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ON THE KUHN EQUIVALENCE OF STRATEGIES
JOHN HILLAS AND DMITRIY KVASOV

ABSTRACT. We show that two strategies are Kuhn equivalent if
and only if they induce the same probability measure over ter-
minal nodes against some profile of completely mixed behaviour
strategies of the other players. This result allows us to embed the
equivalence classes of strategies in the probability measures over
terminal nodes for various strategy concepts. This, in turn, allows
a very clean statement of the relation between the various sets of
strategies in games with perfect recall, linear games, and nonlin-
ear games. It also proves useful in defining and analysing solution
concepts in games without perfect recall, and, in particular, in
nonlinear games.

1. INTRODUCTION

While a model of extensive form games was given by von Neumann
and Morgenstern (1947), the model that is now widely used is a gen-
eralisation by Kuhn (1950b, 1953, 2003). That model was made even
more general by Isbell (1954, 1957) by simply dropping the assumption
of Kuhn that in any play of the game each information set occurs at
most once. The possibility of games in which information sets may
occur more than once in some plays of the game was addressed even
earlier than Isbell by McKinsey (1952a,b), but mainly to explain why
such games should be excluded from the analysis.

We shall henceforth call the more general class of games defined by
Isbell nonlinear games and the subclass of games such as those Kuhn
defined, where each information set occurs at most once in any play, lin-
ear games, following Isbell (1954, 1957), and later Mertens, Sorin, and
Zamir (2015). Among linear games we identify an even smaller class
of games, those with perfect recall, a class defined by Kuhn (1950b,
1953, 2003), which we define below in Definition 3. In games without
perfect recall there may be no equilibrium in behaviour strategies, and
in nonlinear games there may be no equilibria in mixed strategies ei-
ther. Thus we need to consider more general classes of strategies. In
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linear games there is always an equilibrium in mixed strategies while in
nonlinear games in order to guarantee the existence of equilibrium we
need to consider an even more general class of strategy, namely ran-
domisations over behaviour strategies. We call these randomisations
over behaviour strategies general strategies.

We say any two strategies are Kuhn equivalent if, for any strategy
profile of the other players, both induce the same probability measure
on the terminal nodes of the game. While not precisely the manner
that Kuhn defined mixed and behaviour strategies being equivalent it
does define precisely the same equivalence relation on those strategy
spaces.

For any class of strategies, we consider the set of Kuhn equivalence
classes of strategies. We shall show how to embed these sets of equiv-
alence classes into the space of probability measures over the terminal
nodes and what follows the properties of these embedded sets. We also
sketch some of the uses to which these structures can be put.

The work reported in this paper was motivated by our definitions of
backward induction solutions in games without perfect recall, including
in the nonlinear games defined by Isbell. (Hillas and Kvasov, 2020,
2021)

Finally, a note on our choice of terminology. We follow Isbell (1954,
1957) and Mertens, Sorin, and Zamir (2015) in calling the most general
class of finite extensive form games that we consider nonlinear games
and the subclass in which no information set occurs more than once in
any play of the game linear games. Mertens, Sorin, and Zamir (2015,
p. 60) suggest that the reason for calling such games linear is related
to the fact that in such games any general strategy is equivalent to a
mixed strategy. This itself relates to the fact that, in linear games, the
set of probability measures on terminal nodes induced by the general
strategies is defined by linear inequalities, while, in nonlinear games,
this set may be defined by polynomial inequalities. We follow Mertens,
Sorin, and Zamir (2015) in calling probability measures over the set
of behaviour strategies general strategies, perhaps for no better reason
than that we follow Mertens, Sorin, and Zamir. We call the equivalence
notion on strategies Kuhn equivalence. This terminology or closely
related terminology is used in the literature, for example by Kalai and
Lehrer (1993), but not as widely as we originally thought. We used the
term in Hillas and Kvasov (2020) and continue to use it here.

2. WHAT IS A STRATEGY?

One of the major contributions of von Neumann and Morgenstern
(1947) was the development of the concept of strategy. They describe a
strategy as “a complete plan: a plan which specifies what choices he will
make in every possible situation, for every possible actual information
which he may possess at that moment in conformity with the pattern
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of information which the rules of the game provide for him at the case.”
(von Neumann and Morgenstern, 1947, p. 79)

Kuhn defines a pure strategy as a function that specifies at each
information set a choice at that information set, even those information
sets that are precluded by the strategy itself. But Kuhn regards this as
a deficiency, writing “unfortunately, our definition of a pure strategy,
while conceptually simple, has an inherent redundancy which we will
now eliminate.” (Kuhn, 1950b, p. 573) He does this elimination by
defining two pure strategies as equivalent if, for any strategies of the
other players, they induce the same probabilities on all plays of the
game as each other. He then says that “when we speak of a pure
strategy we shall mean an equivalence class under the definition just
given.” (Kuhn, 1950b, p. 574) A number of others have made similar
points.

Rubinstein (1991) rejects this, rather supporting the “view that [an]
equilibrium strategy describes a player’s plan of action, as well as those
considerations which support the optimality of his plan (i.e. precon-
ceived ideas concerning the other players’ plans) rather than merely a
description of a ‘plan of action.” ... In games which require a player
to make at least two consecutive moves ... a strategy must specify his
actions even after histories which are inconsistent with the player’s own
strategy. ... Thus, a strategy encompasses not only the player’s plan
but also his opponents’ beliefs in the event that he does not follow that
plan.” Rubinstein (1991, pp. 910-911)

Rubinstein’s view is internally coherent, at least for pure strategies
and behaviour strategies. But we reject it in favour of the approach
of Kuhn, and, at least implicitly, von Neumann and Morgenstern. We
do so for two reasons which we explain in the context of an example.
Consider a game like the centipede game (Rosenthal, 1981), where two
players move alternately, deciding whether to stop the game (.S) or con-
tinue and give the move to the other player (C'), say, for concreteness,
until each player has had potentially five moves, after which the game
will end whatever the choice of Player 2 at his last move. The payoffs
are not relevant for our purpose.

Our first reason for rejecting Rubinstein’s approach is that it just, to
us, seems unnatural. Suppose that Player 1 chooses to end the game
on her first move. Kuhn would say that Player 1’s strategy (recalling
that by strategy Kuhn means an equivalence class of strategies) is just
that, to end the game on her first move and Kuhn would say no more.
Rubinstein, on the other hand would differentiate between all strategies
that differ at the nodes that, given Player 1’s initial choice, will not
occur. Then when called on to move for the third time if Player 1’s
strategy is SSSCC Player 2 will believe that Player 1 will continue on
each of her remaining two moves should Player 2 decide to continue. On
the other hand if Player 1’s strategy is 5555 Player 2 will believe that
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Player 1 will stop the game on her next opportunity should Player 2
decide to continue. This seems to us rather unnatural. When called on
to move Player 2 knows that Player 1 has played neither SSSCC nor
SS5S5SS. We would prefer to say that at this point Player 2 has some
beliefs over the strategies that start CCC.

Rubinstein suggests that the definition of strategy that distinguishes
between SSSCC and SSSSS is “necessary for testing the rationality
of a player’s plan, both at the beginning of the game and at the point
where he must consider the possibility of a response to an opponent’s
potential deviation (the subgame perfect idea).” (Rubinstein, 1991, p.
911) But while it is possible to use strategies interpreted in this way
to define backward induction concepts such as subgame perfect equi-
librium, at least in games with perfect recall, it is not necessary. Hillas
and Kvasov (2020) give definitions for various backward induction con-
cepts that do not reply on such an interpretation of strategies.

The second reason for rejecting Rubinstein’s approach is, to our
mind, more compelling. While the interpretation Rubinstein gives
works for pure strategies and behaviour strategies it does not work
for mixed strategies or for randomisations over behaviour strategies,
which we are calling general strategies. Consider again the game de-
scribed in the previous paragraph and consider the mixed strategy that
plays SCCCC and C'SSSS, each with probability one half. Clearly on
his first move Player 2 should believe that Player 1 is playing C'SSSS
and so believe that she will play S at her next opportunity. However
what should Player 2 believe if he is called on to move a fourth time?
Should he retain his belief from his first move and believe that Player 1
will play S at her next move? Should he revert to his initial assess-
ment and believe that S and C' are equally likely? Perhaps, counting
the number of times that Player 1 has deviated from her initial plan
he should believe that she will play C. Or perhaps he should believe
something else. And, since pure strategies are embedded in the set
of behaviour strategies, exactly the same example shows that similar
problems arise for randomisations over behaviour strategies.

In this paper we consider a number of classes of strategy: pure
strategies, behaviour strategies, mixed strategies, and general strate-
gies. And, just as we find no meaningful difference between pure strate-
gies that are equivalent in the sense described above, we also find no
meaningful difference between any randomised strategies, behaviour,
mixed, or general, that do not induce different measures on the termi-
nal nodes for any strategy profile of the other players.

3. EXTENSIVE FORM GAMES AND STRATEGIES

A definition of an extensive form game starts with the notion of a
game tree. There are two equivalent ways of defining a game tree. The
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first defines a game tree as a finite partially ordered set of nodes. The
second defines a game tree as a finite acyclic connected graph.

We let X be the finite set of nodes and let o € X be the initial node
or root. The predecessor function p: X — X U {0} specifies, for every
node z, the node p(x) that comes immediately before it, with the initial
node zy being the only node with no predecessor, p(z) = . When the
game tree is interpreted as a graph the set {p(x),z} is called a branch
or edge that connects nodes p(x) and z; the ordered pair (p(z),z) is
called the directed branch from p(z) to .

For every node = we let po(x) = x, and recursively define py(z) as
p(pr—1(x)); thus pi(x) = p(x). If y = pp(x) for some k > 1 we say that
y precedes x, or that z follows y.

A node z is a terminal node if there is no node x that follows it, that
is, there is no node z such that p(z) = z. We partition X into the set
T of terminal nodes and the set D of nonterminal or decision nodes.

A path from node x to node y is a list of nodes

($:$17$2,--->$k:y)7

where k£ > 1 and x; = p(zj41) for j =1,...,k — 1. We let r(2) be the
unique path from the initial node zy to a terminal node z.

Definition 1. An extensive form game I is a game tree together with
the following.

1. A finite set of players N = {1,2,... N}.

2. A collection of information sets H, where H is a partition of the set of
decision nodes D, and a function n : H — N U {0}, where Player 0
is Nature and n(h) is the player who controls information set h. We
let H,, ={h € H | n(h) = n} be the information sets controlled by
Player n. For convenience and notational simplicity we assume that
all Natures’s information sets are singletons, that is, if h € Hy and
x,y € h then x = y.

3. A set of actions A, and a labeling function o : X\{zo} — A, where
a(z) is the action at p(x) that leads to x. The function « is such

that if p(x) = p(y) and = # y then a(x) # a(y). We let
Alx) ={a € A| a= a(y) for some y with p(y) = x}

be the set of actions available at node z. If z is a terminal node
then A(x) = (). We require that if z,y € h then A(z) = A(y).

4. A function p : Ho x A — [0, 1], where p(a) is the probability that
action a is taken at the information set h € H,.

5. Functions uy, ..., uy, with u, : T"— R with wu,(2) being the payoff
to Player n at terminal node z.

We next formally define the relevant classes of extensive form games.

Definition 2. A game is said to be linear for Player n if no path from
xo to a terminal node cuts any information set of Player n more than
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once. If no path from x( to a terminal node cuts any information set
more than once then we call the game a linear game.

We call the general class of games, where we do not assume that
the game is linear, nonlinear games. For linear games we consider a
distinguished subset, those with perfect recall. Intuitively, a player has
perfect recall if, at each of her information sets, she remembers what
she knew and what she did in the past. The following formal definition
was given in Kuhn (1950b). A different, but equivalent, definition was
given in Kuhn (1953).

Definition 3. A player is said to have perfect recall if, whenever that
player has an information set containing nodes x and y and there is a
node 2’ of that player that precedes node z, then there is also a node
Y/, in the same information set as 2/, that precedes node y and the
action of the player at 3’ on the path to y is the same as the action
of the player at 2’ on the path to . The game is said to have perfect

recall if every player has perfect recall.
We now define the various notions of strategy that we shall use.

Definition 4. A pure strategy of Player n in an extensive form game is
a function that maps each of her information sets to an action available
at that information set. We denote the set of Player n’s pure strategies
by S, and the set of pure strategy profiles by S = X,enShy.

Definition 5. A mized strategy of Player n in an extensive form game
is a probability measure over her pure strategies. We denote the set of
Player n’s mixed strategies by Y, and the set of mixed strategy profiles
by ¥ = Xnen2,. A mixed strategy o, of Player n is completely mized
if it assigns strictly positive probability to each of her pure strategies.

Behaviour strategies made their first brief appearance, without get-
ting any name, in von Neumann and Morgenstern (1947, pp. 192-194),
as a convenient tool to simplify the solution of a version of Poker. Then,
under the names of “behaviour coefficients” and “behaviour parame-
ters,” they were used to analyze two more versions of Poker by Nash
and Shapley (1950) and Kuhn (1950a). The formal definition and the
analysis of the general properties of behaviour strategies are due to

Kuhn (1950b).

Definition 6. A behaviour strateqy of Player n in an extensive form
game is a function that maps each of her information sets to a prob-
ability measure over the actions available at that information set. We
denote the set of Player n’s behaviour strategies by B, and the set of
behaviour strateqy profiles by B = X,enB,. A behaviour strategy b,
of Player n is completely mized if, at each information set, it assigns
strictly positive probability to each action available at that information
set. We also define the behaviour strategy of Nature as by(a) = p(a).
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In nonlinear games we also need to consider randomisations over
behaviour strategies. Various terms have been used in the literature to
refer to such strategies; we follow Mertens, Sorin, and Zamir (2015) in
calling them general strategies.

Definition 7. A general strategy of Player n in an extensive form
game is a probability measure over her behaviour strategies. We denote
the set of Player n’s general strategies by G, and the set of general
strategy profiles by G = X,,enG,,.

We postpone the definition of completely mixed general strategies
until Definition 10 in Section 5.

Remark 1. While formally Definition 1 allows the case that xq is
a terminal node (and hence the only node) that case is trivial; each
player has a single pure strategy, a single behaviour strategy, a single
mixed strategy, and a single general strategy, namely, do nothing. We
shall henceforth assume that xy is not a terminal node.

To describe the convex structure of the various strategy sets we follow
the terminology of Rockafellar (1970). A polytope is the convex hull of
finitely many points (Rockafellar (1970, p. 12)). A point of a convex
set is an extreme point if and only if it cannot be expressed as a convex
combination of any two distinct points of that set (Rockafellar (1970,
p. 162)). The relative interior of a convex set K is the interior that
results when K is regarded as a subset of its affine hull (Rockafellar
(1970, p. 44)).

Any pure strategy s, can also be viewed as the mixed strategy that
puts weight 1 on s,. And any pure strategy s, can also be viewed as
the behaviour strategy that takes each information set to the proba-
bility measure that puts weight 1 on the action that s, selects at that
information set. Thus, the set of pure strategies is naturally embedded
in both the set of mixed strategies and the set of behaviour strategies.
Similarly, all the other strategy sets are embedded in G,,, the set of
general strategies.

An immediate implication is that the set of pure strategies is the
set of extreme points both of the set of mixed strategies and of the
set of behaviour strategies, both of which are polytopes. The set of
completely mixed strategies and the set of completely mixed behaviour
strategies are, correspondingly, the relative interiors of the set of mixed
strategies and the set of behaviour strategies.

The set of Player n’s mixed strategies 3, is a simplex of dimension
|Sy| — 1. The set of Player n’s behaviour strategies B, is a Cartesian
product of a finite number of simplices, each of which corresponds to
an information set controlled by Player n with the dimension of each
simplex being the number of actions available to Player n at that infor-
mation set less one. The dimension of B, is, thus, always less than or
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equal to the dimension of ¥,,. If the player has at least two information
sets each with at least two available actions then the dimension of B,
is strictly less than the dimension of X,,.

4. KUHN EQUIVALENCE

Both von Neumann and Morgenstern (1947) and Kuhn (1950b, 1953,
2003) define a strategy as a complete contingent plan of playing the
game. In giving a formal precise meaning to this, they define pure
strategies, but the same idea motivates the definitions of all the other
strategy sets as well. Which strategy sets we need to define depends on
the class of games that the player faces and what it is that the player
seeks to achieve.

In linear decision problems, that is, one-person linear games, the
player always has a pure strategy that is at least as good as any more
general strategy. In nonlinear decision problems this is not necessarily
the case. A player may be able to do better with a behaviour strategy
than she can with any pure strategy.

In two-person zero-sum games a player’s optimal strategy is one
that guarantees a player the highest possible payoff whatever the other
player does. In this case the player may, in linear games, do better with
mixed strategy than with any pure strategy and, in nonlinear games,
may do better with a general strategy than with any behaviour strat-
egy. Thus, when looking at what a player’s plan can guarantee, we do
need to look, at least for some cases, at general strategies.

In games with more than two players, or in non-zero sum games
we typically look for some form of equilibria and usually assume that
the players have some probabilistic beliefs about what the other play-
ers will do. In such cases, for any beliefs the player might have, she
will always have a behaviour strategy that does at least as well as any
other strategy. We might, when looking at such equilibria, restrict
ourselves to at most behaviour strategies and describe the players’ be-
liefs separately. This is the approach typically taken when looking at
correlated equilibria where, for linear games, the strategies are taken
to be the pure strategies and the beliefs of each player are generated
from a probability measure over those pure strategies. One could take
the same approach to defining Nash equilibria, but here the usual ap-
proach, again in the linear case, is to define the strategy spaces as the
space of mixed strategies and to have the equilibrium strategy profile
represent both the optimal plan of each player and the beliefs of each
player about the plans of the others. In nonlinear games we would
need to look for equilibria in general strategies. The general strategy
of Player n represents both the maximising choice of behaviour strat-
egy of Player n and the uncertainty of the other players about which
behaviour strategy Player n will play.
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Just as Kuhn saw the definition of pure strategies as having some
redundancy so too the other definitions of strategy involve similar re-
dundancies. We eliminate these redundancies in the same way that
Kuhn did, namely, by looking at equivalence classes of strategies, and
we do so for a similar reason. We also embed these equivalence classes
in the set of measures over the terminal nodes. An added advantage to
this construction is the clean setting it gives us to examine the relations
between the various strategy sets.

Kuhn showed that in games with perfect recall one could achieve
essentially the same uncertainty about the other players with behaviour
strategies as one could with mixed strategies and so, in such games,
one could instead look for equilibria in behaviour strategies. We can
be a little more explicit and we can extend this notion of equivalence
to all of the strategies that we consider. We first define the notion of
the Kuhn equivalence of two strategies.

Definition 8. Two strategies of Player n, x and y in S,, U B, UX, UG,
are said to be Kuhn equivalent if, for any general strategy profile, g_,,
in G_,, of the other players, the profiles (z,¢9_,) and (y,g_,) induce
the same measure over the terminal nodes. When x and y are Kuhn
equivalent we write x ~g y.

We now formally state Kuhn’s Theorem.

Kuhn’s Theorem. If Player n has perfect recall then for any mixed
strateqy o, in X, there is a behaviour strategy b, in B, that is Kuhn
equivalent to o,. If the game is linear for Player n then, for any be-
haviour strategy b, in B,, there is a mized strategqy o, in X, that is
Kuhn equivalent to b,,.

The first part of Kuhn’s Theorem was stated and proved by Kuhn
(1950b, 1953). The second part is almost implicit in Kuhn’s paper and
was formally stated and proved by Isbell (1954, 1957).

The definition of Kuhn equivalence given above is apparently quite
demanding. In order for two strategies to be Kuhn equivalent they must
induce the same measure over terminal nodes for any strategy profile
of the other players. Now, it clearly may be that two strategies of a
player induce the same measure over terminal nodes for some strategy
profiles of the other players but not for others. For example, for some
strategy profile of the other players it may be that the strategies of
the other players simply preclude some parts of the tree from being
reached. However, this is the only case in which two strategies of a
player will for some strategy profiles of the other players induce the
same measure on the terminal nodes, and for other profiles of the other
players induce different measures on the terminal nodes. In particular,
a profile of completely mixed behaviour strategies of the other players
does not preclude any part of the tree and so any two strategies that
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induce the same measure over terminal nodes against such a strategy
profile of the others will induce the same measure over terminal nodes
for all strategy profiles of the others. For linear games the same is
true for a profile of completely mixed strategies of the others. And,
in general, when we define it, the same will be true for a profile of
completely mixed general strategies.

Before giving a formal proof of this we shall give a less formal verbal
argument. For any terminal node consider the set of branches on the
path from zy to the terminal node. We call the set of branches on this
path for which Player n moves at beginning of the branch a partial
path for Player n and the set of all such partial pathes as we vary
the terminal node the partial paths of Player n. (This notion of partial
path could be thought of as an incomplete version of the sequence form
of von Stengel (1996).) Now any strategy of Player n will induce what
we will call a quasi-probability on the set of her partial paths (quasi
because the “probabilities” on the partial paths will, generally, add
to more than 1). Now the probability of a terminal node will be the
product of the quasi-probabilities of the partial paths on the path from
the initial node to that terminal node. So the strategy of Player n
will impact the measure over terminal nodes only through its image in
these quasi-probabilities. In other words, if two strategies induce the
same quasi-probability on the partial paths they will induce the same
measure over terminal nodes. Moreover, if they induce a different quasi-
probability on partial paths they will, for at least some strategy profile
of the other players induce a different measure over terminal nodes.
We can, in fact, be a little more specific. If two strategies of Player n
induce a different quasi-probability on a particular partial path then
they will induce a different probability on any terminal node reached
by a path that includes this partial path when combined with quasi-
probabilities for the other players that put positive quasi-probability
on the partial paths of the those players for that terminal node.

Any completely mixed behaviour strategy of a player will induce a
positive quasi-probability on any partial path of that player. Thus
two strategies of a player will induce the same measure over terminal
nodes against a profile of completely mixed behaviour strategies of the
other players if and only if they induce the same quasi-probabilities on
the player’s partial paths. This implies the result. Two strategies of
a player will be Kuhn equivalent if and only if they induce the same
measure over terminal nodes against some profile of completely mixed
behaviour strategies of the other players.

We shall now make this argument more formally and more com-
pletely.

Definition 9. We let Q,, = [0,1]7. For every behaviour strategy b,
of Player n, we let b,(a(x)) be the probability of the action a(z) taken
by Player n at p(z) that leads to x. Then g,(b,) is an element of @,
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that associates the quasi-probability

II  bulat@) (1)
p(z) € r(2)
n(p(z)) = n
to the terminal node z. If Player n doesn’t move on the path to z then
this is the empty product, which we take, as usual, to be 1. We also
define qo(bg, z) for Nature, where by is Nature’s only strategy.

Pure strategies are naturally embedded in the behaviour strategies
SO @, is also well-defined on pure strategies. We extend ¢, from pure
strategies to mixed strategies by taking expectations and also from be-
haviour strategies to general strategies by, again, taking expectations.

Lemma 1. For each n, if b, is completely mized then the induced
quasi-probability of each z in T, q, (b, z), is strictly positive.

Proof. Since b, is completely mixed, at every information set it assigns
strictly positive probability to each action available at that information
set. Hence ¢, (by, ), as given in (1) is strictly positive. O

Remark 2. If the game is linear then the same is true for mixed
strategies, that is, for any completely mixed strategy o,, ¢.(on, 2) is
strictly positive. In nonlinear games this will not necessarily be true,
though, for appropriately defined completely mixed general strategies,
it will be true that for a completely mixed general strategy g, ¢ (gn, 2)
is strictly positive.

Remark 3. For a profile of strategies (1, xs,...,zy), where x,, is in
S, UB,UX, UG,,

the induced probability ¢(z, z) on terminal node z is the product of the
quasi-probabilities ¢, (x,, 2)

H qn(xmz) = Qn(xmz) Q—n(x—nvz)a (2)

neNU{0}
where q_,(x_p,2) = Hmin G (T, 2).

Proposition 1. Two strategies of Player n, x, and z,, are Kuhn
equivalent if and only if they induce the same measure over terminal
nodes for some profile of completely mixed behaviour strategies b_,, of
the other players.

Proof. The only if follows directly from the definition of Kuhn equiva-
lence.

Suppose that x,, and z/, induce the same measure over terminal nodes
for some profile of completely mixed behaviour strategies b_, of the
other players. Then by Lemma 1 for each Player m, m # n, and for
each z we have ¢, (b, 2) > 0. Let ¢(z) be the common probability
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induced on z by the strategy profiles (z,,b_,) and (z/,b_,). Then by
Remark 3 for each z

Qn(xm Z) = Q(Z) ) = Qn(l';w Z).

qn(Tn, 2

And so, again by Remark 3, for any profile of strategies of the players
other than n, z_,, for any z in T the probability induced on z by
(2, x_p) is the same as the probability induced on z by (z/,, z_,), that
is, x,, is Kuhn equivalent to . O

5. A CHARACTERISATION OF KUHN EQUIVALENT STRATEGIES

For each strategy concept we consider the set of Kuhn equivalence
classes, that is, we consider, for each n, the quotient spaces S,/ ~k,
B,/ ~k, ¥,/ ~k, and G,/ ~k. Proposition 1 allows us to give a very
concrete embedding of the various sets of Kuhn equivalent strategies.
For each of the quotient spaces we look at the image of those sets in
A(T), the set of measures on the terminal nodes, given by taking the
strategy z, in S, U B, UX,, UG, to the point in A(T) generated by the
strategy profile (x,, 0%, ) where, for each m # n the behaviour strategy
b0, is the behaviour strategy of Player m that, at each information set
of Player m, puts equal probability on all the actions available at that
information set. These subsets of A(7T") we label S’m B,, ¥, and G,,.
We let G = xneNén and call G the Kuhn reduced space of general
strategy profiles. And similarly for S, B, and 3.

We also define the completely mixed general strategies.

Definition 10. A general strategy g, in G,, of Player n is completely
mized if, for any open subset O of B,,, ¢,(0O) > 0. We denote the set
of all completely mixed general strategies of Player n by G° and the
set of completely mixed strategy profiles by G°.

We also define the corresponding subset of G

Definition 11. A general strategy g, in G, of Player n is completely
mized if there is some ¢/, in G° such that ¢/, is Kuhn equivalent to
gn- We denote the set of all such strategies of Player n by G’% and the
corresponding set of profiles by GO.

Rather than defining completely mixed general strategies in this way
one might have thought of simply requiring that the measure be over
only completely mixed behaviour strategies. This however would re-
sult in an essentially different, and weaker, definition of “completely
mixed.” In Hillas and Kvasov (2021) we discuss how such a definition
of completely mixed gives weaker definitions of quasi-perfect equilibria
and perfect equilibria. If we used the weaker definition we would also
not have the following convenient characterisation.
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Proposition 2. A general strategy g, in G of Player n is com-
pletely mixed if and only if it is in the (relative) interior of G,,.

In order to guarantee the existence of equilibria in nonlinear games
we need to allow not just mixtures of pure strategies but also mixtures
of behaviour strategies, that is, general strategies. Thus, in some sense,
in nonlinear games we might say that behaviour strategies are the ana-
logue of pure strategies in linear games and that general strategies are
the analogue of mixed strategies.

The set G, is embedded as a compact convex subset of A(T). Thus,
by the finite dimensional version of the Krein-Milman Theorem (see
Rockafellar, 1970, Corollary 18.5.1, p. 167), it is the convex hull of its
extreme points. This allows us to give a more demanding analogue in
the nonlinear case of pure strategies in the linear case than simply the
set of behaviour strategies; the extreme points of G, are the natural
analogue of pure strategies in the linear case. Also, if e, is an extreme
point of G, then it is Kuhn equivalent to a behaviour strategy and
each general strategy in G is, by the Carathéodory Theorem (see
Rockafellar, 1970, Theorem 17.1, p. 155), a mixture of at most |T'| + 1
extreme points of G,,. This makes the analysis of nonlinear games quite
similar to the analysis of linear games. The set E,, the extreme points
of é’n, is the analogue of .S,, and G’n the analogue of ¥,,.

In linear games E, =S, and S0, in such games, E, is, except in the
most trivial case, much smaller than B,. In nonlinear games E, C B,
but, in general, if the game is not linear for Player n, E,, will be much
larger than S, Indeed, we consider below an example in which E,
B,.

Proposition 3. For each n, for X, being Sy, By, X, or G, we have
X,/ ~k homeomorphic to X,, with the quotient topology on X,/ ~k
and the relative topology as a subset of A(T) on X,.

Proposition 4. We have the inclusions S,c E,C B, S,C3,,
B, c G,, and £, C G, with %, being the conver hull of S, and
hence a polytope, and G being the convex hull ofB In linear games
B,c%,=G,. In games with perfect recall B, =%, =0G,.

Remark 4. Proposition 4 gives information about the relationships
between the various sets of strategies. Proposition 1 and the definition
of the embedding imply that two strategies in different strategy spaces
that are Kuhn equivalent are mapped to the same point in A(7") by the
embedding. In fact, for any X and Y in {S‘n, E,.B,, >, én} ifreX
and y € Y we have z ~g y if and only if x = y.

In nonlinear games the sets may all be different, even in the simplest
cases. The various sets for the one-person absent-minded driver game
of Piccione and Rubinstein (1997), shown in Figure 1, are given in
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Figure 2.1 Since the set of pure strategies S, is a subset of both B; and
33, these sets must have a nonempty intersection. But in this game S
is the intersection of B; and 3;. Thus the various strategy sets differ
by as much as is permitted by Proposition 4, except that E, = B,.

In the absent-minded driver game the set By is the set of extreme
points of G, and so B, is much bigger than S,.. In linear games E, =25,
and so, in such games, En is, except in the most trivial case, much
smaller than B,,. We could construct an example in which E,, was both
bigger than S, and smaller than Z%n, for example in a game where Na-
ture first decided whether the players played a linear game or Player 1
played the absent-minded driver game.

F1GURE 1. The Absent-Minded Driver Game

The Hasse diagrams in Figure 3 illustrate the set inclusions we have
described. The partial orders given for the three classes of games are
X =Y if and only if Y is a subset of X for all games in the specified
class and Y is a proper subset of X for at least one game in the spec-
ified class, where X,Y € {Sn, E'n, En, f]n, Cjn} There is no claim that
the given partial order necessarily represents the partial order defined
by set inclusion for a particular game in the class. (Indeed, this is im-
possible, since the classes of games are nested while the partial orders
are different.)

IThis game is quite well known since the paper of Piccione and Rubinstein
(1997) and a number of papers commenting on that paper. A very similar game
was considered much earlier by Isbell (1954) who tells a rather grim story about
a player about to be hanged. In the game form we consider here he is saved at
outcome b and hanged at each of the other outcomes. We discuss the example as
Isbell gave it in Section 6.5 below. Even earlier than that, McKinsey (1952b, pp.
604-606) examines the same game, though he does not define it to be a game since
he uses Kuhn’s definition of an extensive form game, telling a similarly grim story
of two policemen who are attempting to shoot an insane criminal. (What was it
about 1950’s game theorists and their grim stories?)
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FIGURE 2. The Strategy Spaces Embedded in A(T)

B, S B,
E,
5‘n = En gn = En gn
Player n has The game is linear The general case
perfect recall for Player n for Player n

FIcUuRE 3. Hasse Diagrams

We see in examples in the next section that 3, is typically of lower
dimension than X,,, even in cases where 5'” is the “same” as S, that
is, has the same cardinality. However, while B, may differ from B,,
as it does in Example 2 of the following section where some behaviour
strategies are Kuhn equivalent to each other, it is necessarily of the
same dimension. On the interior of B,,, where all actions are taken
with strictly positive probability, no two different behaviour strategies
are Kuhn equivalent to each other. Thus there is a bijection between
the interior of B,, and its image in Bn And it is clear that this map and
its inverse are continuous. Thus these sets have the same dimension.
Also all the sets are semialgebraic and so the closures have the same
dimension as the interiors. Thus B, and B,, have the same dimension.

Since there are an infinite number of behaviour strategies, the space
of general strategies, G,,, is infinite dimensional. However, since we
can embed the space of Kuhn equivalence classes of G,, in A(T), that
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embedded space, G’n, is a subset of R” and so Carathéodory’s Theorem
implies the following result. This result was stated by Isbell (1954,
1957, p. 83) and proved by Alpern (1988).2

Proposition 5 (Isbell, 1957, Alpern 1988). For any player n in N
there is a finite number K, such that for any general strategy g, of
Player n there is a general strategy g, putting probability on only K,
elements of B, that is Kuhn equivalent to g,.

Remark 5. For any g_, in G_,, the measure over A(T) that results
from (g,, g_n) is a linear function of g,,. Hence, for any fixed assignment
of payoffs to the terminal nodes, the set of best replies to g, is convex.
It is equally standard that the graph of the equilibrium correspondence
on G is closed. And G is a compact and convex subset of R”. Thus,
the existence of an equilibrium on G is completely standard. Then
Proposition 4 and Remark 4 imply the standard results that for linear
games an equilibrium in mixed strategies exists and for games with
perfect recall an equilibrium in behaviour strategies exists.

6. EXAMPLES

We gave one example in the previous section that illustrated how
even in a simple one-person nonlinear game the various strategy spaces
could differ. In this section we give a number of additional simple
examples that illustrate how the various strategy spaces behave. In
each case, but the last, there are at most four terminal nodes so that
at most there is a three-dimensional simplex on the terminal nodes so
that it is not even beyond our ability to draw the diagrams. In the
last case we can project the strategy space for the player in whom we
are interested into two dimensions. Three of the games are two-person
games and three of the games are one-person games.

6.1. Example 1. The first example is a two-person game with the
game shown in Figure 4 and the strategy spaces shown in Figure 5. This
is a game of perfect information, and hence of perfect recall. Thus Gn =
S, = B, for n = 1,2. There are two distinct Kuhn equivalent pure
strategies of Player 1 and four distinct Kuhn equivalent pure strategies
of Player 2. In spite of Player 2 having four different elements in S, the
dimension of 3 is only 2. The four pure strategies of Player 2, LW,
LE, RW, and RE all lie in the same two-dimensional linear subspace.
For Player 1 the situation is quite simple, with N just being the line
between the two elements of Sy in A(T).

Zsbell (1954, 1957) says the result follows from a theorem of Fenchel (1929),
but the theorem in the paper of Fenchel (in German) he cites appears to be
Carathéodory’s Theorem, with Fenchel correctly attributing it. In Hillas and
Kvasov (2021) we give a proof along the same lines as Alpern (1988) who proves
the result using Carathéodory’s Theorem without explicitly naming it.
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FIGURE 5. Strategy Spaces in A(T") for Example 1

6.2. Example 2. The second example is a one-person game shown in
Figure 6. This is a game of perfect information, and hence of perfect
recall. Thus &, = By = G,. Player 1 has four pure strategies T'M, T'B,
=TM, and =T B. But TM and T'B are Kuhn equivalent, so we label
the three elements of S as T, M, and B. The images of T, M, and B
in A(T) are, respectively, the points a, b, and c. 33, is the convex hull
of T, M, and B, that is, the whole of A(T).

The behaviour strategy spaces B; and By are shown in Figure 7.
A behaviour strategy of Player 1 is (p,q), where p is the probability
that the player chooses =T and ¢ is the probability that the player
chooses B. The behaviour strategy space Bj is [0,1] x [0,1], that
is a Cartesian product of two simplices. However, all the behaviour
strategies in {0} x [0, 1] are Kuhn equivalent, and so all these strategies
are identified under ~x and By is the simplex, A(T).

6.3. Example 3. The third example is a two-person game with the
game shown in Figure 8 and the strategy spaces shown in Figure 9.
(With the appropriate payoffs it would be a matching pennies game.)
In this example both players have perfect recall. Both 3y and 3
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FIGURE 6. Example 2

c
a c
q
a b a b
p
By By = A(T)

FIGURE 7. Behaviour strategies of Example 2

are one-dimensional while A(7T') is three-dimensional. Thus we see an
example where the dimension of A(T') is a strict upper bound on the
dimension of G.

FI1GURE 8. Example 3

6.4. Example 4. The fourth example is a one-person linear game
without perfect recall. The game is shown in Figure 10 and B; and
By in Figure 11. It has a similar structure to the previous game but
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FIGURE 9. Strategy Spaces in A(T) for Example 3

with both information sets owned by the same player. In this game
none of the behaviour strategies are Kuhn equivalent to each other.
Thus B; and Bl are homeomorphic to each other. However the linear
structure of By is not the same linear structure as on A(7") and B is
not a convex set and By is a strict subset of 21, which is, of course, a
convex subset of A(T'); in this case it actually is A(T).

FiGure 10. Example 4

6.5. Example 5. The fifth example is a one-person game similar to
the absent-minded driver game except that the player has a move after
each of her first choices. A game with this structure is given by Isbell
(1954). In the game he considers the payoffs to outcomes a and b are
the same so the game really does have the same structure as the absent-
minded driver game, though the payoffs he gives are not exactly the
same.

In this game A(T) is three dimensional. But the strategy spaces are
the same “shape” as the strategy spaces we found for the absent-minded
driver game in Section 5, in the sense that they are homeomorphic
under a linear homeomorphism.
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b a
q
c
d p
By

FIGURE 13. Strategy Spaces For Example 5

6.6. Example 6. Our final example adds another player to the absent-
minded driver game we examined in the previous section. The idea of
this game is that it is a modified version of Rock-Paper-Scissors with
the choices of Player 1 generated by an absent-minded driver game and
the choices of Player 2 chosen directly and the payoffs adjusted so that
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the optimal choice of Player 1 is in the interior of G1 The extensive
form of the game is given in Figure 14.

0,0 —1,14,—-414,-140,0 —7,7 =2,2 1,—1 0,0
T S t u v w T Yy Z

FiGURE 14. Example 6

Player 2
A B C
al 0,0 -1,1 4, —4
Player 1 b |14,-14| 0,0 =7,7

¢l —2,2 | 1,-1 | 0,0

FIGURE 15. A “Similar” Normal Form Game

In Figure 15 we give the normal form of the game in which Player 1
chooses between a, b, and c. Of course, as we have seen, Player 1 can-
not achieve all randomisations over a, b, and ¢ through her choices of
L and R. However, if the game shown in Figure 15 has an equilibrium
in which the randomisation over a, b, and ¢ does lie in G, then that
strategy, together with the strategy for Player 2 in the equilibrium of
the “similar” game, is an equilibrium of the actual game given in Fig-
ure 14. In fact, the unique equilibrium of the game given in Figure 15
is ((1—76, %, %), <10L17 17—0817 11761)), and that randomisation over a, b, and c,
Player 1’s equilibrium strategy in the “similar” game, does lie in Gh
in the actual game. We show that value, which we label gj, and the
strategy spaces of Player 1, in Figure 16.
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S

FIGURE 16. Strategy Spaces of Player 1 and the
Equilibrium Value of gj for Example 6

7. APPLICATIONS

We have been concerned fairly abstractly with the structure of the
various strategy spaces and the relations between them. However our
motivation was originally concerned with various backward induction
solution concepts for games without perfect recall, and, in particular
for nonlinear extensive form games. A number of results in this paper
result in useful applications in defining and analysing solution concepts
for such games.

7.1. Subgame Perfect Equilibrium in Nonlinear Games. The
notion of a subgame (Selten, 1965, 1975) does not depend on whether
or not the game has perfect recall, or indeed even whether it is linear.
The requirement that all information sets be either completely in or
completely outside the potential subgame means that the subgame can
be examined independently of the part of the game outside the subgame
to exactly the same extent as in games with perfect recall. However,
the notion of subgame perfect equilibrium, as usually defined, is more
problematic.

The standard definition of a subgame perfect equilibrium in a game
with perfect recall is as a profile of behaviour strategies that induces an
equilibrium in any subgame. As we discussed earlier, in games without
perfect recall there may not be equilibria in behaviour strategies. And
in nonlinear games it may even be necessary to look for equilibria in
general strategies. And when one considers either mixed strategies or
general strategies it is not immediately clear how to, from a profile of
strategies, induce behaviour onto unreached subgames, and, in partic-
ular, on how to specify the behaviour of a player whose own strategy
excludes the subgame.
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However, even in a game with perfect recall, the way that we find
subgame perfect equilibria is not, typically, to find all the equilibria in
behaviour strategies, and then check whether these equilibria are in-
deed also equilibria in the subgames. Rather we proceed by backward
induction, looking first at those subgames with no proper subgames,
choosing some equilibrium for that subgame and then replacing the
subgame with a terminal node with payoff being the expected payoff
in the subgame to the chosen equilibrium. And we continue until we
are left with just a single terminal node. At each point at which we
eliminate a subgame we specify a behaviour at each of the eliminated
information sets. Thus, when we are done we can patch together all of
the behaviours at the various information sets to construct a profile of
behaviour strategies and that profile will be a subgame perfect equi-
librium. Moreover, all subgame perfect equilibria can be found in this
way for some choice of the equilibria of the eliminated subgames.

Now, we can carry out a similar construction for any nonlinear game.
Of course, rather than choosing an equilibrium in behaviour strategies,
we look for an equilibrium in general strategies. But, finding such an
equilibrium, we can then replace the subgame with a single terminal
node with payoff being the expected payoff in the subgame to the cho-
sen equilibrium. The only difficulty is in patching the various equilibria
in general strategies of the truncated subgames together to form a pro-
file of general strategies of the original game. And this is tedious rather
than fundamentally hard.

However, if one looks, instead of general strategies at the space G of
the subgames, the process of patching together the strategies becomes
completely straightforward. To keep the explanation simple let us con-
sider a game that has just one proper subgame, which we shall call I
and let us choose an equilibrium ¢’ in G' € A(T") where T is the set
of terminal nodes of I'". Recall that, for each Player n, ¢/, is the image
in A(T") of an equivalence class of general strategies given by the in-
duced outcome on T” of such a strategy against the completely mixed
behaviour strategies of the other players in IV that put equal weight on
all actions at all of their information sets in I''. We now replace the
subgame I with a new terminal node, z’ and look at the truncated
game [ with terminal nodes and choose an equilibrium ¢”of I in
G”. We can now patch together ¢’ and ¢” to form a profile g for the
original game. For each Player n the strategy g/ gives a measure over
the terminal nodes outside the subgame I together with 2’. And g/,
gives a measure over the terminal nodes of [". We define g,, to be that
measure over T where for each z outside of T” the probability assigned
by g, is that assigned by ¢/ and for each z in 7" it is the probability
assigned to 2’ by g times the probability assigned by g/, to z.

This proof is sketched in Hillas and Kvasov (2020) and is covered in
somewhat more detail in Hillas and Kvasov (2021).
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7.2. A Definition of Proper Equilibrium in Nonlinear Games.
We now sketch how proper equilibrium, defined for normal form games
by Myerson (1978), might be defined for nonlinear games. As we indi-
cated earlier the appropriate analogue of pure strategies in linear games
is not behaviour strategies but rather the extreme points of the set of
general strategies. Now even the set E, may be infinite. There are
no doubt a number of ways of defining proper equilibria. We give one
straightforward manner.

Let us consider some nonlinear game. For each n we define, Efl an e-
approximation of E,, to be a finite subset of £, such that each element
of E, is within ¢ of E’fL We now let e® be a proper equilibrium of a
standard finite normal form game with finite strategies (E2) ey, with
the natural payoffs. Now, of course, ¢° “is” an element of G and since G
is compact any sequence of e has a convergent subsequence converging
to a limit. Such a limit we call a proper equilibrium. In a linear game
E,, will coincide with S, and so, for all sufficiently small £, the set EfL
will coincide with S,. Thus the definition of proper equilibrium will
coincide with the usual definition.

In Hillas and Kvasov (2021) we give definitions of quasi-perfect equi-
libria, originally defined for normal form games by van Damme (1984),
for nonlinear games. We conjecture that, with these definitions for
nonlinear games, a proper equilibrium is a quasi-perfect equilibrium.
Since we know that adding arbitrary behaviour strategies as new pure
strategies changes the set of proper equilibria it seems unlikely that
defining proper equilibrium using all behaviour strategies rather than
just the extreme points will give the same result.

7.3. Strategic Stability in Nonlinear Games. Mertens (2004, 1989,
1991) gives a number of definitions of small perturbations of a game.
We give here just one of them. (For more details see Mertens (1989,
pp 584-585), of which we give a brief summary.)

The perturbations smaller than § < 1 are defined to be

Ps={n=(c,00)|0<e,<6, 0, €T,}.

The boundary of Pj is denoted 9Ps and its interior Pj. We let P = P;.

For any perturbation n € Pj it is straightforward to define the per-
turbed game I'(n) and also the equilibria of I'(n), which we denote
Eq(n). We consider the graph of the equilibrium correspondence on
the interior of P, that is,

E={(o,n)eXxP|oeEqn)}.

We consider subsets S° of £ such that S° is closed and semialgebraic
and let S be the closure of S in ¥ x P. We also define S%, Ss, and 9.5;,
as the inverse images in S of P, Ps, and 9P;. The stability requirement
on the sets S that define stable sets are that, for all sufficiently small ¢,
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it is connected and the projection map from Ss to Pj is nontrivial.
(The form of nontriviality that Mertens uses is that the projection
map from (Ss,05s) to (P5,0Ps) is homologically nontrivial, and he
actually considers homologies with different coefficient modules, but
this need not concern us here.) The stable sets are then Sy the limits
at 0 of such sets, that is the sets {(o,7) € S | n = 0}, and the Hausdorff
limits of such sets. (Looking at the Hausdorff limits just “undoes” the
restriction of S to semialgebraic sets.)

We can define stable sets for nonlinear games by simply replacing
3, in the definition of the perturbations with G,. We define perturbed
games, I'(n), and the equilibria of the perturbed games and the graph
of the equilibrium correspondence on the interior of the space of per-
turbations then becomes

£ = {(g,n) eGxPlge EQ(n)}

and the rest of the definition of stable sets is as described above for
normal form games, that is, for the linear case.

There is a lot to check, but much of the work in Mertens (2004,
1989, 1991) is to show that nothing in the construction of the stable
sets depends on the topological or linear structure of the various sets,
so there is much reason to be optimistic that the construction will go
through. Of course, some of the properties, such as the admissibility
and backward induction properties, will use different definitions and so
these properties will also require careful checking. The most challenging
task would seem to be finding the appropriate analogue to Theorem 1
of Kohlberg and Mertens (1986), and proving it.

A less challenging, and less satisfactory, approach would be to define
stable sets using perturbations to the best reply correspondence on G ,
following the approach of Hillas (1990).

8. CONCLUSION

Kuhn’s Theorem tells us that, for games with perfect recall, be-
haviour strategies and mixed strategies are equivalent in the sense that,
as a function of the strategies of the other players, they induce the same
measures over the terminal nodes. We have given here a systematic
treatment of such equivalence between all classes of strategies.

All of the results about the equivalence and nonequivalence of various
strategy sets for different classes of games are either previously known
or are immediate and trivial consequences of the known results. The
result in Proposition 1, that two strategies are equivalent if and only if
they induce the same measure over terminal nodes against some profile
of completely mixed strategies of the other players, has not, as far as
we can tell, appeared in the literature. It is, however, quite straight-
forward. Its implication, that all the strategy sets can be embedded in
the set of measures over the terminal nodes, that is, the T-simplex, is,
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we believe, new and interesting. This embedding allows a very clean
expression of the relation between the various strategy sets in the dif-
ferent classes of games. And, in Section 7, we sketched a few other
interesting applications of this embedding.

REFERENCES

STEVE ALPERN (1988): “Games with Repeated Decisions,” SIAM
Journal on Control and Optimization, 26(2), 468-477. 16

WERNER FENCHEL (1929):  “Uber Kriimmung und Windung
geschlossener Raumkurven,” Mathematische Annalen, 101(1), 238
252. 16

JOHN HILLAs (1990): “On the Definition of the Strategic Stability of
Equilibria,” Econometrica, 58(6), 1365-1390. 25

JOHN HiLLAs AND DMITRIY KvAsov (2020): “Backward Induction
in Games without Perfect Recall,” Games and FEconomic Behavior,
124, 207-218. 2, 4, 23

JOHN HiLLAs AND DMITRIY KvAasov (2021): “Backward Induction
in Nonlinear Games,” unpublished. 2, 12, 16, 23, 24

JOHN R. ISBELL (1954): Absolute Games, Ph.D. thesis, Princeton
University. 1, 2, 9, 14, 16, 19

JoHN R. ISBELL (1957): “Finitary Games,” in Contributions to the
Theory of Games, Volume III, edited by Melvin Drescher, Albert W.
Tucker, and Philip Wolfe, 79-96, Princeton University Press, Prince-
ton, NJ. 1, 2,9, 16

Enub KALAI AND EHUD LEHRER (1993): “Rational Learning Leads
to Nash Equilibrium,” Econometrica, 61(5), 1019-1045. 2

ELON KOHLBERG AND JEAN-FRANGOIS MERTENS (1986): “On the
Strategic Stability of Equilibria,” Econometrica, 54(5), 1003-1037.
25

HaroLD W. KunN (1950a): “A Simplified Two-Person Poker,”
in Contributions to the Theory of Games, Volume I, edited by
Harold W. Kuhn and Albert W. Tucker, 97-103, Princeton Uni-
versity Press, Princeton, NJ. 6

HaroLD W. KUHN (1950b): “Extensive Games,” Proceedings of the
National Academy of Sciences, 36(10), 570-576. 1, 3, 6, 8, 9

HaroLp W. KUHN (1953): “Extensive Games and the Problem of
Information,” in Contributions to the Theory of Games, Volume II,
edited by Harold W. Kuhn and Albert W. Tucker, 193-216, Prince-
ton University Press, Princeton, NJ. 1, 6, 8, 9

HaArOLD W. KUHN (2003): Lectures on the Theory of Games, Prince-
ton University Press, Princeton, NJ. 1, 8

J. C. C. McKINSEY (1952a): Introduction to the Theory of Games,
McGraw-Hill Book Company, New York-Toronto-London. 1



KUHN EQUIVALENCE 27

J. C. C. McKINSEY (1952b): “Some Notions and Problems of Game
Theory,” Bulletin of the American Mathematical Society, 58, 591—-
611. 1, 14

JEAN-FRANGOIS MERTENS (1989): “Stable Equilibria—A Reformula-
tion. Part I. Definition and Basic Properties,” Mathematics of Oper-
ations Research, 14(4), 575-625. 24, 25

JEAN-FRANGOIS MERTENS (1991): “Stable Equilibria—A Reformu-
lation. Part II. Discussion of the Definition, and Further Results,”
Mathematics of Operations Research, 16(4), 694-753. 24, 25

JEAN-FRANGOIS MERTENS (2004): “Ordinality in Non-Cooperative
Games,” International Journal of Game Theory, 32(3), 387-430. 24,
25

JEAN-FRANCOIS MERTENS, SYLVAIN SORIN, AND SHMUEL ZAMIR
(2015): Repeated Games, Cambridge University Press, Cambridge.
1,2,7

ROGER MYERSON (1978): “Refinement of the Nash Equilibrium Con-
cept,” International Journal of Game Theory, 7(2), 73-80. 24

JOHN F. NAsH AND LLoyD S. SHAPLEY (1950): “A Simple Three-
Person Poker Game,” in Contributions to the Theory of Games, Vol-
ume I, edited by Harold W. Kuhn and Albert W. Tucker, 105-116,
Princeton University Press, Princeton, NJ. 6

MICHELE PICCIONE AND ARIEL RUBINSTEIN (1997): “On the Inter-
pretation of Decision Problems with Imperfect Recall,” Games and
Economic Behavior, 20(1), 3-24. 13, 14

R. TYRRELL ROCKAFELLAR (1970): Convex Analysis, Princeton Uni-
versity Press, Princeton, NJ. 7, 13

ROBERT W. ROSENTHAL (1981): “Games of Perfect Information,
Predatory Pricing and the Chain-Store Paradox,” Journal of Eco-
nomic Theory, 25(1), 92-100. 3

ARIEL RUBINSTEIN (1991): “Comments on the linterpretation of
Game Theory,” Econometrica, 59(4), 909-924. 3, 4

REINHARD SELTEN (1965):  “Spieltheoretische Behandlung eines
Oligopolmodells mit Nachfragetragheit,” Zeitschrift fir die gesamte
Staatswissenschaft, 121, 301-324, 667-689. 22

REINHARD SELTEN (1975): “Reexamination of the Perfectness Con-
cept for Equilibrium Points in Extensive Games,” International
Journal of Game Theory, 4(1), 25-55. 22

ERIC VAN DAMME (1984): “A Relation between Perfect Equilibria
in Extensive Form Games and Proper Equilibria in Normal Form
Games,” International Journal of Game Theory, 13(1), 1-13. 24

JOHN VON NEUMANN AND OSKAR MORGENSTERN (1947): Theory of
Games and Economic Behavior, Princeton University Press, Prince-
ton, NJ, 2nd edition. 1, 2, 3, 6, 8

BERNHARD VON STENGEL (1996): “Efficient Computation of Behavior
Strategies,” Games and Economic Behavior, 14(2), 220-246. 10



28 JOHN HILLAS AND DMITRIY KVASOV

DEPARTMENT OF ECONOMICS, THE UNIVERSITY OF AUCKLAND, NEW ZEALAND
Email address: j.hillas@auckland.ac.nz

SCHOOL OF POLITICAL SCIENCE AND EcoNnoMICS, WASEDA UNIVERSITY, JAPAN
Email address: dmitriy.kvasov@waseda. jp



	1. Introduction
	2. What Is a Strategy?
	3. Extensive Form Games and Strategies
	4. Kuhn Equivalence
	5. A Characterisation of Kuhn Equivalent Strategies
	6. Examples
	6.1. Example 1
	6.2. Example 2
	6.3. Example 3
	6.4. Example 4
	6.5. Example 5
	6.6. Example 6

	7. Applications
	7.1. Subgame Perfect Equilibrium in Nonlinear Games
	7.2. A Definition of Proper Equilibrium in Nonlinear Games
	7.3. Strategic Stability in Nonlinear Games

	8. Conclusion
	References

