (4), in the regression.15

5 Simulations

5.1 Standard for policy evaluation

Hereafter, I simulate the quantitative effect of restricting cafe and bar consumption on the

effective reproduction number, using the estimated coefficients of the regression model. For

the measure to evaluate policy effects, I use the geometric mean of simulated effective repro-

duction numbers over a year. I highlight this indicator because if the effective reproduction

number remains above one on average, then the number of new cases will exceed the fi-

nite capacity of medical services at some point in the future. Thus, given the prospect of

population-wide availability of vaccinations in Japan looking still remote, the need to keep

the effective reproduction number below one on average until then seems a socially agreeable

target for the country. Even though choosing a year for the duration of the simulation period

implies a pessimistic expectation that vaccinations will be widely available in the country

only after a year, such a possibility is not entirely unrealistic in Japan as of April 2021.

Using the annual mean of simulated effective reproduction numbers also allows to take into

account the seasonality in household expenditures in simulations.

To clarify, the government may face a trade-off between new cases of new-coronavirus

infection (or deaths) and a measure of economic activities such as GDP, if it aims to stabilize

the effective reproduction number at some specific level between 0 and 1 until the arrival

of vaccinations for a sufficiently large part of the population, because the total number of

15In mcmc sampling, the value of εt is simulated to compute the likelihood of the value of ηt, i.e., the
residual of the observation equation, (1). As a result, the auto-correlation function of εt is smooth around
0, whereas that for ηt is more fluctuating, as shown in Figure 9.
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deaths due to new coronavirus will be lower as the targeted value of the effective reproduction

number is set closer to zero. This question is beyond the scope of this paper.

5.2 Benchmark simulation with hypothetical 2019 data

To set a benchmark, I first simulate the effective reproduction number with the 2019 data

of explanatory variables, which can be interpreted as a hypothetical case of no restriction on

household consumption or mobility. Because the COVID-19 Community Mobility Reports

from Google does not exist for 2019, I create an index of mobility in public transportation for

2019 by dividing the monthly average of railway passengers in each month by the monthly

average in January 2020. This indexation is consistent with the feature of the COVID-

19 Community Mobility Reports such that each type of mobility data in the reports are

expressed in the form of the rate of change from the average over the period between January

3 and February 6 in 2020. Because only the monthly averages of railway passengers are

publicly available, I simply use the monthly average in each month for the daily value on

each date within the same month. This substitution can be justified by a high correlation

between transit stations in the COVID-19 Community Mobility Reports from Google and

the monthly average of railway passengers in 2020, as shown in Figure 10.

Using the 2019 data, I simulate the effective reproduction number for 365 days from

March 6, which coincides with the first date of the effective reproduction number in the

regression model with 2020-2021 data.16 To simulate the effective reproduction number for

a year, I connect the year end of the 2019 data with the new year data on January 1,

2019, so that the 2019 data loop as hypothetical data without any restriction on household

consumption or mobility. Figures 11 and 12 compare the 2019 data of explanatory variables

with the 2020-21 data used for estimation of the regression model.

To make comparison between the simulated and the observed values of the effective

16For the simulation, I use the data of explanatory variables from February 14, 2019, i.e., one day before
the sample period of explanatory variables for the estimation, because 2020 is a leap year.
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reproduction number, I only change the values of real household expenditures and mobility

in public transportation to the 2019 data in the simulation. I keep using the 2020-21 data

for absolute humidity (i.e., DAH,t) as well as the dummy for the year-end and new-year

holiday period (i.e., DNY,t). I set zero to all dummies related to the states of emergency (i.e.,

DSE,j,t = 0 for j = 0, 1, 2).

Figure 13 plots the posterior mean and the 95% credible interval of lnRt in the simulation

with hypothetical 2019 data, along with the observed and the fitted value of lnRt for 2020-

2021 from March 6, 2020, over a year. The figure indicates that without any restriction on

household consumption or mobility, the effective reproduction number would rise around the

end of the fiscal year (i.e., the end of March); after the Golden Week holiday period in early

May; and in November and December.17

Table 5 summarizes the posterior distribution of annual means of lnRt in the simulation

with hypothetical 2019 data. Because lnRt is the log of the effective reproduction number,

the annual mean of lnRt corresponds to the log of the geometric annual mean of the effective

reproduction number. To make it easy to interpret the simulation result, the table shows

the exponential value of each figure in the parenthesis below the figure.

Because the 2019 data in the simulation are used as hypothetical data of real household

expenditures and mobility without any policy intervention or self-restraint, the geometric

annual mean of the effective reproduction number generated by the simulation with the

hypothetical 2019 data is comparable with a hypothetical basic reproduction number (i.e.,

the average number of new cases per an infected person in a population where everyone is

susceptible to infection). Indeed, the simulation result shown in Table 5 is largely consistent

with the range of existing estimates of the basic reproduction number during an early phase

of the pandemic in China between December 2019 and January 2020, when people in the

country were yet to be fully adjusted to the pandemic. The range was between 1.4 and

17A caveat is that the Golden Week holiday period in 2019 lasted for 10 days, which was longer than usual.
Thus, an increase in household consumption during the Golden Week in 2019 could be higher than that in
a regular year. I thank Hiroshi Fujiki for pointing out this anomaly in 2019.
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3.5 (see Imai, et al., 2020). This relatively good fit of an out-of-sample prediction of the

regression model provides a support for using the model for counterfactual simulations. A

similar result can be obtained even if the level of the effective reproduction number, Rt, is

used for the dependent variable in the regression model, instead of lnRt.
18

5.3 Endogenizing the response of mobility in public transporta-
tion to an exogenous restriction on household consumption

As described above, Table 4 implies that a loss of aggregate demand is minimized if the

effective reproduction number is lowered by restricting only cafe and bar consumption by

households. Hereafter, I simulate the quantitative effects of percentage reductions of cafe

and bar consumption by households compared to the 2019 level. For this simulation, I will

consider four scenarios that are characterized by two factors: whether the self-restraint on

packaged domestic travels observed in the first half of 2020 is assumed to continue or not; and

whether an endogenous response of mobility in public transportation is taken into account

or not. Table 6 summarizes the characteristics of the four scenarios.

To endogenize the response of mobility in public transportation to a restriction on house-

hold consumption, I regress transit stations in the COVID-19 Community Mobility Re-

ports from Google (i.e., X7,t) on real household expenditures per household (i.e., Xi,t for

i = 1, 2, ..., 6) among the explanatory variables of the regression model for the effective

reproduction number. I also include the following time dummies as part of explanatory vari-

ables to capture the seasonality of mobility: holidays, including weekends and the year-end

and new-year holiday period from December 29-January 3; each of the two states of emer-

gency from April 7, 2020, to May 25, 2020 and from January 7, 2021, to March 21, 2021;

and December, which is due to a change in the relationship between bar consumption and

mobility due to year-end parties. I estimate the regression coefficients by OLS. The sample

period is from February 15, 2020, to January 31, 2021, which is the same as the sample

18See appendix for the results of estimation and simulations in this case.
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period of explanatory variables in the estimation of the regression model for the effective

reproduction number.

Among the explanatory variables, eating out for meals (i.e., X1,t) has a statistically

insignificant coefficient. Table 7 reports the OLS estimate of the regression of transit stations

without eating out for meals in the explanatory variables.

To see the fit of this regression by an out-of-sample prediction, Figure 14 plots the ratio

of the monthly average of railway passengers in 2019 to the January 2020 average, and the

monthly average of daily fitted values generated by applying estimated regression coefficients

shown in Table 7 to the 2019 data of the explanatory variables.19 The difference between

the means of the two series in the figure can be interpreted as a time fixed effect. The figure

shows that the fitted values largely replicate the observed pattern of time variations in the

number of railway passengers in 2019, such that the number of railway passengers drops

significantly in February and December, while fluctuating around a stable level from March

to November. Hereafter, I use the regression coefficients shown in Table 7 when I endogenize

the response of mobility in public transportation to an exogenous restriction on household

consumption.

5.4 Quantitative effect of restricting household consumption on
the effective reproduction number

Now, let me describe the results of simulations from 1 to 4. In simulation 1, only cafe and

bar consumption is restricted in order to minimize a loss of aggregate demand to reduce the

effective reproduction number, while an endogenous response of mobility in transportation

is taken into account. Table 8 shows the posterior distribution of annual means of lnRt

for a range of percentage reductions of cafe and bar consumption by households from the

2019 level. To interpret figures in the table, note that zero corresponds to the case in which

the geometric annual mean of the effective reproduction number is 1. The posterior means

19Time dummies for the two states of emergency are set to zero in the 2019 data.
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in the table imply that it will be necessary to cut 95-100% of cafe and bar consumption

by households compared to the 2019 level, if the government aims to stabilize the effective

reproduction number below 1 on average throughout a year. Figure 15 shows the effective

reproduction number, hypothetical real household expenditures per household for cafe and

bar, and endogenized mobility in simulation 1, when the restriction on cafe and bar con-

sumption by households is sufficiently large to make the posterior mean of the annual mean

of lnRt below zero.

Even though simulation 1 takes into account the endogenous response of mobility to a

restriction on cafe and bar consumption by households, the regression of mobility in public

transportation summarized in Table 7 is likely to suffer some degree of endogeneity bias. For

robustness check, simulation 2 assumes only a restriction on cafe and bar consumption while

keeping mobility in public transportation at its 2019 level as shown in Figure 12. Table 9

shows the posterior distribution of annual means of lnRt in simulation 2. The table implies

that without an endogenous response of mobility, the government cannot keep the effective

reproduction number below 1 on average by restricting only cafe and bar consumption by

households.

In simulations 1 and 2, it is assumed that the government aims to restrict only cafe and

bar consumption by households in order to minimize a loss of aggregate demand for the

reduction of the effective reproduction number. Therefore, real household expenditure for

domestic travel packages is set to be as high as in 2019. This assumption may be unrealistic,

because there has been a self-restraint on packaged domestic travels in 2020, except for

the Go-To-Travel campaign period between July 22 and December 27 in 2020, as shown in

Figure 11. To take into account this observation, it is assumed in simulations 3 and 4 that

real household expenditure per household for domestic travel packages will be as low as the

average in the period between the end of the first state of emergency and the beginning

of the Go-To-Travel campaign period, i.e., from May 26, 2020, to July 21, 2020. Mobility
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in public transportation is endogeneized in simulation 3, while it is not in simulation 4, as

described in Table 6.

Tables 10 and 11 show the posterior distributions of annual means of lnRt in simulations

3 and 4, respectively. Table 10 implies that even with a self-restraint on packaged domestic

travels, the government would need to cut 80-85% of cafe and bar consumption by house-

holds to stabilize the effective reproduction number below 1 on average throughout a year.

If mobility does not decline endogenously, the necessary percentage reduction of cafe and

bar consumption by households would rise to 95-100%. Figure 16 shows the effective repro-

duction number, hypothetical real household expenditures per household for cafe and bar,

and endogenized mobility in simulation 3, when the restriction on bar and cafe consumption

by households is sufficiently large to make the posterior mean of the annual means of lnRt

below one.20

6 Conclusions

In this paper, I regress the log of the estimate of the effective reproduction number based on

reporting dates on a set of real household expenditures per household that are regarded as

infectious, and also a measure of mobility in public transportation, using publicly available

daily nationwide data in Japan. The estimation result indicates that a loss of aggregate

demand will be minimized if the effective reproduction number is lowered by cutting only

household consumption of cafe and bar. This result is largely consistent with the government

policy up to the third state of emergency that began on April 25, 2021, which have been

limiting the opening hours of bars and restraints up to 8 p.m. or cutting the consumption of

alcohol at bars and restaurants entirely. The simulation results, however, indicate that even

if a self-restraint on packaged domestic travels and an endogenous decline in mobility are

20Note that the hypothetical values of real household expenditures per household are the same between
simulations 3 and 4. In simulation 4, mobility in public transportation takes the same value as 2019 data
shown in Figure 12 for each date.
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taken into account, it would be necessary to cut more than 85% of household consumption

of both cafe and bar compared to the 2019 level, in order to keep the effective reproduction

number below one on average.

One possible interpretation of this result is that a much more severe restriction on the

opening hours of bars and restaurants than the aforementioned government policy will be

necessary to prevent the explosion of new-coronavirus infection until vaccinations become

widely available across the population. Another interpretation is that given the difficulty to

impose such a severe restriction on bars and restaurants in reality, it is necessary to shift

the policy focus from a volume restriction, such as shortening the opening hours of bars

and restaurants, to an increase in the quality of efforts to reduce the infectiousness of each

economic activity, which is measured by the coefficients of the regression model in this paper.

In addition, the comparison between simulations with and without endogenized mobility

indicates that the effect of restricting household consumption of cafe and bar depends on

how much mobility will decline in response to such a restriction. This result implies that

even though explanatory variables in the regression model incorporate a representative set

of infectious household expenditures, there still remains an infectious effect of mobility sepa-

rately from those household expenditures. It is an important issue to figure out unidentified

economic activities behind this effect of mobility.

In this paper, I do not simulate the effect of restricting the other types of household

expenditures than cafe and bar consumption, such as eating out for meals, traveling, and

apparel shopping. This is because there seems still room for improvement in the efforts to

reduce infectiousness of these household expenditures, such as reducing oral conversation

while eating, moving, and shopping outside.

Likewise, I do not simulate the effect of an exogenous restriction on mobility on the effec-

tive reproduction number. This is because such an intervention is likely to change household

consumption endogenously. Thus, the economic cost of such a restriction cannot be measured
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by the reduced-form regression in this paper. Also, I do not take into account the substitu-

tion effect of a restriction on household consumption of cafe and bar that may increase other

types of household consumption in the simulation exercises. With these reservations, this

paper provides ballpark estimates of the effect of a cost-effective intervention in household

consumption on the effective reproduction number.
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A Estimation of the regression model with Rt for the

dependent variable

In this appendix, I report the estimation result of the regression in which Rt is used for

the dependent variable instead of lnRt. Given the difficulty to obtain the convergence of

mcmc, I tighten the coefficient restriction for ρ from ρ ∈ (−1,−1) to ρ ∈ (0,−1), given the

95% credible interval of ρ in the original regression model with lnRt being strictly positive,

as shown in Table 9. The estimation result is shown in Table 12. The simulation result

corresponding to Table 5 is shown in Table 13.
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Table 1: Data sources
Data Level Frequency Source

Effective reproduction number Nationwide Daily Toyokeizai-Shinpo-Sha
Nominal household expendi-
tures per household

Nationwide Daily Households with two or
more members, Family In-
come and Expenditure Sur-
vey, Ministry of Internal Af-
fairs and Communications

Consumer Price Index (CPI) Nationwide Monthly Ministry of Internal Affairs
and Communications

Mobility in public transporta-
tion

Nationwide Daily transit stations, COVID-19
Community Mobility Re-
ports, Google

Temperature, Relative humid-
ity

Prefectural Daily Japan Meteorological
Agency

Populations Prefectural Annual Population estimates, Min-
istry of Internal Affairs and
Communications

Railway passengers Nationwide Monthly Statistical Survey on Rail-
way Transport, Ministry
of Land, Infrastructure,
Transport and Tourism

Sample distribution of incuba-
tion periods

Nationwide − Sugishita, Kurita, Sug-
awara, and Ohkusa (2020)
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Table 2: Cross correlation coefficients between the effective reproduction number and 7-day
moving averages of nominal household expenditures of large categories per household

Maximum cross corre-
lation coefficient

Corresponding lag of
nominal household ex-
penditures

Food 0.22 10
Housing 0.16 16

Fuel, light and water charges -0.01 9
Furniture and household utensils 0.26 10

Clothing and footwear 0.62 12
Medical care 0.20 1

Transportation and communication 0.31 10
Education 0.44 5

Culture and recreation 0.38 9
Other consumption expenditures 0.48 8

Bar 0.66 9
Notes: The table shows the maximum cross correlation coefficients between the contemporaneous effective
reproduction number and lagged 7-day backward moving averages of nominal household expenditures per
household. The sample period is from March 1, 2020, to February 28, 2021, as the effective reproduction
number is available only from March 1, 2020.
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Table 3: Definition of variables
Rt Effective reproduction number
X1,t Real household expenditure per household on eating out for meals
X2,t Real household expenditure per household for cafe
X3,t Real household expenditure per household for bar
X4,t Real household expenditure per household for lodging
X5,t Real household expenditure per household for domestic travel packages
X6,t Real household expenditure per household for clothing and footwear
X7,t transit stations in the COVID-19 Community Mobility Reports for Japan,

nationwide
DSE,0,t Time dummy for the period before the first state of emergency (- 2020/4/6)
DSE,1,t Time dummy for the first state of emergency (2020/4/7-2020/5/25)
DSE,2,t Time dummy for the second state of emergency (2021/1/7-2021/3/21)
DNY,t Time dummy for Dec. 29-Jan. 3.
DAH,t Population-weighted average of the dummy for absolute temperature no less

than 9g/m3 across the capitals of prefectures.
pk A sample distribution of incubation periods in Japan.

Vt Degree of daily infectious events.
Zt Cumulative effect of lagged infectious events on new cases of new-coronavirus

infection.
et Unobserved infectious events.
εt Shocks to unobserved infectious events.
ηt Measurement error.

Notes: The effective reproduction number is the week-over-week gross rate of change in the number of new
cases, raised to the power of 5/7. The unit of each type of real household expenditure per household is 100
yen in the 2020 average price. To compute DAH,t for each date, the dummy for absolute temperature no
less than 9g/m3 is constructed for the capital of each prefecture, weighted by the population estimate for
the prefecture in 2019, and then summed across prefectures to compute the population-weighted average
of the dummies.
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Table 4: Estimated regression coefficients
Posterior 2.5% 97.5% Posterior 2.5% 97.5%

mean mean
α0 -0.083 -0.186 0.014 φ01 -0.001 -0.023 0.023
α1 0.054 0.002 0.154 φ02 -0.003 -0.353 0.355
α2 -0.018 -0.061 -0.001 φ03 -0.024 -0.209 0.151
β0 -0.100 -0.289 0.072 φ04 0.010 -0.068 0.118
β1 0.073 -0.212 0.384 φ05 0.008 -0.047 0.081
β2 0.220 -0.301 0.807 φ06 0.032 -0.015 0.088
γ1 0.012 0.001 0.032 φ07 -0.000 -0.002 0.002
γ2 0.187 0.025 0.515 φ11 0.021 -0.016 0.086
γ3 0.108 0.013 0.280 φ12 0.425 -0.237 1.759
γ4 0.047 0.007 0.112 φ13 0.399 -0.099 1.173
γ5 0.031 0.004 0.084 φ14 0.614 -0.002 1.678
γ6 0.018 0.002 0.041 φ15 0.993 0.077 2.123
γ7 0.002 0.000 0.005 φ16 0.013 -0.025 0.076
δ1 -0.002 -0.009 -0.000 φ17 0.004 -0.001 0.010
δ2 -0.051 -0.190 -0.001 φ21 0.033 -0.014 0.130
δ3 -0.025 -0.092 -0.001 φ22 2.080 -0.033 5.749
δ4 -0.016 -0.057 -0.000 φ23 1.038 -0.050 2.976
δ5 -0.013 -0.046 -0.000 φ24 0.195 -0.036 0.670
δ6 -0.004 -0.013 -0.000 φ25 0.649 0.019 1.585
δ7 -0.001 -0.003 -0.000 φ26 0.029 -0.022 0.118
ρ 0.743 0.346 0.959 φ27 0.020 0.002 0.043
ση 0.027 0.024 0.029
σε 0.050 0.030 0.088

Notes: “2.5%” and “97.5%” indicate the percentiles of mcmc samples. The sample period for the depen-
dent variable is from March 6, 2020, to February 1, 2021. The number of observations is 333. The prior
distribution is an improper distribution for each parameter.

Table 5: Posterior distribution of annual means of lnRt in the simulation with hypothetical
2019 data

Posterior mean 2.5% percentile 97.5% percentile
Annual mean of lnRt 0.94 0.49 1.57
(Corresponding geometric
annual mean of Rt)

(2.57) (1.63) (4.81)

Note: Each cell shows the posterior mean or a percentile of annual means of lnRt simulated by inserting
the hypothetical 2019 data of real household expenditures and mobility in public transportation into
the regression model for the effective reproduction number. In the parenthesis below each figure is
the exponential value of the figure, which corresponds to the geometric annual mean of the effective
reproduction number implied by the figure.
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Table 6: Four scenarios for the simulations of restrictions on cafe and bar consumption
Self-restraint on pack-
aged domestic travels

Endogenized mobility in
public transportation

Simulation 1 No Yes
Simulation 2 No No
Simulation 3 Yes Yes
Simulation 4 Yes No

Table 7: Regression of mobility in public transportation on real household expenditures per
household

OLS estimate Standard deviation t value
Intercept 0.653 0.014 45.66
X2,t 0.608 0.089 6.82
X3,t 0.211 0.026 7.90
X4,t -0.045 0.014 -3.12
X5,t 0.038 0.010 3.75
X6,t 0.011 0.004 2.66
Dummy for holidays -0.147 0.01 -12.97
Dummy for the first state of emergency -0.141 0.013 -10.51
Dummy for the second state of emergency -0.063 0.014 -4.54
Dummy for December 0.025 0.025 1.00
X3,t*(Dummy for December) -0.179 0.138 -1.29

Dependent variable: 1 +X7,t/100.
R2: 0.77; adj. R2: 0.76.
Sample period: Februrary 15, 2020, - January 31, 2021.
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Table 8: Posterior distribution of annual means of lnRt in simulation 1
Degree of % reduction of
cafe and bar consumption
compared to the 2019 level

Posterior mean 2.5% percentile 97.5% percentile

50% 0.40 0.11 0.76
55% 0.35 0.06 0.73
60% 0.31 0.00 0.69
65% 0.27 -0.04 0.65
70% 0.23 -0.10 0.62
75% 0.19 -0.16 0.58
80% 0.14 -0.23 0.54
85% 0.10 -0.30 0.51
90% 0.06 -0.37 0.48
95% 0.02 -0.44 0.45
100% -0.02 -0.51 0.42

Notes: In simulation 1, no self-restraint on packaged domestic travels is considered, whereas mobility in
public transportation is endogenized by the regression shown in Table 7. Each figure is the annual mean
of lnRt for an exogenous percentage reduction of cafe and bar consumption by households compared to
the 2019 level in the first column. For each figure, 0 corresponds to the case in which the geometric
annual mean of the effective reproduction number is 1.

Table 9: Posterior distribution of annual means of lnRt in simulation 2
Degree of % reduction of
cafe and bar consumption
compared to the 2019 level

Posterior mean 2.5% percentile 97.5% percentile

50% 0.39 0.10 0.75
55% 0.36 0.06 0.73
60% 0.32 0.01 0.70
65% 0.29 -0.02 0.68
70% 0.26 -0.06 0.65
75% 0.23 -0.11 0.62
80% 0.20 -0.16 0.61
85% 0.17 -0.22 0.59
90% 0.14 -0.28 0.57
95% 0.11 -0.34 0.55
100% 0.08 -0.39 0.53

Notes: In simulation 2, no self-restraint on packaged domestic travels or endogenous response of mobility
in public transportation is considered. Each figure is the annual mean of lnRt for an exogenous percentage
reduction of cafe and bar consumption by households compared to the 2019 level in the first column. For
each figure, 0 corresponds to the case in which the geometric annual mean of the effective reproduction
number is 1.
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Table 10: Posterior distribution of annual means of lnRt in simulation 3
Degree of % reduction of
cafe and bar consumption
compared to the 2019 level

Posterior mean 2.5% percentile 97.5% percentile

50% 0.29 -0.00 0.62
55% 0.24 -0.06 0.58
60% 0.20 -0.11 0.53
65% 0.16 -0.16 0.49
70% 0.12 -0.22 0.46
75% 0.08 -0.29 0.42
80% 0.03 -0.35 0.39
85% -0.00 -0.41 0.36
90% -0.04 -0.48 0.34
95% -0.08 -0.55 0.31
100% -0.13 -0.63 0.28

Notes: In simulation 3, both a self-restraint on packaged domestic travels and an endogenous response of
mobility in public transportation are considered. Each figure is the annual mean of lnRt for an exogenous
percentage reduction of cafe and bar consumption by households compared to the 2019 level in the first
column. For each figure, 0 corresponds to the case in which the geometric annual mean of the effective
reproduction number is 1.

Table 11: Posterior distribution of annual means of lnRt in simulation 4
Degree of % reduction of
cafe and bar consumption
compared to the 2019 level

Posterior mean 2.5% percentile 97.5% percentile

50% 0.30 0.00 0.63
55% 0.26 -0.04 0.60
60% 0.23 -0.09 0.56
65% 0.20 -0.13 0.53
70% 0.17 -0.17 0.51
75% 0.14 -0.22 0.49
80% 0.11 -0.26 0.47
85% 0.08 -0.31 0.45
90% 0.05 -0.37 0.44
95% 0.02 -0.42 0.42
100% -0.00 -0.48 0.40

Notes: In simulation 4, a self-restraint on packaged domestic travels is considered while mobility in public
transportation is not endogenized. Each figure is the annual mean of lnRt for an exogenous percentage
reduction of cafe and bar consumption by households compared to the 2019 level in the first column. For
each figure, 0 corresponds to the case in which the geometric annual mean of the effective reproduction
number is 1.
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Table 12: Estimated regression coefficients of an alternative regression model
Posterior 2.5% 97.5% Posterior 2.5% 97.5%

mean mean
α0 0.058 -0.132 0.254 φ01 -0.002 -0.033 0.031
α1 0.094 0.004 0.261 φ02 -0.076 -0.653 0.447
α2 -0.032 -0.111 -0.001 φ03 -0.058 -0.297 0.136
β0 -0.323 -0.640 -0.000 φ04 0.011 -0.095 0.150
β1 -0.083 -0.528 0.308 φ05 0.017 -0.065 0.129
β2 0.640 -0.215 1.539 φ06 0.105 0.025 0.190
γ1 0.017 0.002 0.046 φ07 -0.001 -0.005 0.003
γ2 0.316 0.037 0.880 φ11 0.034 -0.021 0.135
γ3 0.145 0.017 0.374 φ12 0.643 -0.387 2.585
γ4 0.062 0.008 0.153 φ13 0.403 -0.159 1.376
γ5 0.051 0.006 0.133 φ14 0.608 -0.025 1.965
γ6 0.023 0.003 0.058 φ15 1.074 0.040 2.722
γ7 0.003 0.001 0.008 φ16 0.023 -0.032 0.116
δ1 -0.004 -0.014 -0.000 φ17 0.001 -0.004 0.008
δ2 -0.079 -0.295 -0.002 φ21 0.034 -0.022 0.149
δ3 -0.031 -0.112 -0.001 φ22 1.968 -0.243 6.378
δ4 -0.022 -0.079 -0.001 φ23 1.359 -0.090 4.161
δ5 -0.023 -0.086 -0.001 φ24 0.408 -0.031 1.241
δ6 -0.006 -0.023 -0.000 φ25 0.558 -0.005 1.659
δ7 -0.001 -0.004 -0.000 φ26 0.036 -0.028 0.156
ρ 0.779 0.030 0.992 φ27 0.033 0.005 0.066
ση 0.041 0.033 0.045
σε 0.070 0.038 0.192

Notes: The alternative regression model has Rt for the dependent variable, instead of lnRt, in (1). “2.5%”
and “97.5%” indicate the percentiles of mcmc samples. The sample period for the dependent variable is
from March 6, 2020 to February 1, 2021. The number of observations is 333. The prior distribution is
an improper distribution for each parameter.

Table 13: Posterior distribution of annual means of Rt in the simulation of an alternative
regression model with hypothetical 2019 data

Posterior mean 2.5% percentile 97.5% percentile
Annual mean of Rt 2.61 1.54 4.56

Note: The alternative regression model has Rt for the dependent variable, instead of lnRt, in (1). Each
cell shows the posterior mean or a percentile of annual means of Rt simulated by inserting hypothetical
2019 data of real household expenditures and mobility in public transportation into the regression model.
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Figure 1: Effective reproduction number and 7-day moving averages of nominal household
expenditures per household
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Notes: In each panel, “R” indicates the effective reproduction number, and nominal household expendi-
ture per household is a 7-day backward moving average. Vertical dashed lines are the first and the last
dates of two states of emergency: from April 7, 2020, to May 25, 2020; and from January 7, 2021, to
March 21, 2021. All figures are standardized by their means and standard deviations. The horizontal
dotted line indicates the value of the standardized index for the effective reproduction number equal to
1 in each panel.
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Figure 2: Cross correlation function between the effective reproduction number and the
7-day moving average of nominal household expenditure for clothing and footwear
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Notes: The figure shows the correlation coefficient between the contemporaneous effective reproduction
number and lagged 7-day backward moving averages of nominal household expenditure per household for
clothing and footwear. On the horizontal axis, negative lags are leads. Horizontal dashed lines are the
95% confidence interval for correlations between independent white noises. The sample period is from
March 1, 2020, to February 28, 2021, as the effective reproduction number is available only from March
1, 2020.
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Figure 3: Effective reproduction number and 7-day moving averages of mobility measures
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Notes: In each panel, “R” is the effective reproduction number, and the measure of mobility is a 7-day
backward moving average. All figures are standardized by their means and standard deviations. Vertical
dashed lines are the first and the last dates of two states of emergency: from April 7, 2020, to May 25,
2020; and from January 7, 2021, to March 21, 2021.

37



Figure 4: 7-day moving averages of mobility in retail and recreation and real household
expenditure per household on eating out for meals
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Notes: The figure plots retail and recreation in the COVID-19 Community Mobility Reports from Google
and real household expenditure per household on eating out for meals. Both figures are 7-day backward
moving averages, and standardized by their means and standard deviations. Vertical dashed lines are
the first and the last dates of two states of emergency: from April 7, 2020, to May 25, 2020; and from
January 7, 2021, to March 21, 2021.

Figure 5: A sample distribution of incubation periods in Japan
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Source: Sugishita, Kurita, Sugawara, and Ohkusa (2020).
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Figure 6: Dummy variable for absolute humidity
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Notes: The figure plots the daily value of DAH,t. Vertical dashed lines are the first and the last dates of
two states of emergency: from April 7, 2020, to May 25, 2020; and from January 7, 2021, to March 21,
2021.

Figure 7: Causal diagram
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Figure 8: Fitted value of the effective reproduction number and residuals
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Notes: In the top panel, “Observed R” indicates the log of the observed effective reproduction number;
and “Fitted R” indicates the fitted value of the log of the effective reproduction number in the regression
model with 2020-21 data. Red dashed lines in each panel indicate the 95% credible interval. In the
bottom panels, “Measurement error” and “Shocks to unobserved infectious events” indicate the values
of ηt and εt, respectively. In both top and bottom panels, vertical dashed lines are the first and the last
dates of two states of emergency: from April 7, 2020, to May 25, 2020; and from January 7, 2021, to
March 21, 2021.
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Figure 9: Mcmc samples of auto-correlation functions of residuals
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Notes: “Measurement error” and “Shocks to unobserved infectious events” indicate ηt and εt, respectively.
For each lag, the grey box shows the range between 25% and 75% percentiles, and the black line in the
middle of the box indicates the median. The whiskers extended above and below the box show the range
between 25% percentile - 1.5*(75% percentile-25% percentile) and 75% percentile + 1.5*(75% percentile-
25% percentile). Each circle indicates the value of an outlier outside this range.

Figure 10: The number of railway passengers and mobility in public transportation in 2020
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Notes: “transit stations” is a measure of mobility in public transportation in the COVID-19 Community
Mobility Reports from Google, which is available from February 15, 2020. For this measure, a 7-day
centered moving average is shown in the figure. The index of railway passengers is constructed by
dividing the monthly average of railway passengers in each month of 2020 by the monthly average in
January 2020. The monthly value of this index is shown for each date within the same month.
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Figure 11: Real household expenditures per household in 2019 and for 2020-21
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Notes: In each panel, the 2019 data start from February 14, 2019, and are connected with the data on
January 1, 2019, after the year end, so that they loop for 365 days as hypothetical data without any
restriction on household consumption or mobility. The 2020-21 data start from February 15, 2020, and
end at January 31, 2021. All figures are 7-day centered moving averages.
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Figure 12: Mobility in public transportation in 2019 and for 2020-21
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Hypothetical index based on 2019 railway-passenger data

Notes: “transit stations” is a measure of mobility in public transportation in the COVID-19 Community
Mobility Reports from Google, which is available from February 15, 2020. The figure for this measure
is a 7-day centered moving average. The index of railway passengers is constructed by dividing the
monthly average of railway passengers in each month of 2019 by the monthly average in January 2020.
The monthly value of this index is shown for each date within the same month. The index starts from
February 14, 2019, and then is connected with its value on January 1, 2019, after the year end, so that it
loops as a hypothetical index of mobility in public transportation without any restriction on household
consumption or mobility.
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Figure 13: Effective reproduction number without any restriction on household consumption
or mobility
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Notes: The vertical axis is the log of the effective reproduction number. “Observed R” is the log of the
observed effective reproduction number. “Fitted R with 2020-2021 data” is the fitted value of the log
of the effective reproduction number in the regression model with 2020-2021 data. “Simulated R with
hypothetical 2019 data” is the daily value of lnRt simulated by the regression model for the effective
reproduction number with hypothetical values of explanatory variables based on 2019 data. Vertical
dashed lines are the first and the last dates of two states of emergency: from April 7, 2020, to May 25,
2020; and from January 7, 2021, to March 21, 2021.
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Figure 14: The observed and the fitted value of mobility in public transportation in 2019
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Notes: “Index of railway passengers in 2019” is the ratio of the monthly average of railway passengers
in each month of 2019 to the January 2020 average. ”Prediction by OLS regression” is the fitted value
generated by inserting 2019 data in the explanatory variables of the regression shown in Table 7, except
that time dummies for the two states of emergency are set to zero. The daily fitted values are averaged
out to compute the monthly average for each month in the figure. Dotted lines around ”Prediction by
OLS regression” indicate the 95% confidence interval.
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Figure 15: Effective reproduction number, restricted real household expenditures per house-
hold, and endogenized mobility in simulation 1
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Hypothetical data with 100% reduction of cafe and bar consumption
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Notes: In each panel, “Observed R” is the log of the observed effective reproduction number; “Fitted R
with 2020-2021 data” is the fitted values of the log of the effective reproduction number in the regression
model with 2020-2021 data; “Simulated R with hypothetical data” is the simulated value of the log of
the effective reproduction number in the regression model with “Hypothetical data with 100% reduction
of cafe and bar consumption” in the other panels; “transit stations from Google for 2020-2021” is a
measure of mobility in public transformation in the COVID-19 Community Mobility Reports from Google
from February 15, 2020; “Hypothetical data with 100% reduction of cafe and bar consumption” is an
exogenously restricted real household expenditure item, or mobility in public transportation endogenized
by the regression shown in Table 7, in simulation 1. Except the effective reproduction number, figures
shown in each panel are 7-day centered moving averages.
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Figure 16: Effective reproduction number, restricted real household expenditures per house-
hold, and endogeneized mobility in simulation 3
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2020-2021 data
Hypothetical data with 85% reduction of cafe and bar consumption
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Hypothetical data with 85% reduction of cafe and bar consumption
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Note: See the notes for Figure 15.
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