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Abstract

We consider two-sided one-to-one matching problems (between men and
women) and study a new requirement called “own-side singles monotonicity.”
Suppose that there is an agent who is not matched in a problem. Suppose
for simplicity it is a woman. Now in a new problem (with the same set of
agents), we improve (or leave unchanged) her ranking for each agent on the
opposite side of her. Own-side singles monotonicity requires that each agent
on her side should not be made better off (except for her). Unfortunately,
no single-valued solution satisfies own-side singles monotonicity and stabil-
ity. However, there is a (multi-valued) solution, the stable solution, that
does. We provide two characterizations of the stable solution based on this
property. It is the unique solution satisfying weak unanimity, null player
invariance, own-side singles monotonicity, and consistency. The uniqueness
also holds by replacing consistency with Maskin invariance. In addition, we
study the impact of improving her ranking on the welfare of the agents on
the opposite side of her.
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1 Introduction

We consider the problem of matching two groups of agents, men and women, in a
one-to-one manner. A matching assigns each agent either an agent on the opposite
side of her/him or an unmatched option. Each agent has a strict ordering over
the set of agents on the opposite side and remaining unmatched. A solution is a
correspondence which associates with each problem a non-empty subset of the set
of all matchings.

To describe our first main property of a solution, let us take an agent, called
“unmatched agent,” who is not matched in a problem. Now in a new problem
(with the same set of agents), we improve (or leave unchanged) the ranking of the
unmatched agent for each agent on the opposite side of her. We do not change
the relative ranking over the other agents and an unmatched option, that is, only
the position of the unmatched agent is raised (or stays the same). Also, for each
agent on the same side of the unmatched agent (including the unmatched agent),
her preference remains the same. Our requirement is that no agent on the same
side of the unmatched agent except the unmatched agent should be made better
off.1 We call this requirement as “own-side singles monotonicity.”2 As we consider
a multi-valued solution, each agent in fact compares two sets: the set of matchings
recommended by a solution “before” and “after” improving an unmatched agent.
We adopt the pessimistic view.3 That is, each agent looks at the worst matching
for her in each set and compares them.

We also study the impact of improving the rank of an unmatched agent on the
welfare of the agents on the opposite side. A solution is “other-side singles mono-
tonic” if an improvement of an unmatched agent affects positively all agents on
the opposite side of the unmatched agent. We require that for each of such agents,

1We do not require any welfare impact on the unmatched agent. Balinski and Sönmez (1999)
study a property requiring that an agent (not necessarily an unmatched agent) whose ranking
is improved (or unchanged) for each agent on the opposite side of her not to be worse off. We
discuss details of this property and other related properties studied in the literature in the later
part of this section.

2For notational simplicity, we use the terminology “singles monotonicity” instead of “un-
matched agents monotonicity” to describe the property.

3We follow the literature that studies other relational properties (e.g., Toda ,2006; Klaus ,2011;
and Can and Klaus ,2013).
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her new match is not worse than her initial match under her new preference.4 Here
too, as we consider a multi-valued solution, each agent compares the two sets of
matchings recommended by a solution before and after the improvement of an un-
matched agent. We again adopt the pessimistic view. Thus each agent compares
the worst matchings in the two sets.

Our underlying motivation is the “rural hospital problem,” which occurred in
several countries. After the introduction of a centralized matching system to assign
doctors (residents) to hospitals, some rural hospitals began to face a shortage of
doctors.5 One way to tackle such shortage problem is to impose “regional caps” or
to take into account “distributional constraints.” Several matching systems under
constraints have been proposed and the properties of the resulting matchings ana-
lyzed (Kamada and Kojima, 2012, 2015, 2017; and Fragiadakis and Troyan, 2017).
We propose a different way of solving the problem. We do not impose any con-
straint on matchings but consider making rural hospitals more attractive to doctors
(thorough subsidizing the rural hospitals, for instance).6 We thereby intend to in-
crease the number of doctors placed in rural hospitals.7 When some rural hospital
becomes more attractive to doctors, it is natural to require that other hospitals or
doctors to be affected in the same direction.8 If by the improvement of some rural
hospital, some hospitals (or doctors) are made better off, but some other hospitals
(or doctors) are made worse off, then those who become worse off will claim that
the improvement was unfair. This will occur especially when the improvement is
due to a government’s subsidy. Since the improvement of a rural hospital is bad
for the other hospitals as it increases the “competition” they face, we require that
all hospitals (except the improved hospital) to become at most as well off as before
(own-side singles monotonicity). Also, since the improvement of a rural hospital
is a good thing for doctors as it increases their options, we require that for each
doctor, her newly assigned hospital is not worse than her initial one under her new
preference (other-side singles monotonicity). We analyze these properties. To do

4Note that for each agent on the opposite side of the unmatched agent, the rank of the
unmatched agent may change after the improvement of the unmatched agent.

5A similar problem occurred in students placements for public schools.
6In the family medicine residency matching market in the United States, Agarwal (2015)

estimates that an average salary of residents (doctors) is lower than the marginal product of
labor by 23,000 dollars or more, which can be interpreted as the implicit tuition paid by the
residents. Thus, it would be reasonable to subsidize a rural hospital so that it can give monetary
or non-monetary incentives to residents.

7Kitahara and Okumura (2019) study the number of employed (doctors placed in hospitals)
in a stable matching and an efficient matching.

8This solidarity idea can be found in several properties proposed in fair allocation problems,
e.g., “resource monotonicity,” “welfare domination under preference replacement,” and “popula-
tion monotonicity” (see Thomson, 2011a).
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so, we focus on the most basic one-to-one matching model (we also describe the
model by the usual example of matchings between men and women).

We study the implications of each of the above properties together with the
requirement of “stability.” A “matching is stable” if (i) it assigns each agent a
match that is at least as desirable as being unmatched and (ii) there is no man-
woman pair such that the woman is better for the man than his current match and
the man is better for the woman than her current match. A solution is “stable” if
it only assigns stable matchings. The “stable solution” selects all stable matchings
for each problem. The “men-optimal stable solution” selects the stable matching
which is best for the men among all stable matchings for each problem.9 The
“women-optimal stable solution” is defined in a similar way.

First, we observe that unfortunately, the men-optimal stable solution satisfies
neither own-side nor other-side singles monotonicity. Moreover, we show that no
single-valued solution satisfies own-side singles monotonicity and stability. Also,
no single-valued solution satisfies other-side singles monotonicity and stability.

Second, however, if we restrict our attention to an improvement of an un-
matched woman, then the men-optimal stable solution satisfies both own-side and
other-side singles monotonicity. Also there is a single-valued solution which is
different from the men-optimal stable solution and satisfies the above restricted
version of own-side (or other-side) singles monotonicity and stability. We also for-
mulate variations of own-side and other-side singles monotonicity and study these
properties.

Using the fact that the men-optimal stable solution satisfies own-side singles
monotonicity when the ranking of an unmatched woman improves, we show that
the stable solution (which includes matchings recommended by the men-optimal
stable solution and women-optimal stable solution) is own-side singles monotonic.
The stable solution is not other-side singles monotonic, however.

Finally, we provide two characterizations of the stable solution based on own-
side singles monotonicity. Suppose that there exists a matching at which each
agent is matched with her most preferred agent (who is better than the un-matched
option). A solution is “weakly unanimous” if it only selects the above matching
in such situations. It is “null player invariant” if adding a new agent who is
unacceptable for all agents does not affect the initial matchings (we simply assign
such new agent the unmatched option). It is “consistent” if for each reduced
problem obtained by imagining some agents leaving with their matches, it selects
the restriction of the initial matching to the set of remaining agents. It is “Maskin
invariant” if when there is a “monotonic transformation” of the preference profile

9Such a matching uniquely exists for each problem (see Gale and Shapley, 1962 and Roth and
Sotomayor, 1990).
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at the initial matching, it again selects (under the new preference profile) the
matchings recommended initially. We show that the stable solution is the unique
solution satisfying weak unanimity, null player invariance, singles monotonicity,
and consistency. The uniqueness also holds if consistency is replaced by Maskin
invariance.

In “student placement problems” (where there are sets of students and colleges,
each student has a preference over colleges but each college is considered to be an
object and has no preferences over students) and “college admissions problems”
(here, each college is considered to be an agent and has preferences over students),
Balinski and Sönmez (1999) analyze a property called “respecting improvements”
(of a student’s test scores). It requires that an improvement of a student’s test
scores not make her worse off. By contrast, Hatfield et al. (2016) focus on the
improvement of a school quality and study a property called “respecting improve-
ments of school quality.” It requires that if some school improves its quality, that
is, each student ranks that school not lower than before while the ordering of other
schools is unchanged, then the (new) set of students assigned to the school not
make the school worse off. These properties differ from ours in that we study an
impact of an improvement not to herself but to agents on the same side or agents on
the opposite side.10 In addition, we only focus on an improvement of an unmatched
agent. In college admission problems, Salem (2012) considers a property requiring
that if a student’s ranking becomes higher for at least one college (without lowering
the ranking of the student at any other colleges), then both the student and the
college end up at least as well off as before. Here too, the property is different from
ours.

For one-to-one matching problems, Tadenuma (2011, 2013) considers another
type of changes of preferences that enhance the ranking of the current partners.11

Based on this preference changes, he studies several properties that basically re-
quire that all agents whose preferences are unchanged be affected in the same
direction (either all become at least as well off as before or all become at most as
well off as before).12 These properties are obviously different from ours, but they
are all expressions of the principle of solidarity.

Characterizations of the stable solution can be found under various require-

10Thus, Balinski and Sönmez (1999) and Hatfield et al. (2016) study “self-regarding axioms”
(Thomson, 2019) while we study “other-regarding axioms” (Thomson, 2019).

11Such a change of preferences is called “rank-enhancements of partners” in Tadenuma (2011,
2013).

12One can focuses on an effect to (i) an agent whose preference is unchanged but the ranking by
her initial partner becomes higher (Tadenuma, 2013), (ii) an agent whose preference is unchanged
and the ranking by her initial partner is unchanged (Tadenuma, 2013), and (iii) an agent (any
agent) whose preference is unchanged (Tadenuma, 2011). For (i), it is natural to require that
such agent does not become worse off (Tadenuma, 2013).
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ments on a solution (Sasaki and Toda, 1992; Toda, 2006; Klaus, 2011; Can and
Klaus, 2013; and Nizamogullari and Özkal-Sanver, 2014). Recently, characteriza-
tions of the men-optimal stable solution (“deferred acceptance rule”) are provided
(Kojima and Manea, 2010; Morrill, 2013; Ehlers and Klaus, 2014; Bando and Ima-
mura, 2016; and Chen, 2017).13

The remainder of the paper is organized as follows. Section 2 presents the
model. Section 3 presents the results for single-valued solutions: the implications
of own-side (or other-side) singles monotonicity and stability in Subsection 3.1
and some possibilities for the restricted version of own-side (or other-side) singles
monotonicity in Subsection 3.2. Section 4 presents the results for multi-valued
solutions: the properties of the stable solution in Subsection 4.1 and two charac-
terizations of the stable solution in Subsection 4.2. Appendix A provides a proof
(of one proposition) not included in the main text. Appendix B shows the logical
independence of the properties listed in our characterizations.

2 Model

LetM andW be mutually disjoint sets of countably many “potential” agents, called
“men” and “women,” respectively. Let M and W be the sets of all non-empty
finite subsets of M and of W, respectively. Let M ∈ M and W ∈ W . For each
a ∈ M ∪W , let (M ∪ W )−a be the set of agents on the opposite side of a, i.e.,
(M∪W )−a = W if a ∈ M and (M∪W )−a = M if a ∈ W . Also for each a ∈ M∪W ,
let (M ∪ W )a be the set of agents on the same side as a, i.e., (M ∪W )a = M if
a ∈ M and (M∪W )a = W if a ∈ W . Each agent a ∈ M∪W has a strict preference
ordering ≻a over the set (M ∪W )−a ∪ {ϕ}, where ϕ represents being unmatched
(or the unmatched option). We denote its associated weak ordering by ⪰a, that
is for each a ∈ M ∪ W and each x, y ∈ (M ∪ W )−a ∪ {ϕ}, x ⪰a y if and only if
either x ≻a y or x = y. For each a ∈ M ∪W and each x, y ∈ (M ∪W )−a ∪ {ϕ},
we interpret x ≻a y as “x is better than y for agent a” and x ⪰a y as “x is at least
as desirable as y for agent a.” For each a ∈ M ∪ W and each x ∈ (M ∪ W )−a,
if ϕ ≻a x, then x is unacceptable for agent a. Let PM = {≻m| m ∈ M}
and PW = {≻w| w ∈ W}. We write PM∪W to denote a preference profile of
PM ∪ PW . By definition, for each a ∈ M ∪W , PM∪W = P(M∪W )a ∪ P(M∪W )−a .

A matching problem or simply a problem is a pair (M ∪ W,PM∪W ). Let
E be the set of all problems. For each (M,W ) ∈ M × W , a matching is a
function µ from M ∪ W into M ∪ W ∪ {ϕ} such that for each a ∈ M ∪ W , (i)

13See also Ehlers and Klaus (2009), an earlier version of Ehlers and Klaus (2014). Also, Afa-
can (2013) and Kojima and Ünver (2014) provide characterizations of the “immediate acceptance
rule.”
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µ(a) ∈ (M ∪W )−a ∪ {ϕ} and (ii) if µ(a) ̸= ϕ, then µ ◦ µ(a) = a. We often write
(m,w) ∈ µ to denote µ(m) = w and a ∈ µ to denote µ(a) = ϕ. Let Z(M ∪ W )
be the set of all matchings for the agent set M ∪W . For each (M,W ) ∈ M×W ,
each µ ∈ Z(M ∪ W ), and each A ⊆ M ∪ W , let µ(A) = {b ∈ M ∪ W : µ(a) =
b for some a ∈ A}.

A solution is a correspondence φ which associates with each problem (M ∪
W,PM∪W ) ∈ E a non-empty subset φ(M ∪W,PM∪W ) of Z(M ∪W ). A solution is
single-valued if for each problem (M ∪W,PM∪W ) ∈ E , |φ(M ∪W,PM∪W )| = 1.

A matching µ is individually rational at (M ∪ W,PM∪W ) ∈ E if for each
a ∈ M ∪W , µ(a) ⪰a ϕ. It is Pareto optimal at (M ∪W,PM∪W ) ∈ E if there is
no µ′ ∈ Z(M ∪ W ) such that for each a ∈ M ∪ W , µ′(a) ⪰a µ(a) and for some
a ∈ M ∪ W , µ′(a) ≻a µ(a). A pair (m,w) ∈ M × W blocks a matching µ at
(M ∪ W,PM∪W ) ∈ E if w ≻m µ(m) and m ≻w µ(w). A matching µ is stable
at (M ∪ W,PM∪W ) ∈ E if it is individually rational and has no blocking pair
(m,w) ∈ M × W at (M ∪ W,PM∪W ). A matching µ is the men-optimal (M -
optimal) stable matching at (M ∪W,PM∪W ) ∈ E if µ ∈ S(M ∪W,PM∪W ) and
for each µ′ ∈ S(M ∪W,PM∪W ) and each m ∈ M , µ(m) ⪰m µ′(m). Analogously,
a matching µ is the women-optimal (W -optimal) stable matching at (M ∪
W,PM∪W ) ∈ E if µ ∈ S(M ∪ W,PM∪W ) and for each µ′ ∈ S(M ∪ W,PM∪W )
and each w ∈ W , µ(w) ⪰w µ′(w).14 For each problem (M ∪ W,PM∪W ) ∈ E , let
IR(M ∪ W,PM∪W ), PO(M ∪ W,PM∪W ), and S(M ∪ W,PM∪W ) be the
sets of all individually rational matchings, Pareto optimal matchings, and stable
matchings at (M∪W,PM∪W ), respectively. For each problem (M∪W,PM∪W ) ∈ E ,
let SM(M ∪ W,PM∪W ) and SW (M ∪ W,PM∪W ) be the M -optimal stable
matching and W -optimal stable matching at (M ∪W,PM∪W ), respectively.

The stable solution, denoted S, associates with each problem (M∪W,PM∪W ) ∈
E the set S(M ∪ W,PM∪W ). The M -optimal stable solution, denoted SM ,
and W -optimal stable solution, denoted SW , associate with each problem
(M ∪W,PM∪W ) ∈ E the matchings SM(M ∪W,PM∪W ) and SW (M ∪W,PM∪W ),
respectively.

Next we define several properties of a solution φ. First, a solution should select
stable matchings.

Stability: For each (M ∪W,PM∪W ) ∈ E , φ(M ∪W,PM∪W ) ⊆ S(M ∪W,PM∪W ).

We define an “improvement” of an agent’s ranking. Let h ∈ M ∪W . Consider
the following change of a preference ordering of an agent on the opposite side of
agent h. Her preference ordering over the agents except for agent h remains the

14For the existence and uniqueness of the M -optimal stable matching and W -optimal stable
matching, see Gale and Shapley (1962) and Roth and Sotomayor(1990).
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same and agent h’s position rises (or remains the same). We say that the later
preference ordering is an h-improvement of the original preference ordering.

Definition 1. For each (M ∪ W,PM∪W ) ∈ E , each h ∈ M ∪ W , and each a ∈
(M ∪W )−h, a preference ordering ≻h

a on (M ∪W )h∪{ϕ} is an h-improvement
of ≻a if

(i) ≻a and ≻h
a determine the same ordering over the set ((M ∪W )h \{h})∪{ϕ}

and

(ii) for each h′ ∈ (M ∪W )h, h ≻a h
′ implies h ≻h

a h′.15

Again, let h ∈ M ∪ W . If for each agent on the opposite side of agent h,
her preference ordering changes to an h-improvement of the original preference
ordering, and for each agent on the same side of agent h, her preference ordering
remains the same, then we say that the new preference profile is an h-improvement
of the original preference profile.

Definition 2. For each (M ∪W,PM∪W ) ∈ E and each h ∈ M ∪W , a preference
profile Ph

M∪W = {≻h
a| a ∈ M ∪W} is an h-improvement of PM∪W if

(i) for each a ∈ (M ∪W )−h, ≻h
a is an h-improvement of ≻a and

(ii) for each a ∈ (M ∪W )h, ≻h
a=≻a.

Now we are ready to introduce our two central properties of a solution. First,
we require that if there is an agent, say agent h, who is not matched at each
matching that a solution recommends in a problem, then for each h-improvement
of the original preference profile, no agent on the same side of agent h (except
agent h) be made better off. Since we consider a multi-valued solution, each of
them compares two sets: the set of matchings recommended by a solution before
and after the improvement. We adopt the pessimistic view and assume that each
agent compares the worst matchings for her in the two sets.

Own-side singles monotonicity: For each (M ∪W,PM∪W ) ∈ E , if there exists
h ∈ M ∪ W such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(h) = ϕ, then for each
µ ∈ φ(M ∪ W,PM∪W ) and each h-improvement Ph

M∪W of PM∪W , there exists
ν ∈ φ(M ∪W,Ph

M∪W ) such that for each a ∈ (M ∪W )h \ {h}, µ(a) ⪰a ν(a).

Second, we again consider the situation where there is an agent, say agent h,
who is not matched in a problem. We require that for each h-improvement of the
original preference profile, and each agent on the opposite side of agent h, her new

15Recall that PM∪W = {≻a| a ∈ M ∪W}.
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match is not worse than her initial match under her new preference. Here too, (as
we consider a multi-valued solution,) each of them compares the worst matchings
in the two sets (the set of matchings recommended by a solution before and after
the improvement).

Other-side singles monotonicity: For each (M ∪W,PM∪W ) ∈ E , if there exists
h ∈ M ∪ W such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(h) = ϕ, then for each
h-improvement Ph

M∪W of PM∪W and each ν ∈ φ(M ∪ W,Ph
M∪W ), there exists

µ ∈ φ(M ∪W,PM∪W ) such that for each a ∈ (M ∪W )−h, ν(a) ⪰h
a µ(a).

Next, we consider an increase in a number of agents. Before introducing the
next property, we define two notions.

Given a problem (M ∪W,PM∪W ) ∈ E , suppose that a new agent h ∈ M ∪W \
(M ∪W ) is added. Then, for each agent on the opposite side of agent h, we say
that her preference ordering is an h-extension of the original preference ordering if
her preference ordering over the agents except for agent h remains the same (we
do not require anything about agent h’s position).

Definition 3. For each (M ∪ W,PM∪W ) ∈ E, each h ∈ M ∪ W \ (M ∪ W ), and
each a ∈ (M ∪ W )−h, a preference ordering ≻′

a on (M ∪ W ∪ {h})h ∪ {ϕ} is
an h-extension of ≻a if ≻a and ≻′

a determine the same ordering over the set
(M ∪W )−a ∪ {ϕ}.

Again, suppose that a new agent h ∈ M∪W \ (M ∪W ) is added to a problem
(M ∪W,PM∪W ) ∈ E . We say that the new preference profile is an h-extension of
the original preference profile if for each agent on the opposite side of agent h, her
preference ordering changes to an h-extension of the original preference ordering,
and for each agent on the same side of agent h (except agent h), her preference
ordering remains the same (we do not impose any condition on agent h’s preference
ordering.)

Definition 4. For each (M ∪W,PM∪W ) ∈ E and each h ∈ M ∪W \ (M ∪W ), a
problem (M ∪ W ∪ {h},P ′

M∪W∪{h}) where P ′
M∪W∪{h} = {≻′

a| a ∈ M∪W∪{h}}
is an h-extension of (M ∪ W,PM∪W ) if

(i) for each a ∈ (M ∪W )−h, ≻′
a is an h-extension of ≻a and

(ii) for each a ∈ (M ∪W )h, ≻′
a=≻a.

An increase of an agent would negatively affect agents on the same side of her
as it increases their competition. The following property says that if a new agent h
is added to a problem, then for each h-extension of the original preference profile,
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no agent on the same side of agent h (except agent h) should be made better off
(for multi-valued solution, we again adopt the pessimistic view) (Toda ,2006).

Own-side population monotonicity: For each (M ∪ W,PM∪W ) ∈ E , each
µ ∈ φ(M ∪W,PM∪W ), each h ∈ M∪W\ (M ∪W ), and each h-extension (M ∪W ∪
{h},P ′

M∪W∪{h}) of (M ∪W,PM∪W ), there exists ν ∈ φ(M ∪W ∪ {h},P ′
M∪W∪{h})

such that for each a ∈ (M ∪W ∪ {h})h \ {h}, µ(a) ⪰a ν(a).

Given a problem and its matching, suppose that some agents leave with their
matches (we also allow unmatched agents to leave by themself). A problem is
called a reduced problem of the original problem if it consists of the remaining
agents (with at least one agent on each side) and the preference orderings of each
of them is simply the restriction of her original ranking to the set of remaining
agents on the other side.

Definition 5. For each (M ∪W,PM∪W ) ∈ E , each µ ∈ M(M ∪W ), each M ′ ⊂ M
with M ′ ̸= ∅, and each W ′ ⊂ W with W ′ ̸= ∅, a problem (M ′ ∪ W ′,P ′

M ′∪W ′)
where P ′

M ′∪W ′ = {≻′
a| a ∈ M ′∪W ′} is the reduced problem of (M ∪ W,PM∪W )

at µ if for each a ∈ M ′ ∪W ′,

(i) if µ(a) ̸= ∅, then µ(a) ∈ (M ′ ∪W ′)−a and

(ii) ≻′
a is the restriction of ≻a onto (M ′ ∪W ′)−a ∪ {ϕ}.

For each (M,W ) ∈ M × W and each µ ∈ Z(M ∪ W ), let µM ′∪W ′ be the
restriction of µ to the set M ′ ∪W ′.

The following property requires a solution to select matching in a “consistent”
manner when some agents leave with their matches (Sasaki and Toda ,1992). More
precisely, it says that if we face with a reduced problem of an original problem at
the initial matching, then restriction of the initial matching to the set of remaining
agents has to be selected by the solution in the reduced problem.16

Consistency: For each (M ∪W,PM∪W ) ∈ E and each µ ∈ φ(M ∪W,PM∪W ), if
(M ′∪W ′,P ′

M ′∪W ′) is the reduced problem of (M ∪W,PM∪W ) at µ, then µM ′∪W ′ ∈
φ(M ′ ∪W ′,P ′

M ′∪W ′).

The next property is due to Maskin (1999). It requires that if an original
preference is subjected to a “monotonic transformation” at matching selected by
a solution initially (defined below), all the matchings be selected again for the new
preference profile.

For each (M ∪W,PM∪W ) ∈ E , each µ ∈ Z(M ∪W ), and each a ∈ M ∪W , the
lower contour set of ≻a at µ is L(µ,≻a) = {b ∈ (M∪W )−a∪{ϕ} | µ(a) ⪰a b}.

16See Thomson (2011b) for a detailed survey on “consistency principle” and Thomson (2012)
for its interpretations.
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For each (M ∪ W,PM∪W ) ∈ E and each µ ∈ Z(M ∪ W ), a preference profile
P ′

M∪W = {≻′
a| a ∈ M ∪W} is obtained by a monotonic transformation of

PM∪W at µ if for each a ∈ M ∪W , L(µ,≻a) ⊆ L(µ,≻′
a).

Maskin invariance: For each (M∪W,PM∪W ) ∈ E and each µ ∈ φ(M∪W,PM∪W ),
if P ′

M∪W is obtained by a monotonic transformation of PM∪W at µ, then µ ∈
φ(M ∪W,P ′

M∪W ).

Finally, we introduce some auxiliary properties of a solution. The next property
requires that if there exists a matching at which each agent a ∈ M ∪W is matched
with the agent’s most preferred agent who is acceptable for agent a, then only this
matching should be chosen.17

Weak unanimity: For each (M ∪ W,PM∪W ) ∈ E , if there exits a matching
µ ∈ M(M ∪W ) such that for each a ∈ M ∪W and each b ∈ (M ∪W )−a ∪ {ϕ},
µ(a) ≻a b, then φ(M ∪W,PM∪W ) = {µ}.

The next property requires a solution to select individually rational matchings.

Individual rationality: For each (M ∪ W,PM∪W ) ∈ E , φ(M ∪ W,PM∪W ) ⊆
IR(M ∪W,PM∪W ).

Given a problem, consider matchings recommended by a solution at the prob-
lem. Suppose that we add a new agent who is unacceptable for each agent on the
opposite side. Let us call such agent a “null player.” The next property requires
that adding her has no effect on the set of matchings that are chosen initially.
That is, each initial matching augmented by leaving the null player unmatched is
selected by the solution at the new problem and the solution recommends no other
matching at the new problem. For each (M,W ) ∈ M×W , each µ ∈ M(M ∪W ),
and each h ∈ M∪W \ (M ∪W ), let µ+h ∈ M(M ∪ W ∪ {h}) be such that (i)
for each a ∈ M ∪W , µ+h(a) = µ(a) and (ii) µ+h(h) = ϕ.

Null player invariance: For each (M∪W,PM∪W ) ∈ E , each h ∈ M∪W\(M∪W ),
and each h-extension (M ∪W ∪ {h},P ′

M∪W∪{h}) of (M ∪W,PM∪W ) in which h is

unacceptable for each a ∈ (M ∪W )−h, we have {µ+h | µ ∈ φ(M ∪W,PM∪W )} =
φ(M ∪W ∪ {h},P ′

M∪W∪{h}).

One can consider the following weaker notion which only requires that, after
adding a null player, each initial matching augmented by leaving the null player
unmatched be selected for the new problem (thus, the solution may select other
matchings).

Weak null player invariance: For each (M ∪W,PM∪W ) ∈ E , each µ ∈ φ(M ∪
W,PM∪W ), each h ∈ M∪W\(M∪W ), and each h-extension (M∪W∪{h},P ′

M∪W∪{h})

17Such a matching exists only when the number of men and women are the same.
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of (M ∪W,PM∪W ) in which h is unacceptable for each a ∈ (M ∪W )−h, we have
µ+h ∈ φ(M ∪W ∪ {h},P ′

M∪W∪{h}).

It is easy to see that the above requirement is equivalent with null player
invariance when a solution satisfies individual rationality and consistency.

3 Results: Single-valued solution

3.1 Singles monotonicity and stability

We focus on a single-valued solution and study the implications of own-side and
other-side singles monotonicity. Our first observation is that the M -optimal stable
solution satisfies neither of them.

Example 1. The M-optimal stable solution satisfies neither own-side nor other-
side singles monotonicity. Let M = {m1,m2,m3} and W = {w1, w2, w3}. Let
PM∪W be as following.18

m1 w1 ≻ w2 ≻ ϕ ≻ w3

m2 w2 ≻ w1 ≻ ϕ ≻ w3

m3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 m2 ≻m3 ≻m1 ≻ ϕ

w2 m1 ≻m2 ≻ ϕ ≻ m3

w3 ϕ ≻m1,m2,m3

There is only one M -optimal stable matching in the problem (M ∪W,PM∪W ).
It is given by,

µF = {(m1, w2), (m2, w1),m3, w3}.

Notice that µF (m3) = ϕ.
Now, let Pm3

M∪W be the m3-improvement of PM∪W obtained by replacing PW as
follows.19

m1 w1 ≻ w2 ≻ ϕ ≻ w3

m2 w2 ≻ w1 ≻ ϕ ≻ w3

m3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 m2 ≻ m3 ≻m1 ≻ ϕ

w2 m1 ≻ m2 ≻ ϕ ≻m3

w3 m3 ≻ ϕ ≻m1,m2

18At the preference ordering of m1, for instance, “w1 ≻ w2 ≻ ϕ ≻ w3” means that “w1 ≻m1

w2 ≻m1 ϕ ≻m1 w3.” Also, at the preference ordering of w3, “ϕ ≻ m1,m2,m3” means the order
over m1, m2, and m3 can be arbitrarily determined as long as they are worse than ϕ for w3. We
adopt similar representations in the rest of the paper.

19At the preference ordering of m1, for instance, we should write “w1 ≻m3 w2 ≻m3 ϕ ≻m3 w3”
instead of “w1 ≻ w2 ≻ ϕ ≻ w3.” However, as long as there is no confusion, we omit the detailed
notations over the preference orderings.
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Then, there is only one M -optimal stable matching in the problem (M ∪
W,Pm3

M∪W ). It is given by,

µm3
F = {(m1, w1), (m2, w2), (m3, w3)}.

But note that m1 is made better off.20 Therefore, the M -optimal stable solution
does not satisfy own-side singles monotonicity.21 Also, w1 is made worse off.22 Thus,
the solution is not other-side singles monotonic.23 □

The next two propositions (Propositions 1 and 2) state that the above unfor-
tunate observation is inevitable for any stable single-valued solution.

Proposition 1. No single-valued solution is own-side singles monotonic and sta-
ble.

Proof. Let a single-valued solution φ satisfy the properties listed in the proposition.
Let M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4}. Let PM∪W be as following.

m1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

m2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

m3 w3 ≻ w1 ≻ ϕ ≻ w2, w4

m4 w2 ≻ ϕ ≻ w1, w3, w4

w1 m2 ≻m3 ≻m1 ≻ ϕ ≻m4

w2 m1 ≻m4 ≻m2 ≻ ϕ ≻m3

w3 ϕ ≻m1,m2,m3,m4

w4 m1 ≻m2 ≻ ϕ ≻ m3,m4

In the problem (M ∪W,PM∪W ),

{(m1, w4), (m2, w1), (m4, w2),m3, w3}

is the unique stable matching. Note that µ(m3) = ϕ where µ ≡ φ(M ∪W,PM∪W ).
Let Pm3

M∪W be the m3-improvement of PM∪W obtained by replacing PW as follows.

m1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

m2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

m3 w3 ≻ w1 ≻ ϕ ≻ w2, w4

m4 w2 ≻ ϕ ≻ w1, w3, w4

w1 m2 ≻ m3 ≻m1 ≻ ϕ ≻m4

w2 m1 ≻ m4 ≻m2 ≻ ϕ ≻m3

w3 m3 ≻ ϕ ≻m1,m2,m4

w4 m1 ≻ m2 ≻ ϕ ≻m3,m4

20That is, µm3

M (m1) ≻m1 µM (m1).
21One can also show it by observing that m2 is made better off. Notice that m3 can be

interpreted as an “interrupter” in Kesten (2010) and Tang and Yu (2014).
22That is, µM (w1) ≻m3

w1
µm3

M (w1).
23Here too, one can show it by observing that w2 is made worse off.
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Then, in the problem (M ∪W,Pm3
M∪W ),

{(m1, w1), (m2, w4), (m3, w3), (m4, w2)} and

{(m1, w4), (m2, w1), (m3, w3), (m4, w2)}

are the only stable matchings. By own-side singles monotonicity,

φ(M ∪W,Pm3
M∪W ) selects {(m1, w4), (m2, w1), (m3, w3), (m4, w2)}. (∗)

Now, let P̂M∪W be as following.

m1 w1 ≻̂ w4 ≻̂ ϕ ≻̂ w2, w3

m2 w4 ≻̂ w2 ≻̂ w1 ≻̂ ϕ ≻̂ w3

m3 w3 ≻̂ w1 ≻̂ ϕ ≻̂ w2, w4

m4 ϕ ≻̂ w1, w2, w3, w4

w1 m2 ≻̂m3 ≻̂m1 ≻̂ ϕ ≻̂m4

w2 m1 ≻̂m4 ≻̂m2 ≻̂ ϕ ≻̂m3

w3 m3 ≻̂ ϕ ≻̂m1,m2,m4

w4 m1 ≻̂m2 ≻̂ ϕ ≻̂ m3,m4

Then, in the problem (M ∪W, P̂M∪W ),

{(m1, w1), (m2, w4), (m3, w3),m4, w2}

is the unique stable matching. Note that µ̂(w2) = ϕ where µ̂ ≡ φ(M ∪W, P̂M∪W ).
Let P̂w2

M∪W be the w2-improvement of P̂M∪W obtained by replacing P̂M as follows.

m1 w1 ≻̂ w4 ≻̂ w2 ≻̂ ϕ ≻̂ w3

m2 w4 ≻̂ w2 ≻̂ w1 ≻̂ ϕ ≻̂ w3

m3 w3 ≻̂ w1 ≻̂ ϕ ≻̂ w2, w4

m4 w2 ≻̂ ϕ ≻̂ w1, w3, w4

w1 m2 ≻̂m3 ≻̂m1 ≻̂ ϕ ≻̂ f4

w2 m1 ≻̂m4 ≻̂m2 ≻̂ ϕ ≻̂m3

w3 m3 ≻̂ ϕ ≻̂m1,m2,m4

w4 m1 ≻̂m2 ≻̂ ϕ ≻̂m3,m4

Note that Pm3
M∪W = P̂w2

M∪W . Thus by (∗),

φ(M ∪W, P̂w2
M∪W ) selects {(m1, w4), (m2, w1), (m3, w3), (m4, w2)}.

However, µ̂w2(w1) ≻̂w1 µ̂(w1) where µ̂w2 ≡ φ(M ∪ W, P̂w2
M∪W ), in violation of

own-side singles monotonicity.24

24For more agents, one can lead to a similar contradiction by (consecutively) adding a pair of
man and woman who most prefer each other.
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Proposition 1 is tight. The single-valued solution that always assigns the un-
matched option to each agent is own-side singles monotonic but not stable. The
M -optimal stable solution is stable but not own-side singles monotonic.

How about the compatibility of other-side singles monotonicity and stability?
We show that for a stable single-valued solution, own-side singles monotonicity
and other-side singles monotonicity coincide.

Lemma 1. Let φ be a stable single-valued solution. Then, φ is own-side singles
monotonic if and only if it is other-side singles monotonic.

Proof. First, let a single-valued solution φ be stable and own-side singles mono-
tonic. Suppose by contradiction that φ is not other-side singles monotonic. Then,
there exist (M∪W,PM∪W ) ∈ E , µ = φ(M∪W,PM∪W ), h ∈ M∪W such that µ(h) =
ϕ, an h-improvement Ph

M∪W of PM∪W , µh = φ(M ∪ W,Ph
M∪W ), a ∈ (M ∪ W )−h

such that µ(a) ≻h
a µh(a). Since µ(a) ̸= ϕ, there exists b ∈ (M ∪ W )h \ {h} such

that µ(a) = b. Since b = µ(a) ̸= µh(a), either µ(b) ≻b µ
h(b) or µh(b) ≻b µ(b). If

µ(b) ≻b µh(b), then µ(b) ≻h
b µh(b), which contradicts the stability of µh.25 Thus,

µ(b)h ≻b µ(b). But then, own-side singles monotonicity is violated. Thus, φ is
other-side singles monotonic.

Second, let a single-valued solution φ be stable and other-side singles mono-
tonic. Suppose by contradiction that φ is not own-side singles monotonic. Then,
there exist (M ∪ W,PM∪W ) ∈ E , µ = φ(M ∪ W,PM∪W ), h ∈ M ∪ W such
that µ(h) = ϕ, an h-improvement Ph

M∪W of PM∪W , µh = φ(M ∪ W,Ph
M∪W ),

a ∈ (M ∪ W )h \ {h} such that µh(a) ≻a µ(a). Since µh(a) ̸= ϕ, there exists
b ∈ (M ∪W )−h such that µh(a) = b. Since b = µh(a) ̸= µ(a), either µh(b) ≻h

b µ(b)
or µ(b) ≻h

b µh(b). If µh(b) ≻h
b µ(b), then since µh(b) = a ̸= h and µ(b) ̸= h,

µh(b) ≻b µ(b), which contradicts the stability of µ.26 Thus, µ(b) ≻h
b µh(b). But

then, other-side singles monotonicity is violated. Thus, φ is own-side singles mono-
tonic.

By Proposition 1 and Lemma 1, we obtain the following.

Proposition 2. No single-valued solution is other-side singles monotonic and sta-
ble.

3.2 Restricted singles monotonicity

In Example 1, we consider an m3-improvement of PM∪W and observe that the
M -optimal stable solution satisfies neither own-side nor other-side singles mono-
tonicity. Interestingly, if instead we adopt the W -optimal stable solution and

25Notice that µ(a) = b ≻h
a µh(a) and µ(b) = a ≻h

b µh(b).
26Notice that µ(a)h = b ≻a µ(a) and µ(b)h = a ≻b µ(b).
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consider an m3-improvement, the conclusion drastically changes, as shown in the
next example.

Example 2. The W -optimal stable solution satisfies own-side and other-side sin-
gles monotonicity for the m3-improvement in Example 1. Let M = {m1,m2,m3}
and W = {w1, w2, w3}. Let PM∪W be given as in Example 1.

The W -optimal stable matching in the problem (M ∪W,PM∪W ) is

µW = {(m1, w2), (m2, w1),m3, w3},

which is the same as the M -optimal stable matching. Note that µW (m3) = ϕ.
Now, let Pm3

M∪W be the m3-improvement of PM∪W of Example 1.
Then, the W -optimal stable matching in the problem (M ∪W,Pm3

M∪W ) is

µm3
W = {(m1, w2), (m2, w1), (m3, w3)}.

Then, for each m ∈ M \ {m3}, µW (m) ⪰m µm3
W (m), and for each w ∈ W ,

µm3
W (w) ⪰m3

w µW (w). Thus, own-side and other-side singles monotonicity are sat-
isfied. □

The above observation is generally true, namely that theW -optimal stable solu-
tion satisfies own-side and other-side singles monotonicity for each h-improvement
as long as h ∈ M . Symmetrically, the M -optimal stable solution satisfies these
properties for each h-improvement as long as h ∈ W (Propositions 3 and 4).

We begin by providing the formal definitions of those “restricted singles mono-
tonicity.”27 The first two properties restrict attention to an improvement of an
unmatched man.

Own-side M -singles monotonicity: For each (M ∪ W,PM∪W ) ∈ E , if there
exists m ∈ M such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(m) = ϕ, then for
each µ ∈ φ(M ∪W,PM∪W ) and each m-improvement Pm

M∪W of PM∪W , there exists
ν ∈ φ(M ∪W,Pm

M∪W ) such that for each a ∈ M \ {m}, µ(a) ⪰a ν(a).

Other-side M -singles monotonicity: For each (M ∪ W,PM∪W ) ∈ E , if there
exists m ∈ M such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(m) = ϕ, then for
each m-improvement Pm

M∪W of PM∪W and each ν ∈ φ(M ∪W,Pm
M∪W ), there exists

µ ∈ φ(M ∪W,PM∪W ) such that for each a ∈ W , ν(a) ⪰m
a µ(a).

The next two properties restrict attention to an improvement of an unmatched
woman.

27We define them in terms of multi-valued solutions as we study some of them in the next
section.
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Own-side W -singles monotonicity: For each (M ∪ W,PM∪W ) ∈ E , if there
exists w ∈ W such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(w) = ϕ, then for
each µ ∈ φ(M ∪W,PM∪W ) and each w-improvement Pw

M∪W of PM∪W , there exists
ν ∈ φ(M ∪W,Pw

M∪W ) such that for each a ∈ W \ {w}, µ(a) ⪰a ν(a).

Other-side W -singles monotonicity: For each (M ∪ W,PM∪W ) ∈ E , if there
exists w ∈ W such that for each µ ∈ φ(M ∪ W,PM∪W ), µ(w) = ϕ, then for
each w-improvement Pw

M∪W of PM∪W and each ν ∈ φ(M ∪W,Pw
M∪W ), there exists

µ ∈ φ(M ∪W,PM∪W ) such that for each a ∈ M , ν(a) ⪰w
a µ(a).

Similar to Lemma 1, we have the following equivalences between the properties
under single-valued stable solution. We omit its proof as we can prove it in the
same way as Lemma 1.

Lemma 2. Let φ be a stable single-valued solution. Then, φ is own-side M -singles
monotonic if and only if it is other-side M -singles monotonic. Also, φ is own-side
W -singles monotonic if and only if it is other-side W -singles monotonic.

Now we are ready to state two important propositions.

Proposition 3. The M-optimal stable solution is own-side W -singles monotonic.

Proposition 4. The M-optimal stable solution is other-side W -singles monotonic.

To show Propositions 3 and 4, because we have Lemma 2, it is enough to show
Proposition 4. We first refer to the well-known “Blocking Lemma.”28

Lemma 3 (The Blocking Lemma). Let (M ∪ W,PM∪W ) ∈ E, µM = SM(M ∪
W,PM∪W ), and µ ∈ IR(M ∪W,PM∪W ). If

M ′ ≡ {m′ ∈ M | µ(m′) ≻m′ µM(m′)} ̸= ∅,

there exists a blocking pair (m,w′) of µ at (M ∪W,PM∪W ) such that m ∈ M \M ′

and w′ ∈ µ(M ′).

Proof of Proposition 4. Let (M ∪ W,PM∪W ) ∈ E and µM = SM(M ∪ W,PM∪W ).
Suppose that there exists w ∈ W such that µM(w) = ϕ. Let Pw

M∪W be a w-
improvement of PM∪W and µw

M = SM(M∪W,Pw
M∪W ). Note that µM is individually

rational at (M ∪W,Pw
M∪W ). Suppose

M ′ ≡ {m′ ∈ F | µM(m′) ≻w
m′ µw

M(m′)} ̸= ∅.

28The statement of the Blocking Lemma is due to J. S. Hwang. See Roth and Sotomayor (1990).
For the proof of the Blocking Lemma, see Gale and Sotomayor (1985).
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OWN.S.MON OTHER.S.MON

OWN. OWN. OTHER. OTHER.

M-S.MON W -S.MON M-S.MON W -S.MON

SM
− −

− + − +

SW
− −

+ − + −

Table 1: Own-side and other-side singles monotonicity and other variations.
Own-side singles monotonicity (OWN.S.MON ) consists of own-side M -singles mono-
tonicity (OWN.M -S.MON ) and own-side W -singles monotonicity (OWN.W -S.MON ).
Similarly, other-side singles monotonicity (OTHER.S.MON ) consists of other-side
M -singles monotonicity (OTHER.M -S.MON ) and other-side W -singles monotonicity
(OTHER.W -S.MON ). The symbol “+” (respectively, “−”) means the corresponding
solution satisfies (respectively, does not satisfy) the corresponding property.

By the Blocking Lemma, there exist a pair (m,w′) such that m ∈ M \ M ′ and
w′ ∈ µM(M ′), and w′ ≻w

m µM(m) and m ≻w
w′ µM(w′). Since w′ ∈ µM(M ′), w′ ̸= w.

Also, µM(m) ̸= w. Therefore,

w′ ≻m µM(m). (1)

Since ≻w
w′ =≻w′ , we have

m ≻w′ µM(w′). (2)

By (1) and (2), there exists a blocking pair (m,w′) ∈ M × W of µM at (M ∪
W,PM∪W ), which is a contradiction. Hence, M ′ = ∅ and for each m ∈ M ,
µw
M(m) ⪰w

m µM(m).

As a corollary of Proposition 3, we obtain the following.

Corollary 1. The W -optimal stable solution is own-side M -singles monotonic.

The next is a corollary of Proposition 4.

Corollary 2. The W -optimal stable solution is other-side M -singles monotonic.

Table 1 summarizes our findings regarding versions of the restricted singles
monotonicity.
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Let a solution be M -singles monotonic if it is own-side and other-side M-
singles monotonic. That is, we require that for each improvement of an unmatched
man, each man (own-side) except the improved one should not be made better off
under his original preference and each woman (other-side) should not be assigned
a match that is worse than the initial one under her new preference. Also, let
a solution be W -singles monotonic if it is own-side and other-side W -singles
monotonic.

By the previous argument, we have the followings.

Remark 1. The M-optimal stable solution is W -singles monotonic.

Remark 2. The W -optimal stable solution is M-singles monotonic.

Given Remark 1, is natural to ask whether the M -optimal stable solution is
the only single-valued stable solution that satisfies W -singles monotonicity. The
answer is no.

Proposition 5. Let |M | = |W | ≥ 2. There exists a single-valued stable solu-
tion satisfying W -singles monotonicity that is different from the M-optimal stable
solution.

The proof is in Appendix A.

4 Results: Multi-valued solution

4.1 Properties of the stable solution

We consider a solution that may select multiple matchings for a problem. First,
we observe that the stable solution is not other-side singles monotonic.

Example 3. The stable solution is not other-side singles monotonic. Let M =
{m1,m2,m3} and W = {w1, w2, w3}. Let PM∪W be given as in Example 1.

Since the M -optimal and W -optimal stable matchings coincide in the problem
(M ∪W,PM∪W ),

µS = {(m1, w2), (m2, w1),m3, w3}

is the unique stable matching. Note that µS(m3) = ϕ.
Now, let Pm3

M∪W be a m3-improvement of PM∪W as in Example 1.
Then, in the problem (M ∪W,Pm3

M∪W ),

µm3
S = {(m1, w1), (m2, w2), (m3, w3)}
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is a stable matching.
Then, for w1 ∈ (M ∪ W )−m3 , µS(w1) ≻m3

w1
µm3
S (w1). But then, for µm3

S ∈
S(M ∪W,Pm3

M∪W ), there is no µ ∈ S(M ∪W,PM∪W ) such that µm3
S (w1) ⪰m3

w1
µ(w1),

in violation of other-side singles monotonicity. □
From the above example, we learn that the stable solution is not even other-

side M-singles monotonic. By changing the role of men and women in the same
example, we can show that it is not other-side W -singles monotonic, either. Hence,
the stable solution is neither M-singles nor W -singles monotonic.

Next, for own-side singles monotonicity, by contrast to the impossibility ob-
tained for a single-valued solution (Proposition 1), we have a positive result for a
multi-valued solution.

Theorem 1. The stable solution is own-side singles monotonic.

Proof of Theorem 1. Let (M ∪ W,PM∪W ) ∈ E . Suppose that there exists h ∈
M ∪ W such that for each µ ∈ S(M ∪ W,PM∪W ), µ(h) = ϕ. Let Ph

M∪W be an
h-improvement of PM∪W . Let µM = SM(M ∪ W,PM∪W ) and µh

M = SM(M ∪
W,Ph

M∪W ).
If h ∈ W , by Proposition 3, for each w ∈ W \{h}, µM(w) ⪰w µh

M(w). Since the
M -optimal stable matching is the worst stable matching for the women (Knuth,
1976),29 then for each µ ∈ S(M ∪W,PM∪W ) and each w ∈ W , µ(w) ⪰w µM(w).
Overall, for each µ ∈ S(M ∪ W,PM∪W ) and each w ∈ W \ {h}, there exists
µh
M ∈ S(M ∪W,Ph

M∪W ) such that µ(w) ⪰w µh
M(w).

By a symmetric argument, if h ∈ M , then Corollary 1 gives us the required
conclusion.

4.2 Characterizations of the stable solution

We provide two characterizations of the stable solution based on own-side singles
monotonicity. The following relationship among the properties of a solution is key
to proving our characterizations.

Proposition 6. If a solution is null player invariant and own-side singles mono-
tonic, then it is own-side population monotonic.

Proof. Let a solution φ satisfy the hypotheses of the proposition. Let (M ∪
W,PM∪W ) ∈ E and µ ∈ φ(M ∪ W,PM∪W ). Let h ∈ M ∪ W \ (M ∪ W ) and
(M ∪ W ∪ {h},P ′

M∪W∪{h}) be the h-extension of (M ∪ W,PM∪W ). Now, let

(M ∪ W ∪ {h},P ′′
M∪W∪{h}) be the problem obtained from P ′

M∪W∪{h} in the fol-
lowing way:

29See also Roth and Sotomayor (1990).

20



• P ′′
(M∪W∪{h})h = P ′

(M∪W∪{h})h .

• For each a ∈ (M ∪ W ∪ {h})−h, her preference ordering in P ′′
M∪W∪{h} is

identical with the one in P ′
M∪W∪{h} on the set (M ∪W ∪ {h})h \ {h}.

• For each a ∈ (M ∪W ∪{h})−h and each x ∈ (M ∪W ∪{h})h \{h}, (i) x ≻a h
and (ii) h is unacceptable for agent a.30

Since (M ∪W ∪ {h},P ′′
M∪W∪{h}) is an h-extension of (M ∪W,PM∪W ) in which

h is unacceptable for each a ∈ (M ∪W )−h, by null player invariance, we have

{ν+h | ν ∈ φ(M ∪W,PM∪W )} = φ(M ∪W ∪ {h},P ′′
M∪W∪{h}).

Thus,

µ+h ∈ φ(M ∪W ∪ {h},P ′′
M∪W∪{h}), (3)

and for each ν ∈ φ(M∪W∪{h},P ′′
M∪W∪{h}), ν(h) = ϕ. By construction, P ′

M∪W∪{h}
is an h-improvement of P ′′

M∪W∪{h}. Then, by own-side singles monotonicity and

(3), there exists µ′ ∈ φ(M ∪W ∪{h},P ′
M∪W∪{h}) such that for each a ∈ (M ∪W ∪

{h})h \ {h}, µ+h(a) ⪰a µ
′(a).

Since for each a ∈ M ∪ W , µ(a) = µ+h(a), we conclude that there exists
µ′ ∈ φ(M ∪ W ∪ {h},P ′

M∪W∪{h}) such that for each a ∈ (M ∪ W ∪ {h})h \ {h},
µ(a) ⪰a µ

′(a), as desired.

Now we are ready to provide our first characterization.

Theorem 2. The stable solution is the unique solution satisfying weak unanimity,
null player invariance, own-side singles monotonicity, and consistency.

Proof. Let a solution φ satisfy the above properties. By Proposition 6, φ is own-
side population monotonic. Since the stable solution is the unique solution satis-
fying weak unanimity, own-side population monotonicity, and consistency (Toda,
2006), φ is the stable solution. By Theorem 1, the stable solution satisfies own-side
singles monotonicity, and obviously it also satisfies null player invariance.

The logical independence of the properties listed in Theorem 2 is shown in
Appendix B.

In our second characterization, we replace consistency in Theorem 2 with
Maskin invariance.

30That is, for each a ∈ (M ∪W ∪ {h})−h, h is the worst option for agent a.
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Theorem 3. The stable solution is the unique solution satisfying weak unanimity,
null player invariance, own-side singles monotonicity, and Maskin invariance.

Proof. Since the stable solution is the unique solution satisfying weak unanimity,
own-side population monotonicity, and Maskin invariance (Toda, 2006), we can
adopt the similar argument as in the proof of Theorem 2 (by referring to Proposi-
tion 6 and Theorem 1).

We show the logical independence of the properties in Theorem 3 in Ap-
pendix B.

Appendix A

We prove Proposition 5.

Proposition 5 Let |M | = |W | ≥ 2. There exists a single-valued stable solu-
tion satisfying W -singles monotonicity that is different from the M-optimal stable
solution.

Proof. Let |M | = |W | = n ≥ 2. We distinguish two cases.
Case 1: n = 2.
Let M = {m1,m2} and W = {w1, w2}. Let P̂M∪W be as following.

m1 w2 ≻̂ w1 ≻̂ ϕ

m2 w1 ≻̂ w2 ≻̂ ϕ

w1 m1 ≻̂ m2 ≻̂ ϕ

w2 m2 ≻̂ m1 ≻̂ ϕ

In the problem (M ∪W, P̂M∪W ), the M -optimal and W -optimal stable match-
ings are given by,

µ̂M = {(m1, w2), (m2, w1)} and

µ̂W = {(m1, w1), (m2, w2)},

respectively.
Now consider a single-valued solution that chooses theW -optimal stable match-

ing in the problem (M∪W, P̂M∪W ), and theM -optimal stable matching in the other
problems. Let us call the solution “solution A∗.” Obviously, A∗ always chooses a
stable matching, and it differs from the M -optimal stable solution. We will show
that A∗ is W -singles monotonic. Since A∗ is single-valued and stable, by Lemma 2,
it is enough to show that it is own-side W -singles monotonic. Since the M -optimal
stable solution satisfies own-side W -singles monotonicity, it is enough to show that
the requirement is satisfied for any pair of problems involving (M ∪W, P̂M∪W ).
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First, for each w ∈ W and each w-improvement of P̂M∪W , own-side W -singles
monotonicity is trivially satisfied since no worker is single in the problem (M ∪
W, P̂M∪W ).

Next, consider PM such that Pw
M = P̂M for some w ∈ W . Let µA∗ and µ̂A∗ be

the matchings given by A∗ in the problems (M ∪W,PM∪W ) and (M ∪W, P̂M∪W ),
respectively.31 If µA∗(w) ̸= ϕ, then own-side W -singles monotonicity is trivially
satisfied. Thus, suppose that µA∗(w) = ϕ.

Subcase 1.1: If w = w1.
Then, µA∗(w1) = ϕ. If µA∗(w2) ̸= m2, then µA∗(m2) = ϕ. But then, (m2, w2)

blocks µA∗. This is a contradiction since µA∗ is stable. Thus, µA∗(w2) = m2. Then,
for each w ∈ W \ w1,

µA∗(w) ⪰w µ̂A∗(w).

Subcase 1.2: If w = w2.
Then, µA∗(w2) = ϕ. By a similar argument as in Subcase 1.1, µA∗(w1) = m1.

Thus, for each w ∈ W \ w2,

µA∗(w) ⪰w µ̂A∗(w).

By Subcases 1.1 and 1.2, own-side W -singles monotonicity is satisfied.

Case 2: n ≥ 3.
LetM = {m1,m2, . . . ,mn} andW = {w1, w2, . . . , wn}. For each k ∈ {3, 4, . . . , n},

let k[m] be them-th lowest number in {3, 4, . . . , n}\k. Let P̂M∪W be as following.

m1 w2 ≻̂ w1 ≻̂ ϕ ≻̂ w3 ≻̂ w4 ≻̂ · · · · · · ≻̂ wn

m2 w1 ≻̂ w2 ≻̂ ϕ ≻̂ w3 ≻̂ w4 ≻̂ · · · · · · ≻̂ wn

mk
(k=3,4,...,n)

wk ≻̂ w1 ≻̂ ϕ ≻̂ w2 ≻̂ wk[1] ≻̂ wk[2] ≻̂ · · · ≻̂ wk[n−3]

w1 m1 ≻̂mn ≻̂mn−1 ≻̂ · · · · · · ≻̂m3 ≻̂m2 ≻̂ ϕ

w2 m2 ≻̂m1 ≻̂ ϕ ≻̂m3 ≻̂m4 ≻̂ · · · · · · ≻̂ mn

wk
(k=3,4,...,n)

mk ≻̂ ϕ ≻̂m1 ≻̂m2 ≻̂mk[1] ≻̂mk[2] ≻̂ · · · ≻̂ mk[n−3]

In the problem (M ∪W, P̂M∪W ), the M -optimal and W -optimal stable match-
ings are given by

µ̂M = {(m1, w2), (m2, w1), {(mk, wk)}k∈{3,4,...,n}} and

µ̂W = {(m1, w1), (m2, w2), {(mk, wk)}k∈{3,4,...,n}},
31By definition, µ̂A∗ = µ̂W .

23



respectively.
As in Case 1, consider a single-valued solution that chooses the W -optimal sta-

ble matching in the problem (M ∪W, P̂M∪W ), and the M -optimal stable matching
in the other problems. Let us call this solution “solution Ã.” By by Lemma 2,
it is enough to show that Ã is own-side W -singles monotonic. Now consider PM

such that Pw
M = P̂M for some w ∈ W . Let µÃ and µ̂Ã be the matchings given by

Ã in the problems (M ∪W,PM∪W ) and (M ∪W, P̂M∪W ), respectively. As argued
previously, it is enough to investigate the case µÃ(w) = ϕ.

Subcase 2.1: If w = w1.
Then, µÃ(w1) = ϕ. If µÃ(wk) ̸= mk for some k ∈ {3, 4, . . . , n}, then (mk, wk)

blocks µÃ. This is a contradiction since µÃ is stable. Thus, for each k ∈ {3, 4, . . . , n},
µÃ(wk) = mk. If µÃ(w2) ̸= m2, then (since µÃ(w1) = ϕ and for each k ∈
{3, 4, . . . , n}, µÃ(wk) = mk), µÃ(m2) = ϕ. But then, (m2, w2) blocks µÃ, a contra-
diction. Thus, µÃ(w2) = m2. Overall, for each w ∈ W \ w1,

µÃ(w) ⪰w µ̂Ã(w).

Subcase 2.2: If w = w2.
Then, µÃ(w2) = ϕ. By a similar argument as in Subcase 2.1, for each k ∈

{3, 4, . . . , n}, µÃ(wk) = mk. If µÃ(w1) ̸= m1, then, µÃ(m1) = ϕ. But then, (m1, w1)
blocks µÃ, a contradiction. Thus, µÃ(w1) = m1. Overall, for each w ∈ W \ w2,

µÃ(w) ⪰w µ̂Ã(w).

Subcase 2.3: Let k∗ ∈ {3, 4, . . . , n}. If w = wk∗.
Then, µÃ(wk∗) = ϕ.
If µÃ(wk) ̸= mk for some k ∈ {3, 4, . . . , n} \ k∗, then (mk, wk) blocks µÃ, a

contradiction. Thus, for each k ∈ {3, 4, . . . , n} \ k∗, µÃ(wk) = mk.
If µÃ(w2) ̸= m2, then µÃ(m2) = w1 (if not, m2 and w2 blocks µÃ). But

then, µÃ(m1) = w2 (if not, m1 and w1 blocks µÃ). Then, (since µÃ(w1) = m2,
µÃ(w2) = m1, µÃ(wk∗) = ϕ and for each k ∈ {3, 4, . . . , n} \ k∗, µÃ(wk) = mk),
µÃ(mk∗) = ϕ. But then, (mk∗ , w1) blocks µÃ, a contradiction. Thus, µÃ(w2) = m2.

If µÃ(w1) ̸= m1, then (since µÃ(w2) = m2, µÃ(wk∗) = ϕ and for each k ∈
{3, 4, . . . , n} \ k∗, µÃ(wk) = mk), µÃ(m1) = ϕ. But then, (m1, w1) blocks µÃ, a
contradiction. Thus, µÃ(w1) = m1.

Overall, for each w ∈ W \ wk∗ ,

µÃ(w) ⪰w µ̂Ã(w).

By Subcases 2.1-2.3, own-side W -singles monotonicity is satisfied.
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Appendix B

We show the logical independence of the properties listed in Theorems 2 and 3.
We define the following four solutions.

Solution 1, φ1 : For each (M ∪W,PM∪W ) ∈ E ,

φ1(M ∪W,PM∪W ) = IR(M ∪W,PM∪W ).

Obviously, φ1 satisfies all properties in Theorems 2 and 3 but weak unanimity.

Solution 2, φ2 : For each (M ∪W,PM∪W ) ∈ E ,

φ2(M∪W,PM∪W ) =

{
{ν̂, ν} if (M ∪W,PM∪W ) = (M1 ∪W1,PM1∪W1)

S(M ∪W,PM∪W ) otherwise,

where M1 = {m1}, W1 = {w1, w2}, ν̂ is such that ν̂(m1) = w1 and ν̂(w2) = ϕ, ν is
such ν(m1) = w2 and ν(w1) = ϕ, and PM1∪W1 is defined as below.

m1 w1 ≻ w2 ≻ ϕ
w1 m1 ≻ ϕ

w2 m1 ≻ ϕ

Note note that ν̂ is the unique stable matching in (M1 ∪W1,PM1∪W1). Thus,
φ2 always includes all stable matchings and it differs from the stable solution only
at (M1 ∪W1,PM1∪W1).

Since |M1| < |W1| and φ2 differs from the stable solution only at (M1 ∪
W1,PM1∪W1), weak unanimity is obviously satisfied.

In the problem (M1 ∪ W1,PM1∪W1), since no agent is unmatched at both ν̂
and ν, own-side singles monotonicity is trivially satisfied. If (M1 ∪ W1,PM1∪W1)
is obtained by an improvement of an unmatched agent at a stable matching of
another problem, the own-side singles monotonicity of the stable solution ensures
that φ2 also satisfies the property.

The solution φ2 is consistent as well. Indeed, for each problem having (M1 ∪
W1,PM1∪W1) as its sub-problem at a stable matching, and since the stable solution
is consistent, the restriction of the stable matching to M1 ∪W1 is stable and hence
equal to ν̂. Again, since the stable solution is consistent, the property is satisfied
for each proper sub-problem of (M1 ∪W1,PM1∪W1) at ν̂. A proper sub-problem of
(M1 ∪W1,PM1∪W1) at ν consists of either m1 and w2 or w1 only. In each case, the
restriction of ν to the sub-problem is stable.

ForMaskin invariance, consider a problem (M1∪W1,P∗
M1∪W1

) ∈ E having (M1∪
W1,PM1∪W1) as a result of a monotonic transformation of P∗

M1∪W1
at µ ∈ φ2(M1 ∪

W1,P∗
M1∪W1

). Since the stable solution is Maskin invariant (Tadenuma, 1993), µ
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is stable at (M1 ∪W1,PM1∪W1) and hence equal to ν̂. For (M1 ∪W1,PM1∪W1), if
P ′

M1∪W1 is obtained by a monotonic transformation of PM1∪W1 at ν̂, then again
since the stable solution is Maskin invariant, ν̂ is stable at (M1∪W1,P ′

M1∪W1). On
the other hand, if P ′

M1∪W1 is obtained by a monotonic transformation of PM1∪W1

at ν, then we have four possibilities for P ′
M1∪W1 : (i) P ′

M1∪W1 = PM1∪W1 , (ii) for
each a ∈ {w1, ϕ}, w2 ≻′

m1
a and P ′

W1 = PW1 , (iii) ϕ ≻′
w1

m1 and P ′
{m1}∪{w2} =

P{m1}∪{w2}, and (iv) for each a ∈ {w1, ϕ}, w2 ≻′
m1

a, ϕ ≻′
w1

m1, and P ′
{w2} = P{w2}.

For each possibility, ν is stable at (M1 ∪W1,P ′
M1∪W1).

The solution φ2 is not null-player invariant. Let us consider the problem in
which M ′

1 = {m1,m2} and W1 = {w1, w2} in which the preference profile P ′
M ′

1∪W1

is the following:

m1 w1 ≻′ w2 ≻′ ϕ

m2 ϕ ≻′ w1 ≻′ w2

w1 m1 ≻′ ϕ ≻′ m2

w2 m1 ≻′ ϕ ≻′ m2

This problem is obtained by adding m2 to (M1 ∪W1,PM1∪W1), with m2 not being
acceptable for each womam. By definition, φ2(M

′
1 ∪ W1,P ′

M ′
1∪W1

) = {ν̂+m2} but

ν+m2 is not contained in the solution set. This shows that φ2 is not null-player
invariant.

Solution 3, φ3 : For each (M ∪W,PM∪W ) ∈ E ,

φ3(M ∪W,PM∪W ) = IR(M ∪W,PM∪W ) ∩ PO(M ∪W,PM∪W ).32

Obviously, φ3 is weakly unanimous.
It is also null player invariant. Indeed, let (M ∪W,PM∪W ) ∈ E , h ∈ M ∪W \

(M ∪W ), and h-extension (M ∪W ∪ {h},P ′
M∪W∪{h}) of (M ∪W,PM∪W ) in which

h is unacceptable for each a ∈ (M ∪ W )−h. Let µ ∈ φ3(M ∪ WPM∪W ). Since µ
is individually rational at (M ∪ W,PM∪W ), for each a ∈ (M ∪ W )−h, µ+h(a) ⪰′

a

ϕ ≻′
a h. Thus µ+h is individually rational at (M ∪W ∪ {h},P ′

M∪W∪{h}). Since for

each a ∈ (M ∪ W )−h, µ+h(a) ≻′
a h and µ is Pareto optimal at (M ∪ W,PM∪W ),

µ+h is Pareto optimal at (M ∪W ∪ {h},P ′
M∪W∪{h}). Thus, µ+h ∈ IR(M ∪W ∪

{h},P ′
M∪W∪{h}) ∩ PO(M ∪W ∪ {h},P ′

M∪W∪{h}). This shows that

{µ+h | µ ∈ φ(M ∪W,PM∪W )} ⊆ φ(M ∪W ∪ {h},P ′
M∪W∪{h}).

Suppose that there exists ν ∈ φ3(M∪W∪{h},P ′
M∪W∪{h}) such that ν /∈ {µ+h | µ ∈

φ3(M ∪W,PM∪W )}. Since ν is individually rational at (M ∪W ∪{h},P ′
M∪W∪{h}),

32For each (M ∪W,PM∪W ) ∈ E , φ3(M ∪W,PM∪W ) ̸= ∅, e.g., SF (M ∪W,PM∪W ) ∈ IR(M ∪
W,PM∪W ) ∩ PO(M ∪W,PM∪W ).
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ν(h) = ϕ. Then, let ν∗ ∈ M(M∪W,PM∪W ) be such that ν∗
+h = ν. By construction,

ν∗ is not Pareto optimal at (M ∪W,PM∪W ). But then, ν∗ is not Pareto optimal
at (M ∪W ∪ {h},P ′

M∪W∪{h}), a contradiction. This shows that

{µ+h | µ ∈ φ(M ∪W,PM∪W )} ⊇ φ(M ∪W ∪ {h},P ′
M∪W∪{h}).

Let the Pareto optimal solution (φPO) be such for each (M ∪W,PM∪W ) ∈ E ,
φPO(M ∪W,PM∪W ) = PO(M ∪W,PM∪W ). Then φPO is consistent and Maskin
invariant (Toda, 2006). Together with the fact that φ1 is consistent and Maskin
invariant, one can verify that φ3 satisfies those properties.

The solution φ3 is not own-side singles monotonic. Let M = {m1,m2,m3} and
W = {w1, w2, w3}. Let PF∪W be as following.

m1 w1 ≻ w2 ≻ ϕ ≻ w3

m2 w1 ≻ w2 ≻ ϕ ≻ w3

m3 w2 ≻ ϕ ≻ w1, w3

w1 m2 ≻m1 ≻ ϕ ≻m3

w2 m3 ≻m2 ≻ ϕ ≻m1

w3 m1 ≻ ϕ ≻ m2,m3

Then,

µ = {(m1, w1), (m2, w2),m3, w3} ∈ IR(M ∪W,PM∪W ) ∩ PO(M ∪W,PM∪W ).

Now, let Pw3
M∪W be a w3-improvement of PM∪W obtained by replacing PM as follows.

m1 w3 ≻ w1 ≻ w2 ≻ ϕ

m2 w1 ≻ w2 ≻ ϕ ≻ w3

m3 w2 ≻ ϕ ≻ w1, w3

w1 m2 ≻m1 ≻ ϕ ≻m3

w2 m3 ≻m2 ≻ ϕ ≻m1

w3 m1 ≻ ϕ ≻ m2,m3

Then, the unique Pareto optimal (and individually rational) matching in the prob-
lem (M ∪W,Pw3

M∪W ) is given by

µw3 = {(m1, w3), (m2, w1), (m3, w2)} = PO(M ∪W,Pw3
M∪W ).

But then, since µw3(w1) ≻w1 µ(w1), w1 is made better off by the w3-improvement
of PM∪W in each Pareto optimal matching at (M ∪ W,Pw3

M∪W ). Therefore, φ3 is
not own-side singles monotonic.

Solution 4, φ4 : For each (M ∪W,PM∪W ) ∈ E ,

φ4(M ∪W,PM∪W ) = SF (M ∪W,PM∪W ) ∪ SW (M ∪W,PM∪W ).

By the fact that both the M -optimal and W -optimal stable solutions satisfy
weak unanimity, individual rationality, and null player invariance, one can easily
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W.U I.R N.P.INV OWN.S.MON CONS M.INV

φ1 − + + + + +

φ2 + + − + + +

φ3 + + + − + +

φ4 + + + + − −

Table 2: The independence of the properties in Theorem 2 and Theorem 3.

The symbols “+” and “−” have the same meanings as in Table 1.

see that φ4 satisfies those properties. By applying the argument used in the proof
of Theorem 1, we can show that φ4 is own-side singles monotonic. The solution
φ4 is neither consistent nor Maskin invariant (Toda, 2006).

Table 2 summarizes the properties of the Solutions 1-4.33 One can easily see
from the table that for Theorem 2, there are four examples of solutions, each of
which violates exactly one property listed in the theorem. A similar statement
holds for Theorem 3.
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