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Abstract. Efficiency of estimation depends not only on a method of
the estimation, but also on the distribution of data. In statistical ex-
periments, statisticians can at least partially design the data generating
process to obtain high performance of the estimation. In this paper, a
necessary condition for the semiparametrically efficient experimental de-
sign is proposed. A formula to determine the efficient distribution of input
variables is derived. An application to the optimal bid design problem of
contingent valuation survey experiments is presented.

Keywords: Optimal Design · Semiparametric Efficiency · Binary Re-
sponse Model · Contingent Valuation Survey Experiments

1 Introduction

In this paper a class of simple statistical experiments described by a 4-tuple,

E = {(µ, ν, ρ, φ) : µ ∈ M, ν ∈ N}, (1)

is investigated, where M is a set of probability measures on (W,A), N is a set
of probability measures on (X ,B), ρ is a measurable map from W×X to (Y, C),
and φ is a functional on M. In every experiment (µ, ν, ρ, φ) ∈ E , input x is
drawn from ν, output y = ρ(ω, x) with ω ∼ µ is observed, and the value of φ(µ)
is estimated from (x, y).

For example, imagine that there exist n lightning bulbs, whose life time
hours ω1, . . ., ωn are i.i.d. random variables distributed according to µ. In order
to estimate the expected life time hours φ(µ) = Eω, the following experiment is
conducted. First, all n bulbs are turned on at time 0. Second, one of the bulbs is
sampled without replacement at time x and its status is observed. If the sampled
bulb is alive, y is set 1. If otherwise, y is set 0. The procedure is repeated n times
until all of the bulbs are sampled. Finally, data of n independent pairs (x1, y1),
· · ·, (xn, yn) are obtained, and Eω or any other moments of ω will be consistently
estimated by existing efficient estimation methods, such as the nonparametric
maximum likelihood estimation.



To be noted here is that efficiency of the estimation depends not only on the
estimation method, but also on the distribution ν of x1, · · · , xn. In an extreme
case where x1 = . . . = xn = 0, trivial outcomes y1 = . . . = yn = 1 will be
obtained unless some of the bulbs are with initial failure. In the opposite extreme
case where x1 = . . . = xn = +∞, y1 = . . . = yn = 0 will occur with probability
one. In both cases, data are so poorly informative that consistent estimation of
Eω is not possible. To find the best distribution ν of x, with which the experiment
produces the most informative data, is therefore an interesting problem.

The paper is organized as follows. In Section 2, the problem of the paper is
formally stated. For the purpose, geometric theory of semiparametric estimation
is introduced. In the theory, every statistical model is considered as a point
on an infinite dimensional manifold, and the efficient design is formulated as a
minimizer of the Fisher-information norm of the gradient of a functional on the
manifold. In Section 3, a necessary condition for the efficient design is proposed.
In Section 4, application examples of the main theorem are given. In particular,
the optimal bid design problem of contingent valuation survey experiments is
solved. In Section 5, results from small Monte Carlo simulations are reported.
It is numerically confirmed that the efficiently designed estimations outperform
opponents even with small samples.

2 The Model

2.1 The tangent space of a statistical manifold

In this section, geometric theory of semiparametric estimation is introduced
to formulate the efficient design problem. Terms and definitions given in the
following are according to [12]. Equivalent definitions are also found in [1], [2],
[3], and [11].

Let µ be a probability measure on (W,A). Let M be a set of probability
measures, which are absolutely continuous with respect to µ. A map t 7→ µt

from (−ϵ, ϵ) ⊂ R to M such that µ0 = µ is differentiable in quadratic mean at
t = 0 if there exists α ∈ L2(µ) such that

lim
t→0

∫ (√
dµt −

√
dµ

t
− 1

2
α
√

dµ

)2

= 0. (1)

Proposition 1. A map t 7→ µt is differentiable in quadratic mean at t = 0 if
(i) a map t 7→ ℓt(ω) := dµt/dµ(ω) is continuously differentiable on (−ϵ, ϵ) and
if (ii) a map t 7→

∫
(ℓ̇t/ℓt)

2dµt becomes continuous on (−ϵ, ϵ), where ℓ̇t(ω) =

(dℓt/dt)(ω). Under conditions (i) and (ii), ℓ̇0 becomes a tangent vector of M at
µ.

Proof. See e.g. Proposition 1 in page 13 of [3]. ⊓⊔

A collection of those differentiable maps t 7→ µt is denoted by M(µ). A
tangent space TµM of M at µ is a set of tangent vectors α as in (1). A tangent
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bundle TM relates each µ with TµM. A pair (M, TM) is a statistical manifold,
which is an infinite dimensional analog of a standard finite-dimensional manifold.

On (M, TM), the Fisher-information metric µ 7→ ⟨·, ·⟩1/2µ is defined by

⟨α, α′⟩µ =

∫
W

αα′ dµ (2)

for every α and α′ in TµM. The Fisher-information norm ∥ · ∥µ is also given by

∥α∥µ = ⟨α, α⟩1/2µ . The following proposition characterizes TµM.

Proposition 2 ([10], [13]). Let TµP(W) be the closure of a tangent space
TµP(W) with respect to ∥ · ∥µ, then

TµP(W) = L0
2(µ) :=

{
α ∈ L2(µ)

∣∣∣∣ ∫ αdµ = 0

}
. (3)

Proof. Choose an arbitrary α ∈ L0
2(µ) and M > 0. Let α0

M = αM −
∫
αM dµ,

where αM = α · {|α| ≤ M}. Define a map t 7→ µt by

ℓt =
dµt

dµ
= exp

(
tα0

M − γt
)
, γt = log

(∫
exp(tα0

M ) dµ

)
. (4)

Since |α0
M | ≤ M , (4) is well-defined and t 7→ ℓt(ω) becomes continuously differ-

entiable with derivative

ℓ̇t(ω) =

(
d

dt

)
dµt

dµ
(ω) =

(
α0
M (ω)−

∫
α0
M exp(tα0

M ) dµ∫
exp(tα0

M ) dµ

)
exp

(
tα0

M (ω)− γt
)
(5)

at every ω ∈ W. A map t 7→
∫
(ℓ̇t/ℓt)

2dµt is also well-defined and continuous
in t ∈ (−ϵ, ϵ), hence t 7→ µt is differentiable in quadratic mean at t = 0 with
derivative ℓ̇0 = α0

M . Let M ↑ ∞, then ∥α − α0
M∥µ → 0. Thus, α ∈ TµM is

shown.

On the other hand, for every (µt)t∈(−ϵ,ϵ) ∈ M(µ) and α ∈ L2(µ), let ξk =

k(
√
dµ1/k −

√
dµ)− (α/2)

√
dµ for k ∈ N. Then, as k → ∞,

∫
ξ2k → 0 and∣∣∣∣∫ αdµ

∣∣∣∣ = ∣∣∣∣∫ (α2√dµ
)(

2
√
dµ
)∣∣∣∣

≤
∣∣∣∣∫ ξ2k

∣∣∣∣1/2 · 2 ∣∣∣∣∫ dµ

∣∣∣∣1/2 + 1

k

∣∣∣∣∫ (ξk +
α

2

√
dµ
)2∣∣∣∣

≤ o(1) +
1

k

(
o(1) +

1

2
∥α∥µ

)2

→ 0,

which implies TµM ⊂ L0
2(µ). ⊓⊔
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2.2 The score operator

Let N be a class of probability measures on (X ,B), and let P be a class of
probability measures on (X × Y, σ(B × C)). For every P ∈ P, let P(P ) be a
collection of differentiable maps t ∈ (−ϵ, ϵ) 7→ Pt ∈ P such that P0 = P . Let
TPP be the tangent space of P at P . The tangent bundle TP relates each P
with TPP. The Fisher-information norm on (P, TP) is ∥ · ∥P such that ∥β∥P =(∫

β(x, y) dP (x, y)
)1/2

for every β ∈ TPP. The closure of TPP with respect to
∥ · ∥P is L0

2(P ) as shown in Proposition 2.
Given a measurable map ρ : W×X 7→ Y, at every ν ∈ N , a map ρν : M 7→ P

defined by

ρν(µ)(D) =

∫
{(x, ρ(ω, x)) ∈ D}µ(dω)ν(dx), D ∈ σ(B × C), (6)

is a differentiable map between (M, TM) and (P, TP). To see this, note that

dρν(µt)

dρν(µ)
(x, y) = Eµ,ν

(
dµt

dµ
(ω)

∣∣∣∣ x, y) (7)

because

ρν(µt)(D) =

∫
dµt

dµ
(ω){(x, ρ(ω, x)) ∈ D}µ(dω)ν(dx)

= Eµ,ν

[
Eµ,ν

(
dµt

dµ
(ω)

∣∣∣∣ x, y) {(x, y) ∈ D}
]
.

Particularly when dµt/dµ = exp(tα − γt), where α ∈ L0
2(µ) is bounded and

γt = log
∫
exp(tα) dµ, t 7→ ℓρt (x, y) := dρν(µt)/dρν(µ)(x, y) is continuously dif-

ferentiable with derivative

ℓ̇ρt (x, y) :=

(
d

dt

)
dρν(µt)

dρν(µ)
(x, y)

= Eµ,ν

[(
α−

∫
α exp(tα) dµ∫
exp(tα) dµ

)
exp (tα− γt)

∣∣∣∣x, y] . (8)

Since t 7→
∫
(ℓ̇ρt /ℓ

ρ
t )

2 dρν(µt) is continuous, t 7→ ρν(µt) is a differentiable path on

P with a tangent vector ℓ̇ρ0(x, y) = Eµ,ν(α|x, y).
The derivative of ρν : M 7→ P at µ is the score operator (dρν)µ : TµM 7→

L2(ρν(µ)), which maps every α ∈ TµM to

((dρν)µα)(x, y) = Eµ,ν(α|x, y), (x, y) ∈ X × Y. (9)

Then, a tangent space of a submanifold ρν(M) := {ρν(µ) ∈ P |µ ∈ M}, which
is a set of statistical models to be estimated in experiment (µ, ν, ρ, φ), is the
range of the score operator: that is,

Tρν(µ)ρν(M) = (dρν)µ(TµM) = R((dρν)µ), (10)
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where R(·) denotes the range of given operators. Note that the score opera-
tor is linear and continuous under the Fisher-information metrics. The conju-
gate operator (dρν)

∗
µ : L2(ρν(µ)) 7→ L2(µ), which satisfies ⟨(dρν)µα, β⟩ρν(µ)

=⟨
α, (dρν)

∗
µβ
⟩
µ
for every α ∈ L2(µ) and β ∈ L2(ρν(µ)), is given by

((dρν)
∗
µβ)(ω) = Eµ,ν(β|ω), ω ∈ W. (11)

2.3 The efficiency bound

Assume that φ : M 7→ R is a pathwise differentiable functional: that is,

(A1) there exists a linear, continuous operator φ′
µ : TµM 7→ R such that

lim
t→0

φ(µt)− φ(µ)

t
= φ′

µα (12)

for every (t 7→ µt) ∈ M(µ) with a tangent vector α.

By Riesz’s representation theorem, there uniquely exists the gradient function
∂φµ ∈ L0

2(µ) such that φ′
µα ≡

⟨
∂φµ, α

⟩
µ
. Assume also that φ(µ) is identified in

the following sense:

(A2) there exists a functional κ : P 7→ R such that κ(ρν(µ)) ≡ φ(µ) for all
µ ∈ M.

The functional κ is said differentiable at P ∈ P relative to P(P ), if there exists
a linear, continuous operator κ′

P : TPP 7→ R such that

lim
t→0

κ(Pt)− κ(P )

t
= κ′

Pβ (13)

for every differentiable path (t 7→ Pt) ∈ P(P ) with tangent vector β ∈ L0
2(P ).

The efficient influence function ∂κP of κ is the Riesz representation of κ′
P on

TPP = L0
2(P ), that is, ∂κP ∈ L0

2(P ) and

κ′
Pβ ≡ ⟨∂κP , β⟩P . (14)

Differentiability of κ at P = ρν(µ) relative to ρν(M(µ)) := {ρν(µt) |µt ∈ M(µ)}
is a necessary condition for existence of a regular estimator Tn of φ(µ) such that

√
n(Tn − φ(µhn/

√
n)) ⇒ρν(µhn/

√
n)

∃L (15)

for every µt ∈ M(µ) and hn → h ∈ R. By van der Vaart’s Differentiability
Theorem (Theorem 3.1 of [12]), κ is differentiable at ρν(µ) relative to ρν(M(µ))
if and only if

∂φµ ∈ R((dρν)
∗
µ). (16)

When (16) is satisfied, the efficient influence function ∂κρν(µ) is related to the
gradient of φ by the score equation,

∂φµ = (dρν)
∗
µ(∂κρν(µ)), ∂κρν(µ) ∈ R((dρν)µ). (17)
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The limit distribution L of Tn is the convolution of N
(
0, ∥∂κρν(µ)∥2ρν(µ)

)
and

some other probability measures on R ([3], [12], [13]). In this sense, ∥∂κρν(µ)∥2ρν(µ)

gives the lower bound of asymptotic variances of all regular estimators of φ(µ).
Let N ∗ be a subclass of N such that

N ∗ = {ν ∈ N | ∂φµ ∈ R((dρν)
∗
µ)}, (18)

then an efficiency criterion of experimental designs is given by

l.b.(φ(µ)|ν) :=


∥∂κρν(µ)∥2ρν(µ)

if ν ∈ N ∗

+∞ if ν ̸∈ N ∗.

(19)

Definition 1. The probability measure ν∗ is efficient for experiment E at µ if

l.b.(φ(µ)|ν∗) ≤ l.b.(φ(µ)|ν) (20)

for every ν ∈ N .

3 Main Results

A main theorem of the paper is given as follows.

Theorem 1. If ν∗ ∈ N ∗ is efficient for E at µ, then Eµ,ν∗(∂κ2
ρν∗ (µ) |x) is ν∗-

a.s. constant on X .

Intuition behind the condition is obtained from the expression,

l.b.(φ(µ)|ν∗) =
∫

Eµ,ν∗(∂κ2
ρν∗ (µ) |x) ν

∗(dx). (1)

If the lower bound is minimized at ν = ν∗, any small perturbations added to ν∗

would not significantly change the value of l.b.(φ(µ)|ν∗). This is possible only if
the integrand Eµ,ν∗(∂κ2

ρν∗ (µ) |x) of (1) is independent of x.
A proof of the theorem consists of the following lemmas 3.2-3.4.

Lemma 1. For every ν ∈ N ∗, Eν

[
Eµ,ν(∂κρν(µ)(x, y)

2|x)
]1/2

< ∞.

(Proof) Let ν ∈ N ∗. There exists β∗ ∈ L2(ρν(µ)) such that ∂φµ = (dρν)
∗
µβ

∗.

Let Πν be the orthogonal projection from L2(ρν(µ)) to R((dρν)µ), then

⟨β∗ −Πνβ
∗, (dρν)µα⟩ρν(µ)

=
⟨
(dρν)

∗
µ(β

∗ −Πνβ
∗), α

⟩
µ
= 0 (2)

for every α ∈ L2(µ). Hence, there exists δν ∈ Ker((dρν)
∗
µ) such that Πνβ

∗ =
β∗ − δν and that

(dρν)
∗
µΠνβ

∗ = (dρν)
∗
µβ

∗ = ∂φµ, Πνβ
∗ ∈ R((dρν)µ), (3)
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which shows ∂κρν(µ) = Πνβ
∗ is the efficient influence function of κ at ρν(µ). By

Jensen’s inequality and the property of projections,∫ [
Eµ,ν(∂κ

2
ρν(µ)

|x)
]1/2

ν(dx) ≤
(∫

Eµ,ν(∂κ
2
ρν(µ)

|x) ν(dx)
)1/2

= ∥Πνβ
∗∥ρν(µ) ≤ ∥β∗∥ρν(µ) < ∞.

⊓⊔

Lemma 2. Define a map Γ : N ∗ 7→ N by

d(Γν)

dν
(x) = C−1

[
Eµ,ν(∂κ

2
ρν(µ)

|x)
]1/2

= C−1

[∫
∂κρν(µ)(x, ρ(ω, x))

2 µ(dω)

]1/2
, (4)

where

C = Eν

[
Eµ,ν(∂κ

2
ρν(µ)

|x)
]1/2

=

∫ [∫
∂κρν(µ)(x, ρ(ω, x))

2 µ(dω)

]1/2
ν(dx). (5)

Then, Γν ∈ N ∗ for every ν ∈ N ∗.

Proof. For the simplicity of description, let ν′ = Γν. For every ν ∈ N ∗, there
exists β∗ ∈ L2(ρν(µ)) such that ∂κρν(µ) = Πνβ

∗. Define B0 ⊂ X by

B0 =
{
x ∈ X : Eµ,ν(∂κρν(µ)(x, y)

2|x) = 0
}
. (6)

Let ν0(B) := ν(B\B0) and ν⊥(B) := ν(B∩B0) for every B ∈ B, so that ν′ ∼ ν0,

ν′ ⊥ ν⊥, ν = ν0+ν⊥, and (dν′/dν)(x) = (dν′/dν0)(x) = C−1
[
Eµ,ν(∂κ

2
ρν(µ)

|x)
]1/2

.

Note that ∂κρν(µ)(x, ρ(ω, x)){x ∈ B0} ≡ 0 µ-a.s. because Eµ,ν(∂κ
2
ρν(µ)

|x){x ∈
B0} ≡ 0 and that (dν0/dν

′)∂κρν(µ) ∈ L2(ρν′(µ)) because∥∥∥∥dν0dν′
∂κρν(µ)

∥∥∥∥2
ρν′ (µ)

=

∫ (
dν0
dν′

(x)

)2

∂κρν(µ)(x, ρ(ω, x))
2 µ(dω)ν′(dx)

=

∫ (
dν0
dν′

(x)

)
∂κρν(µ)(x, ρ(ω, x))

2 µ(dω)ν0(dx)

= C

∫
∂κρν(µ)(x, ρ(ω, x))

2[
Eµ,ν(∂κ2

ρν(µ)
|x)
]1/2 µ(dω) (ν − ν⊥)(dx)

= C2 < ∞.

Let Πν′ : L2(ρν′(µ)) 7→ R((dρν′)µ) be the orthogonal projection, then

(dρν′)∗µ

(
Πν′

dν0
dν′

∂κρν(µ)

)
(ω) =

∫ (
dν0
dν′

(x)

)
∂κρν(µ)(x, ρ(ω, x)) ν

′(dx)
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=

∫
∂κρν(µ)(x, ρ(ω, x)) (ν − ν⊥)(dx)

=

(∫
X
−
∫
B0

)
∂κρν(µ)(x, ρ(ω, x)) ν(dx)

=
(
(dρν)

∗
µ ∂κρν(µ)

)
(ω) = ∂φµ(ω).

Therefore, ∂φµ ∈ R((dρν′)∗µ) holds at ν
′ = Γν. ⊓⊔

Lemma 3. For every ν ∈ N ∗, l.b.(φ(µ) |Γν) ≤ l.b.(φ(µ) | ν).

Proof. Let ν′ = Γν. Since the efficient influence function of κ at ρν′(µ) is given
by ∂κρν′ (µ) = Πν′(dν0/dν

′)∂κρν(µ),

l.b.(φ(µ)|ν′) ≤
∥∥∥∥(dν0

dν′

)
∂κρν(µ)

∥∥∥∥2
ρν′ (µ)

= C2 ≤
∥∥∂κρν(µ)

∥∥2
ρν(µ)

= l.b.(φ(µ)|ν).

(7)
⊓⊔

(Proof of Theorem 1) Assume that ν∗ ∈ N ∗ is efficient. Let ζ∗ = Eµ,ν∗(∂κ2
ρν∗ (µ)|x),

then

l.b.(φ(µ)|Γν∗) ≤ (Eν∗
√
ζ∗)2 ≤ Eν∗ζ∗ = l.b.(φ(µ)|ν∗) ≤ l.b.(φ(µ)|Γν∗) (8)

by the previous lemma. Therefore, Eν∗ζ∗ = (Eν∗
√
ζ∗)2, which implies Varν∗ζ∗ =

0. ⊓⊔

4 Examples

4.1 A model without information loss

Consider an experiment E with W = X = Y = R and ρ(ω, x) = ω + x. Let
M be a set of probability measures on R, and let N ⊂ M. The model set is
ρν(M) = {ρν(µ)|µ ∈ M}, where

ρν(µ)(D) =

∫
{(x, x+ ω) ∈ D}µ(dω)ν(dx) (9)

for every Borel set D ⊂ R2. The score operator (dρν)µ maps each α ∈ L0
2(µ) to

((dρν)µα)(x, y) = α(y − x). The adjoint operator is ((dρν)
∗
µβ)(ω) =

∫
β(x, ω +

x) ν(dx). The efficient influence function of κ(ρν(µ)) = φ(µ) is ∂κρν(µ)(x, y) =
∂φµ(y − x), because ∂κρν(µ) ∈ R((dρν)µ) and(
(dρν)

∗
µ∂κρν(µ)

)
(ω) =

∫
∂φµ((ω + x)− x) ν(dx) = ∂φµ(ω)

∫
ν(dx) = ∂φµ(ω).

(10)
The efficiency bound is given by

l.b.(φ(µ)|ν) =
∫

∂φµ(y − x)2ρν(µ)(dx, dy) =

∫
∂φµ(ω)

2µ(dω), (11)
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which is independent of ν. Therefore, arbitrary ν ∈ N is efficient for E . In fact,
Eµ,ν(∂κ

2
ρν(µ)

|x) =
∫
∂φµ(ω)

2µ(dω) is a constant independent of ν ∈ N .
In this example, ω is always observable since ω = y − x. Therefore, the

distribution of x has no impact on efficiency of the estimation. The choice of ν
becomes significant only when a model with information loss is estimated.

4.2 Parametric Models

Let M = {µθ : θ ∈ Θ} be a collection of statistical models parametrized by
θ ∈ Θ ⊂ Rl. Assume that every µθ is absolutely continuous with respect to a
reference measure π. Let ℓ̇θ = (∂/∂θ)(dµθ/dπ), then Tµθ

M = {τ ′ℓ̇θ : τ ∈ Rl},
and

R((dρν)µθ
) = R((dρν)µθ

) = {τ ′(dρν)µθ
(ℓ̇θ) : τ ∈ Rl}. (12)

Let φ(µθ) be a target of estimation and let φ0(θ) := φ(µθ), then κ(ρν(µθ)) =
φ0(θ) is differentiable if and only if there exists τ ∈ Rl such that (∇θφ0)

′ℓ̇θ =
τ ′(dρν)

∗
µθ
(dρν)µθ

(ℓ̇θ), or

(∇θφ0)
′ℓ̇θ(ω) = τ ′Eθ

[
Eθ(ℓ̇θ(ω)|x, y)

∣∣∣ω] (13)

µθ-almost surely. Let N ∗ be a collection of ν with which (13) is satisfied by
some τ . For every ν ∈ N ∗, the efficient influence function is solved as ∂κρν(µθ) =

(τ∗)′ℓ̇θ, where

τ∗ =
(
Eθ

[
Eθ(ℓ̇θ|x, y)Eθ(ℓ̇θ|x, y)′

])−1

Eθ(ℓ̇θ ℓ̇
′
θ)∇θφ0.

The efficiency bound of φ0(θ) is now given by l.b.(φ0(θ)|ν) = (τ∗)′Eθ(ℓ̇θ ℓ̇
′
θ)(τ

∗),
which is minimized with respect to ν only when

x 7→ Eθ(∂κ
2
ρν(µθ)

|x) = (τ∗)′Eθ(ℓ̇θ ℓ̇
′
θ|x)(τ∗) (14)

is a constant map. However, since ω ⊥⊥ x, Eθ(ℓ̇θ ℓ̇
′
θ|x) = Eθ(ℓ̇θ ℓ̇

′
θ) holds. The

necessary condition is satisfied by arbitrary ν ∈ N ∗.
When a parametric model of M is assumed, choice of ν is relevant for iden-

tification and differentiability of the parameter, but irrelevant to estimation ef-
ficiency. In other words, the efficient design problem becomes degenerated when
the model is parametric.

4.3 The dichotomous choice contingent valuation experiment

Consider an experiment E withW = X = [0,∞), Y = {0, 1}, and ρ(ω, x) = {ω <
x}. This is the dichotomous choice contingent valuation (DC-CV) experiment,
which is one of the most widely used experimental methods in environment
economics [4]. Cooper (1992) reports results of Monte Carlo simulations of the
DC-CV experiments, showing sensitivity of estimates to the choice of ν [5].

9



An inadequate design of ν may result in bias and/or large standard errors in
estimates. The efficient design for the DC-CV experiment to estimate the mean
Eω is proposed by [8] and [6]. In this subsection, their results will be generalized
to estimation of arbitrary smooth functionals φ(µ).

Let M be a set of probability measures on [0,∞), where every µ ∈ M is
equivalent to the Lebesgue measure λ = λ[0,∞) on [0,∞). Let N = M, then the
model set ρν(M) = {ρν(µ)|µ ∈ M} is given by

ρν(µ)(D) =

∫
D

µ[0, x)yµ[x,∞)1−y ν(dx)δY(dy) (15)

for every Borel set D ⊂ R2, where δY is the Dirac measure on Y. Note that
Eµ,ν(y|x) = µ[0, x) holds. The score operator (dρν)µ maps each α ∈ L0

2(µ) to

((dρν)µα)(x, y) =
y − µ[0, x)

µ[0, x)µ[x,∞)

∫ x

0

αdµ, (16)

and the adjoint operator is given by

((dρν)
∗
µβ)(ω) =

∫ ω

0

β(x, 0) ν(dx) +

∫ ∞

ω

β(x, 1) ν(dx). (17)

Assume that the gradient ω 7→ ∂φµ(ω) is differentiable with respect to ω with
derivative (∂φµ)

′(ω) = (d/dω)(∂φµ)(ω), and that limM↑∞ ∂φµ(M)µ[M,∞) = 0.
If ∂φµ ∈ R((dρν)µ) at some ν ∼ λ, β given by

β(x, y) := −dλ

dν
(x)(∂φµ)

′(x)(y − µ[0, x)) (18)

solves ∂φν = (dρν)
∗
µβ because

((dρν)
∗
µβ)(ω) =

∫ ω

0

(∂φµ)
′(x) dx−

∫ ∞

0

(∂φµ)
′(x)µ[x,∞) dx

= ∂φµ(ω)− lim
M↑∞

∂φµ(M)µ[M,∞)

= ∂φµ(ω).

If β ∈ R((dρν)µ) is satisfied, ∂κρν(µ) = β is the efficient influence function to
estimate φ(µ).

Let ν∗ be efficient for E at µ. Then, there exists a positive constant C such
that, for any x ∈ [0,∞),

C = Eµ,ν∗

[(
− dλ

dν∗
(x) (∂φµ)

′
(x) (y − µ[0, x))

)2
∣∣∣∣∣ x
]

=

(
dλ

dν∗
(x)(∂φµ)

′(x)

)2

µ[0, x)µ[x,∞),

10



which implies

dν∗

dλ
(x) =

|(∂φµ)
′(x)|

√
µ[0, x)µ[x,∞)∫∞

0
|(∂φµ)′(ξ)|

√
µ[0, ξ)µ[ξ,∞) dξ

. (19)

The formula (19) is a generalization of the result of [8] and [6]. They find
the optimal design for estimation of the mean Eω by directly minimizing the
asymptotic variances of the maximum likelihood estimators under assumptions
that ω has a finite support and that X is a finite set. Our formula (19), on the
other hand, does not assume finite supports of ω and x and is applicable to
estimations of any differentiable functionals of µ.

Particularly when the m-th moment φ(µ) =
∫
ωm µ(dω) is a parameter of

interest, the gradient of φ is ∂φµ(ω) = ωm −
∫
ωm µ(dω). This is because for

every differentiable path dµt = exp(tα− γt)dµ with α ∈ L0
2(µ),

lim
t→0

φ(µt)− φ(µ)

t
=

∫
ωmα(ω)µ(dω) = ⟨∂φµ, α⟩µ . (20)

The gradient is differentiable with respect to ω with derivative (∂φµ)
′(ω) =

mωm−1.
Assume that µ satisfies

(A3) limM↑∞ Mmµ[M,∞) = 0, and
(A4)

∫∞
0

ξm−1
√

µ[0, ξ)µ[ξ,∞) dξ < ∞.

A broad class of distributions µ satisfies the conditions. Then, an efficient design
at such µ is solved as

dν∗

dλ
(x) =

xm−1
√

µ[0, x)µ[x,∞)∫∞
0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

. (21)

Figure 1 shows graphs of the efficient densities dν∗/dλ at µ = U [0, 1]. It is
shown that the efficient density tends to skew to the left as m grows.

The formula (19) is valid only if two technical assumptions are satisfied. The
first is differentiability of κ at ρν∗(µ). Let β be a function given by

β(x, y) = − y − µ[0, x)√
µ[0, x)µ[x,∞)

(∫ ∞

0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

)
. (22)

Since Eµ,ν∗β = 0 and Eµ,ν∗β2 < ∞, β ∈ L0
2(ρν∗(µ)). Moreover, since

((dρν∗)∗µβ)(ω) =

∫ ω

0

(
µ[0, x)√

µ[0, x)µ[x,∞]

)
xm−1

√
µ[0, x)µ[x,∞) dx

−
∫ ∞

ω

(
1− µ[0, x)√
µ[0, x)µ[x,∞]

)
xm−1

√
µ[0, x)µ[x,∞) dx

= ωm −
∫

ωm µ(dω)− lim
M↑∞

(Mm −
∫

ωm)µ[M,∞)

= ωm −
∫

ωm µ(dω) = ∂φµ(ω),

11
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Fig. 1. The efficient densities of x to estimate Eωm for the DC-CV experiment at
µ = U [0, 1]. 12



∂φµ ∈ R((dρν∗)µ) is confirmed. Therefore, κ is indeed differentiable at ρν∗(µ),
and ν∗ ∈ N ∗.

The second technical condition is β ∈ R((dρν∗)µ). Let α0 be a function given
by

α0(ω) = − 1− 2µ[0, ω)

2
√
µ[0, ω)µ[ω,∞)

(∫ ∞

0

ξm−1
√

µ[0, ξ)µ[ξ,∞) dξ

)
, (23)

then
∫ ω

0
|α0| dµ < ∞ and

((dρν∗)µα0)(x, y) = − y − µ[0, x)

µ[0, x)µ[x,∞)

[√
µ[0, ω)µ[ω,∞)

]x
ω=0

×
(∫ ∞

0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

)
= − y − µ[0, x)√

µ[0, x)µ[x,∞)

(∫ ∞

0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

)
= β(x, y),

but
∫ ω

0
(α0)

2 dµ < ∞ fails to hold in general.
Now consider a sequence {αk}k≥1 such that

αk(ω) = α0(ω)

{
1

k
< µ[0, ω) ≤ 1− 1

k

}
. (24)

Every αk is bounded, and Eµ(αk)
2 < ∞. Let q(t) be a solution to µ[0, q(t)) = t

for 0 < t < 1, then∫ ∞

0

αk dµ = −
[√

µ[0, ω)µ[ω,∞)
]q(1−1/k)

ω=q(1/k)

×
(∫ ∞

0

ξm−1
√

µ[0, ξ)µ[ξ,∞) dξ

)
= 0. (25)

Thus, {αk} ⊂ L0
2(µ) is shown. At ν = ν∗, where ν∗ is given by (21),

∥β − (dρν∗)µαk∥2ρν∗ (µ) = ∥(dρν∗)µ(α0 − αk)∥2ρν∗ (µ)

= Eµ,ν∗

(
y − µ[0, x)

µ[0, x)µ[x,∞)

)2(∫ x

0

(α0 − αk) dµ

)2

≤ 2ν∗
{
µ[0, x) ̸∈

[
1

k
, 1− 1

k

)}
×
(∫ ∞

0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

)2

+
4

k

(∫ ∞

0

ξm−1
√

µ[0, ξ)µ[ξ,∞) dξ

)2

→ 0 (k → ∞).
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Thus, β ∈ R((dρν∗)µ) is shown. The efficient influence function of κ is indeed
given by (22).

When the variance of ω is a parameter of interest,

∂φµ(ω) = (ω − Eµω)
2 − φ(µ) (26)

and d
dω∂φµ(ω) = 2(ω−Eµω). The score equation ∂φµ = (dρν)µβ has a solution,

β(x, y) = −sgn (x− Eµω)
y − µ[0, x)√
µ[0, x)µ[x,∞)

(∫ ∞

0

ξm−1
√
µ[0, ξ)µ[ξ,∞) dξ

)
,

(27)
where sgn(t) = +1 if t ≥ 0, and sgn(t) = −1 if t < 0. Therefore, κ is differentiable
at ρν∗(µ). A candidate of the efficient density is therefore given by

dν∗

dλ
(x) =

|x− Eµω|
√

µ[0, x)µ[x,∞)∫
|u− Eµω|

√
µ[0, u)µ[u,∞) du

. (28)

Figure 2 depicts a graph of (28), which shows bimodality around the mean,
Eω = 0.5.

When the median of ω is a target of estimation,

∂φµ(ω) = −dλ

dµ
(φ(µ))

{
ω ∈ [0, φ(µ))

}
, (29)

which implies that the score equation is not solvable. This is because ∂φµ(ω)
given above is discontinuous at ω = φ(µ), while

((dρν)
∗
µβ)(ω) =

∫ ω

0

β(x, 0)ν(dx) +

∫ ∞

ω

β(x, 1)ν(dx) (30)

is differentiable with respect to ω. Therefore, ∂φµ ̸∈ R((dρν)
∗
µ) for any ν ∼ λ.

Regular estimation of the median is not possible, and the efficient design for the
median estimation does not exist, either.
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0 10.5

Fig. 2. The efficient density of x to estimate the variance of ω for the DC-CV experi-
ment at µ = U [0, 1].

5 Monte Carlo Simulations

In this section, small sample properties of the efficient design for the DC-CV
experiment are tested through Monte Carlo simulations. In the following, the
mean θ := Eω is chosen as a target of estimations.

In step 1 of the simulation, ω1, · · ·, ωn are independently sampled from the
true distribution, µ. The total sample size n is varied from 50 to 500. Inputs x∗

1,
· · ·, x∗

n are sampled from the efficient distribution ν∗, which is determined by
the formula (19), while xo

1, · · ·, xo
n are sampled from the opponent distribution

νo, which is arbitrarily selected. Outputs under the efficient and the opponent
circumstances are respectively generated by y∗i = {ωi < x∗

i } and yoi = {ωi < xo
i }

for i = 1, · · · , n.
In step 2, the distribution function F (ω) := µ[0, ω) of ω is estimated by the

Nonparametric Maximum Likelihood Estimation (NPMLE), which maximizes
the log-likelihood functional,

logLn(F |{xi, yi}1≤i≤n) :=
n∑

i=1

[yi logF (xi) + (1− yi) log(1− F (xi))] , (31)

with respect to F ∈ F , where F is a collection of distribution functions on
R. The problem is numerically solved by the isotonic regression technique, and
the estimator is known to be semiparametrically efficient ([7], [9], [10], [14]).
Let F̂ ∗

n and F̂ o
n be the NPMLEs respectively obtained from the efficient data,

{x∗
i , y

∗
i }1≤i≤n, and the opponent data, {xo

i , y
o
i }1≤i≤n.

In step 3, estimates of Eω are computed by

θ̂n :=

∫ ∞

0

ω F̂n(dω) (32)
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for F̂ ∗
n and F̂ o

n . The simulation steps 1-3 are repeated S = 10, 000 times, and the
standard deviations,

S.D. =

√√√√ 1

S − 1

S∑
s=1

∣∣∣θ − θ
(s)
n

∣∣∣2, (33)

where θ
(s)
n is the estimate from the s-th round, are reported respectively under

the efficient and the opponent designs.
Table 1 presents the standard deviations for n = 50, 250, and 500, where the

true distribution µ is the uniform distribution on (0, 1). The efficient scheme is
given by

dν∗

dx
=

√
x(1− x)∫ 1

0

√
x(1− x) dx

, (34)

while νo = N(1/2, 1/7) is employed as the opponent. In Table 2, the results of
simulations for the inversed setting, where µ = N(1/2, 1/7) and νo = U(0, 1), are
presented. In both cases, the efficient design remarkably reduces the standard
deviations even under small-sample environments with n = 50 as well as under
moderate sample sizes.

16



Table 1. Standard deviations of the NPMLE for Eω under the efficient design ν∗

and under the suboptimal design νo = N(1/2, 1/7), where the true distribution is
µ = U(0, 1).

Size (n) S.D. under ν∗ S.D. under νo Ratio

50 0.06380 0.09074 0.7031
250 0.02788 0.05220 0.5343
500 0.01831 0.04121 0.4443

Table 2. Standard deviations of the NPMLE for Eω under the efficient design ν∗

and under the suboptimal design νo = U(0, 1), where the true distribution is µ =
N(1/2, 1/7).

Size (n) S.D. under ν∗ S.D. under νo Ratio

50 0.03190 0.04294 0.7429
250 0.01374 0.01858 0.7398
500 0.01015 0.01335 0.7598
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