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Abstract

An interval game is an extension of the characteristic function form games, in which
players are assumed to face payoff uncertainty. This characteristic function thus assigns a
closed interval, instead of a real number. This paper proposes a new solution mapping of
n-person interval games, called Shapley mapping and applies it to n-person interval games. It
is shown that the Shapley mapping is the unique solution mapping that satisfies the axioms
of: (i) efficiency, (ii) symmetry, (iii) null player property and (iv) an interval game version of
additivity.

Keywords: cooperative interval games; interval uncertainty; Shapley value; solution map-
ping; axiomatization

1 Introduction

This paper examines cooperative game theory when players face uncertainty. One of the most
familiar representations of cooperative game theory without uncertainties are the characteristic
function form games with transferable utility (the so-called coalition form games or TU games)
proposed by von Neumann and Morgenstern ([31]).1 A coalition form game consists of a set
N of players and a characteristic function v that gives a real number v(S) (i.e., the worth of
S) to every subset S of N (i.e., the coalitions). For each coalition S, v(S) is the total payoff S
can obtain by itself and divide among its members in any possible way. The solution concept
of characteristic function form games assigns each game a (possibly empty or singleton) set of
outcomes, where the outcome is represented by n-dimensional real-valued vectors. In the literature
on characteristic function form games, various types of solution concepts have been proposed,
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1Another standard specification are the coalitional form games with nontransferable utility (the so-called NTU

games) introduced by Aumann and Peleg ([10]).
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including imputation, core, the von Neumann and Morgenstern stable set, the Shapley value, and
the nucleolus.

However, in reality, the payoffs a coalition can entail uncertainty. For instance, under the
classical “bankruptcy problem” a creditor has to decide on the amount of money to be lent, thus
facing uncertainty regarding the borrower’s future fiscal condition or solvency when the claim
is scheduled to be paid back and cleared. Similarly, when a project is to be jointly financed by
multiple investors and they need to decide whether to join, they may not be able to know (i)
the exact return that would be realized by the project or (ii) the additional costs that would be
incurred by them in the interim period before the project is completed. Therefore, introducing
uncertainty into standard characteristic function form games is a natural and important extension.
In this paper, we employ a model of interval games that consider “interval uncertainty”, in that
the uncertainty regarding the coalition payoff is represented by a closed interval. Specifically,
we study a generalized characteristic function form game, in which a characteristic function w

assigns a bounded and closed interval of real numbers to every coalition instead of real numbers
as in classical characteristic function form games.2 3

Interval games were initially proposed by Branzei et al. [12] as a generalization of the clas-
sical bankruptcy games. Subsequently, from the middle of the 2000s and until the beginning of
the 2010s, interval game analysis was mainly driven by the research group of Tijs, Branzei, and
Alparslan Gök. Alparslan Gök et al. ([7]) proposed the notion of “selection-based solution con-
cept” as the solution concept to be applied to interval games, defined the imputation and the core
sets as specifications of the selection-based solution concept, and applied them to specific interval
games, mainly two-person games. Furthermore, Alparslan Gök et al. ([7]) proposed another type
of solution concept, called ψα-value, which can be classified as the notion of “solution mapping”
which is examined thoroughly in our paper.

As an alternative solution concept to the selection-based solution concept, Alparslan Gök et
al. ([3], [4]) proposed the notion of interval solution concept. The interval core, interval stable set,
and interval Shapley value are the solutions included into the interval solution concept. Among
them, the interval Shapley value was characterized by axiomatizations such as those of Alparslan
Gök ([2]) and Alparslan Gök et al. ([6]). As explained in the following, an interval solution is
defined as a (possibly empty or singleton) set of n-dimensional interval vectors, that is, a vector
whose component is a closed interval. Therefore, the notion of the interval solution concept has
to solve the issue of how to use interval solutions after uncertainties are removed and one of the
outcomes in the worth set is realized, as per Branzei et al. ([13]). As for applications of interval
games, Palanci et al. ([25]) analyze how to introduce uncertainties into classical cooperative

2Throughout this paper, w denotes the characteristic function in an interval game, as to distinguish it from the
characteristic function v in a characteristic function game.

3As for the related literature on the introduction of uncertainty to cooperative game-theoretic analysis, Habis and
Herings’s ([17]) TUU game is a two-stage game, in which the first stage consists of multiple coalition form games
and, in the second stage, one of them is realized and played by the players. Suijs et al. ([29], [30]) considered a
stochastic cooperative game that assigns a random variable to a coalition as its coalition value, rather than a real
number. Aubin ([8]) formalized fuzzy games in which the uncertainties regarding coalition formation are introduced.
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transportation games and formalize them as interval games. Alparslan Gök et al.[5] examine the
Shapley value and Baker–Thompson rule in the interval-game version of the airport game. Those
theoretical and applied analyses of interval games are summarized in Alparslan Gök ([1]), Branzei
et al. ([11]), and Ishihara and Shino ([19]).

Recently, interval game analyses have progressed further. In particular, as a main topic that
relates to the interval Shapley value, researchers have focused on how to define interval subtrac-
tions between closed intervals. Similar to the Shapley value in coalition form games, the interval
Shapley value is defined based on the marginal contribution of each player. Since the marginal
contribution is defined as a gap between two different coalition values and since, in interval games,
the values are within a closed interval rather than real numbers, we need to define a subtraction
operator regarding those closed intervals. As examined in the following sections, Alparslan Gök
et al. ([6]), which originally proposed the interval Shapley value, employed a partial subtraction
operator. However, this operator is only defined for an “ordered interval pairs,” namely two closed
intervals I = [I, I] and J = [J, J] satisfying J − J ≤ I − I, which substantially reduces the appli-
cability of the interval Shapley value to interval games. On this issue, Alparslan Gök et al. ([4])
restricted the analysis to size monotonic interval games, in which the subtraction operator is al-
ways well-defined; thus, the interval Shapley value can be computed. Furthermore, they provided
an axiomatic characterization of the interval Shapley value on a special subclass of size monotonic
interval games, called the convex cone. However, this restriction of coverage seems too strong,
and they argued that “to characterize the interval Shapley value on the class of size monotonic
games is a topic for further research,...”(page 138 of Alparslan Gök et al. [6]).

Moreover, to address the interval subtraction problem, Han et al. ([18]) introduced Moore’s
subtraction operator, applied it in defining a player’s marginal contribution and the interval Shap-
ley value, and attempted to axiomatize the value. However, while Moore’s operator is always
defined for any pair of closed intervals, the interval Shapley value does not satisfy efficiency (i.e.,
efficiency of the worth set of the grand coalition; see footnote 7). Meng et al. ([23]) employed
the concept of “imaginary” interval numbers and imaginary differences, such that [a,b] satisfying
a > b, and defined the interval Shapley value by using these concepts. However, as a natural
consequence, the interval Shapley value based on imaginary differences can assign imaginary in-
terval numbers to a player, which provides no “guideline” about the desirable allocation and is
thus impossible to interpret.

Moreover, Fei et al. ([15]) proposed the interval-valued discounted Shapley value, which
is defined without using interval subtraction and examined the properties of the value. For a
parameter called “attitude factor” α ∈ [0,1], they introduced α-cooperative games associated with
interval games, which are categorized as coalition form games. Then, they set the discounted
Shapley values of α-cooperative games when α = 0 and α = 1 as the lower and upper bounds of
the solution in the original interval game, respectively. In this case, for this solution, defined as an
n-dimensional interval vector, to be well-defined, the following condition has to be satisfied: for
every player, the payoff given by the discounted Shapley value when α = 0 must not be strictly
larger than the one when α = 1. Fei et al. ([15]) showed that, for any interval games, there exists a
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discount factor δ ∈ [0,1] associated with the definition of the discounted Shapley value, so that the
above condition is satisfied. However, this solution concept, called the interval discounted Shapley
value, guarantees its existence only when δ = 0, which corresponds to the perfect egalitarian rule.
However, in case of δ = 1, which corresponds to the (non-discounted and standard) Shapley
value, this solution may not exist. Under a similar framework, Lian and Li ([22]) proposed and
examined the interval Banzhaf value. However, they just restricted the coverage of analysis to size
monotonic interval games rather than searching for a condition on the existence of the solution,
such as Fei et al. ([15]). Furthermore, this does not satisfy efficiency. Finally, Li et al. ([21])
studied the interval solidarity value but also restricted the coverage of games to be analyzed.

In this study, we define a new solution concept, based on the notion of solution mapping, as
initially examined by Alparslan Gök et al. ([7]) at the early stages of interval game literature,
and solve interval games by applying this solution concept. On the one hand, interval solution
concepts are currently playing a central role in the literature and are defined as a (possibly empty
or singleton) set of n-dimensional interval vectors. However, such a solution does not directly
answer the question of how to allocate realized outcomes between players after uncertainties are
removed. Branzei et al. ([13]) tackled this problem as an independent analysis. However, clear
instructions to provide an agreeable ex-post allocation do not seem to have been derived. On
the other hand, our solution concept does not have to consider this issue, since it is defined as
a mapping that assigns n-dimensional real-valued vectors, rather than intervals, to each outcome
realization (see also Ishihara and Shino ([19]) and Ishihara et al. ([20])).

As previously discussed, our solution concept is based on the solution mapping of Alparslan
Gök et al. ([7]). However, we propose a new solution concept, called Shapley mapping, and
apply it to general n-person interval games. As we will discuss in detail in the subsequent sections,
Shapley mapping has some advantages compared with the existing solution concepts of interval
games. First, as argued above, it does not have to consider “how to handle interval solution
concepts” after uncertainties are removed. Second, it is defined without using interval subtraction.
Finally, it is characterized by a standard axiomatization without any restrictions on coverage of
the game, that is, it is axiomatized for general n-person interval games.

The rest of this paper is organized as follows. Section 2 reviews coalition form and interval
games and solution concepts in interval games. Section 3 examines the existing solution con-
cept and solution mapping by providing some examples. Section 4 defines the Shapley solution
mapping and characterizes the mapping by a standard axiomatization corresponding to the one of
Shapley ([28]). Section 5 concludes the paper.

2 Coalition form games and interval games

2.1 Coalition form games

An n-person coalition form game or a TU game is a pair (N,v), where N = {1,2, . . . ,n} is a set
of players and v : 2N → R is a characteristic function that associates a real number v(S) ∈ R with
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each set S ∈ 2N , so that v(∅) = 0. Number v(S) is called the worth of S. We refer to S and N as
a coalition and grand coalition, respectively. Worth v(S) is the transferable utility (typically, the
amount of money) that coalition S can obtain itself and divide among its members in any possible
way. Let CG and CGN be the set of all coalition form games and all n-person coalition form
games, respectively. We hereafter occasionally denote n-person coalition form games simply by
v instead of an expression of (N,v). For coalition form game v and coalition {1, . . . , k} ∈ 2N , we
write v(1, . . . , k) instead of v({1, . . . , k}).

Representative solution concepts for the characteristic function form games include the von
Neumann and Morgenstern stable set (von Neumann and Morgenstern [31]), set of imputation,
core (Gillies [16]), Shapley value (Shapley [28]), nucleolus (Schmeidler [27]), bargaining sets
(Aumann and Maschler [9]), and kernel (Davis and Maschler [14]). In this study, we use the
notion of the Shapley ([28]) value.

For an n-person characteristic function form game v ∈ CG, the n-dimensional real-valued
vector of ϕ(v) = (ϕ1(v), ..., ϕi (v), ..., ϕn(v)) that satisfies the following (1) is called the Shapley
value of v:

ϕi (v) =
∑
S:i∈S

(s − 1)!(n − s)!
n!

{v(S) − v(S \{i})}. (1)

2.2 Interval games

Similarly to an n-person characteristic function form game (N,v), an n-person interval game is a
pair (N,w), where N = {1,2, ...,n} is a set of players and w a characteristic function. An interval
game differs from a characteristic function form game in that w assigns a closed interval to each
coalition instead of a real number. Formally, letting I (R) be the set of all closed and bounded
intervals in R, w : 2N → I (R) is the characteristic function that assigns to each coalition S ∈ 2N

a closed interval w(S) ∈ I (R) that satisfies w(∅) = [0,0]. Interval w(S) is called the worth set of
S and the minimum and the maximum of w(S) are denoted by w(S) and w(S), respectively, that
is, w(S) = [w(S),w(S)]. An interval game (N,w) considers a situation in which the players face
“interval uncertainty” in that they know a coalition S could have w(S) as the minimal reward and
w(S) as the maximal one, but do not know ex ante which one between them would be realized.
Let IG and IGN be the set of all interval games and all n-person interval games, respectively. We
hereafter denote the n-person characteristic function form games by w instead of a pair (N,w).
For an interval game w and a coalition {1, ..., k} ∈ 2N , we write w(i, ..., k) instead of w({1, ..., k}).
In an interval game w, players i and j are symmetric if w(S ∪ {i}) = w(S ∪ {i}), for any coalition
S ⊂ N \ {i, j}.

We provide some interval calculus notations for the following analysis. Let I = [I, I], and
J = [J, J] be two closed intervals. The sum of I and J, denoted by I + J, is given as I + J =
[I + J, I + J]. Next, following Alparslan Gök et al. ([4]), the partial subtraction operator denoted
by “ − ” is defined as:

I − J = [I − J, I − J].
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Note that the partial subtraction operator is only defined for an ordered interval pair, that is, two
closed intervals I = [I, I] and J = [J, J] satisfying J − J ≤ I − I. When this condition is violated,
I − J cannot be defined as an interval, since I − J > I − J. Finally, Moore’s ([24]) subtraction
operator, which we denote as “ −(M) ”is given by:

I −(M) J = [I − J, I − J]. (2)

As opposed to the partial subtraction operator, Moore’s operator can be defined for any interval
pairs (I, J) ∈ I (R) × I (R).

For two different interval games w′,w′′ ∈ IG, the sum of the interval games w′ + w′′ ∈ IG
is also an interval game itself, defined by (w′ + w′′)(S) = w′(S) + w′′(S) for every S ∈ 2N . For
an interval game w ∈ IG, let vw ∈ CG be a characteristic function form game generated from an
interval game w, so that vw (S) = w(S) for every S ∈ 2N , and vw ∈ CG be a characteristic function
game generated from an interval game w, so that vw (S) = w(S) for every S ∈ 2N .

For closed intervals I, J ∈ I (R), I ⪯ J denotes I ≤ J and I ≤ J. Let I = (I1, ..., In) ∈ I (R)N

be an n-dimensional closed interval vector, so that Ii ∈ I (R) for i ∈ N . For I ∈ I (R)N , we
respectively define min I ∈ RN and max I ∈ RN as follows:

min I = (min I1, ...,min In), max I = (max I1, ...,max In). (3)

For an interval game w ∈ IG, we say that players i and j are symmetric when w(S ∪ {i}) =
w(S ∪ { j}) holds for any coalition S ⊂ N \ {i, j}. We say player i is a null player, or simply null,
when w(S) = w(S ∪ {i}) holds for any S ∈ 2N\{i}.

Note that, for an interval game w ∈ IG, if all worth sets are singletons, that is, w(S) = w(S)
for every S ∈ 2N , w corresponds to the characteristic function form game v ∈ CG, which is
defined as v(S) = w(S) = w(S). In this case, we say that v ∈ CG and w ∈ IG are equivalent or w
is equivalent to v. This means that a (classical) characteristic function form game can be regarded
as a special case of an interval game with no uncertainty.

3 Solution concepts in interval games

3.1 Existing solution concepts: interval solution concepts and interval Shap-
ley value

In the literature on interval games, the most popular solution concept, which has hitherto played a
central part in analyses, is the interval solution concept.4 Interval solution concepts are defined
as a (possibly empty or singleton) set of n-dimensional interval vectors. Formally, by letting

4Another type of solution concept proposed early in the history of interval game analysis are the selection-based
solution concepts proposed by Alparslan Gök et al. ([7]). For an interval game w ∈ IG, a function v : 2N → R is
called the selection of w if v(S) ∈ w(S) for each S ∈ 2N . Note that pair (N,v) constitutes a characteristic function
form game. Let Sel (w) be the set of all selections of w. The following two representative selection-based solution
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Ii ∈ I (R) be the interval payoff of player i and I = (I1, ..., In) ∈ I (R)N be an n-dimensional closed
interval vector, an interval solution concept in w ∈ IG assigns a (possibly empty or singleton) set
of n-dimensional interval vectors, I. The interval imputation set, interval core, interval stable set
(Alparslan Gök et al. [3]), and the interval Shapley value (Alparslan Gök et al. [4]) are classified
as part of the interval solution concept. Here, for the following analysis we formally define the
interval Shapley value, proposed by Alparslan Gök et al. ([4]) and subsequently axiomatized by
Alparslan Gök ([2]) and Alparslan Gök et al. ([6]).5

First, let a permutation of N be σ : N → N and the group of all permutations of N be
π(N ). Next, for an interval game w ∈ IGN and a permutation σ, we define player i’s marginal
contribution in σ of w as:

mσ
i (w) = w(Pσ (i) ∪ {i}) − w(Pσ (i)). (4)

Here, Pσ (i) is given by Pσ (i) = {r ∈ N | σ−1(r) < σ−1(i)}, that is, the set of i’s predecessors in
permutationσ. A marginal contribution vector in σ of w is defined as mσ (w) = (mσ

1 (w), ...,mσ
n (w)).

Based on these setups, interval Shapley value Φ : IG → I (R)N is defined by (5):

Φ(w) = (Φ1(w), ...,Φn(w)) =
1
n!

∑
σ∈Π(N )

mσ (w). (5)

Then, Φi (w) (i ∈ N) in (5) can be rearranged as follows:

Φi (w) =
∑
S:i∈S

(s − 1)!(n − s)!
n!

{w(S) − w(S \{i})}. (6)

It is evident from comparing (6) and (1) that the interval Shapley value is a simple extension of
the Shapley value in coalition form games. However, the interval Shapley value is not always
definable because the partial subtraction operator is used. To ascertain this, consider examples 3.1
and 3.2. In the former case, the interval Shapley value can be computed, but it cannot in the latter.

concepts of an interval game w, imputation set I (w), and the core set C(w) are given by (Alparslan Gök et al. [7]):

I (w) = ∪ {I (v) |v ∈ sel (w)} ,
C(w) = ∪ {C(v) |v ∈ sel (w)} ,

where I (v) and C(v) are the imputation and core sets in characteristic function form game v ∈ CG, respectively.
However, analyses using selection-based solution concept have had limited progress and interval solution concepts

have become the central and, virtually, the only solution concept applied.
5Interval imputation set I I (w) and interval core IC(w) of interval game (N,w) are given by:

I I (w) =
I = (I1, ..., In ) ∈ I (R)N

������
∑
ı∈N

Ii = w(N ), w(i) ⪯ Ii , ∀ i ∈ N


IC(w) =
I = (I1, ..., In ) ∈ I (R)N

������
∑
ı∈N

Ii = w(N ), w(S) ⪯
∑
i∈S

Ii , ∀ S ∈ 2N \{∅}
 .
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Example 3.1 This example is based on Alparslan Gök et al. ([4]). w(1) = [0,0], w(2) = [0,0],
w(3) = [0,0], w(12) = [2,4], w(13) = [2,4], w(23) = [2,4], and w(123) = [9,15].

Player 1’s marginal contributions for each permutation are as follows: σ(123)
1 (w) = w(1)−w(∅) =

[0,0], σ(132)
1 (w) = [0,0], σ(213)

1 (w) = [2,4], σ(231)
1 (w) = [7,11], σ(312)

1 (w) = [2,4], and
σ(321)

1 (w) = [7,11]. Given that the sum of all marginal contributions is [18,30] and 3! = 6,
player 1’s interval Shapley value is Φ1(w) = [3,5]. By similar computations (or symmetry), the
interval Shapley value, Φ, in this example is given by:

Φ(w) = ([3,5] , [3,5] , [3,5]) . (7)

Example 3.2 This example is based on Han et al. ([18]). w(1) = [0,2], w(2) = [1/2,3/2],
w(3) = [1,2], w(12) = [2,3], w(13) = [3,4], w(23) = [4,4], and w(123) = [6,7].

Player 2’s marginal contributions for permutation (123) cannot be computed because m(123)
2 (w) =

w(12) − w(1) = [2,3] − [0,2] but 2 − 0 > 3 − 2.
To address the so-called “interval subtraction problem,” Alparslan Gök et al. ([2], [4], [6])

restricted the coverage of interval games to size monotonic interval games. An interval game w ∈
IG is called size monotonic when the following condition (8) holds for every pair of coalitions
(S,T ) satisfying S ⊆ T :

w(S) − w(S) ≤ w(T ) − w(T ). (8)

When an interval game is size monotonic, w(T ) − w(S) ≤ w(T ) − w(S) for every (S,T ) with
S ⊆ T . This implies that a player’s marginal contribution defined in (4) can be defined as a closed
interval. Example 3.2 presents the case where the marginal contribution cannot be derived because
this is not size monotonic and such a game is thus excluded from analyses such as Alparslan Gök
et al. ([2], [4], [6]).

As a different approach to address the “interval subtraction problem,” Han et al. ([18]) used
Moore’s subtraction operator (Moore [24]) to define an interval solution concept called the interval
Shapley-like value. As shown by the expression of (2), Moore’s subtraction operator can be
defined for any interval pairs. For example, different from the partial subtraction operator, we can
compute player 2’s marginal contributions for permutation (123) in Example 3.2 as: σ(123)

2 (w) =
w(12) −(M) w(1) = [2,3] −(M) [0,2] = [2 − 2,3 − 0] = [0,3], which is a closed interval. Letting
ΦM be the interval Shapley-like value, ΦM is given by:

Φ
M (w) =

( [
11
12
,
31
12

]
,

[
7
6
,
17
6

]
,

[
23
12
,
43
12

])
. (9)

Now, as an example, assume that a grand coalition forms and 6 ∈ w(123) is realized after
uncertainties are removed. In this case, the problem we need to solve is how 6 is allocated among
players 1, 2, and 3. However, as evident from (7) and (9), interval solution concepts such as
the interval Shapley value and interval Shapley-like value do not provide a clear answer to this
problem. Branzei et al.’s ([13]) is the only analysis to address this issue. Based on their proposed
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procedure, for the realization of 6 ∈ w(123), the interval Shapley-like value leads to a real-valued
payoff vector of (11/12,7/6,23/12).6 However, the sum of payoffs is 4, which is strictly smaller
than realized outcome 6. This observation clearly implies that interval Shapley-like value does
not satisfy efficiency.7

Based on these arguments, in the next subsection, we examine the notion of solution mapping
as an alternative to the interval solution concept.

3.2 A new solution concept: solution mapping

Considering the underlying situation that interval game analyses essentially assume, an alterna-
tive approach in constructing a solution concept may be appropriate. As previously discussed,
an interval-game analysis essentially assumes the following as the underlying situation players
face. First, players face payoff uncertainties, represented by the worth sets, and negotiate over a
“rule” or “protocol” which specifies a way to allocate an outcome among players ex ante, before
uncertainties are removed. Second, after the uncertainties are removed and one of the outcomes
in the worth set is realized, the realized outcome is allocated based on the agreed rule or protocol
in the ex ante negotiation.8 Specifically, when the grand coalition forms, the realized outcome
in w(N ) is allocated. Based on this interpretation, we argue that a solution concept of interval
games should be a mapping that assigns n-dimensional real-valued vectors to each realization in
the worth set of the grand coalition, rather than directly specifying n-dimensional interval vectors
as the interval solution concepts. This is the main idea of the solution mapping notion that we
employ as a solution concept.

Formally, solution mapping is defined as follows. First, we consider a mapping κ : [a,b]→ Rn

that assigns n-dimensional payoff vectors to each realization in closed interval [a,b]. Second, let
the set of all κ be K (Rn) and F : IG → K (Rn) be a map that assigns to each interval game w

a unique mapping F (w) ∈ K (Rn). Finally, when the domain of F (w) is the worth set of grand
coalition w(N ) = [w(N ),w(N )], that is, F (w) : [w(N ),w(N )] → Rn, we call F a solution map-
ping in n-person interval games. F (w)(t) assigns n-dimensional payoff vectors to each realization
t ∈ [w(N ),w(N )] for an interval game w ∈ IG.

In fact, such a mapping has already been proposed by Alparslan Gök et al. ([7]) as the ψα-

6Here, we employ a “one-step procedure” to translate an n-dimensional interval vector into an n-dimensional
real-valued vector, as proposed in [13].

7Specifically, “efficiency” means the “efficiency on realizations of the worth set for the grand coalition” in that
the sum of elements (= real numbers) in an n-dimensional real-valued vector has to be equal to a realization of the
worth set for the grand coalition. Hereafter, “efficiency” refers to this efficiency on the realizations of the worth set
for the grand coalition. The efficiency axiom which we will examine in Section 4 relates to this efficiency type. On
the other hand, in the context of the existing interval solution concept, another efficiency type is examined, namely
the sum of the elements (= intervals) in an n-dimensional interval vector has to be equal to the worth set (= interval)
of the grand coalition. To distinguish it from the former efficiency, we call this the “efficiency on the worth set of the
grand coalition.”

8This situation is similar to that in Habis and Herings’s ([17]) TUU game, where uncertainties are introduced into
cooperation games from a different approach. Namely, they constructed a two-stage model in which the ex-ante first
stage has multiple coalition form games, and one of them is realized and played by the players in the second stage.
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value. However, their analysis considered only two-person interval games and the value was
defined by using additional exogeneous parameters and characterized by imposing non-necessary
standard axioms for its axiomatization. Moreover, no subsequent analysis of the solution mapping
has been conducted since. As such, in the next section, we propose a new solution mapping, called
Shapley mapping, by not using additional parameters and apply the mapping to general n-person
interval games. It is shown that the Shapley mapping can be axiomatized with the standard axioms
of efficiency, individual rationality, symmetry, and an interval version of additivity.

4 Shapley mapping and its axiomatization

4.1 Shapley mapping σ∗

For an n-person interval game w ∈ IG, we define the Shapley mapping as a solution mapping
that we employ in the following analysis.

First, for the realization in the worth set of the grand coalition t ∈ w(N ), α is uniquely
determined and satisfies t = (1 − α)w(N ) + αw(N ).9 Second, we define a characteristic function
form game vαw generated from w by α as:

vαw (S) = (1 − α)w(S) + αw(S) f or every S ∈ 2N .

Note that vαw (N ) = (1− α)w(N ) + αw(N ) = t. By letting ϕ(vαw) = (ϕ1(vαw), ..., ϕi (vαw), ..., ϕn(vαw))
be the Shapley value in coalition form game vαw, Shapley mapping σ∗(w) : [w(N ),w(N )]→ Rn

is defined as:
σ∗(w)(t) = ϕ(vαw). (10)

Note that σ∗(w)(t) can be rearranged as follows:

σ∗i (w)(t) =
∑
S:i∈S

(s − 1)!(n − s)!
n!

{vαw (S) − vαw (S \{i})}

=
∑
S:i∈S

(s − 1)!(n − s)!
n!

[{(1 − α)w(S) + αw(S)} − {(1 − α)w(S \{i}) + αw(S \{i})}]

=
∑
S:i∈S

(s − 1)!(n − s)!
n!

[(1 − α){w(S) − w(S \{i})} + α{w(S) − w(S \{i})}]

= (1 − α)ϕi (vw) + αϕi (vw), (11)

where ϕi (·) is player i’s Shapley value in coalitional form games vw and vw.
For the interval game in Example 3.2, when 6 ∈ w(123) is realized, Shapley mapping σ∗ gives

9It should be noted that there exists a case for which vαw cannot be defined. This happens when v(N ) is singleton
and V (S) is not for some S ∈ 2N \ N . We exclude such a “degenerate case” since it departs from the underlying
situation of interval games, where interval uncertainty exists regarding the realization of the outcome in the grand
coalition.
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the following real-valued vector:

σ∗(w)(6) =
(

5
4
,2,

11
4

)
.

Note that the sum of payoffs is 6, which is equal to the realization of the worth set of the grand
coalition. Therefore, efficiency is satisfied (see also footnote 7). Now, we consider other numerical
examples of three-person interval games.

Example 4.1 This example is based on Alparslan Gök ([2]) and Palanci et al. ([26]). w(1) =
[7,7], w(2) = [0,0], w(3) = [0,0], w(12) = [12,17], w(13) = [7,7], w(23) = [0,0], w(123) =
[24,29].

This interval game is size monotonic. Therefore, the interval Shapley value exists. LettingΦ be the
interval Shapley value, the Φ(w) in this example is given by Φ(w) = ([27/2,16], [13/2,9], [4,4]).
Moreover, the interval Banzhaf value proposed by Palanci et al. ([26]) also exists and by letting
ΦB be the value, ΦB = ([25/2,15], [11/2,8], [3,3]). However, ΦB does not satisfy the efficiency of
the worth set of the grand coalition (again, see footnote 7), that is, [25/2,15] + [11/2,8] + [3,3] ,
[24,29]. It should be noted that Palanci et al. ([26]) also examined the validity of the interval
egalitarian rule, which gives this example an interval vector, ([8,29/3], [8,29/3], [8,29/3]). While
this rule obviously satisfies the efficiency of the worth set of the grand coalition, it is known that
it does not satisfy the null player property, since this rule can give a null player an interval other
than [0,0].10

Shapley mapping, however, gives the following three-dimensional real-valued vectors for the
realizations of the worth set of the grand coalition—24, 26.5, and 29 (the minimum, midpoint,
and maximum value of w(123), respectively):

σ∗(w)(24) =
(

27
2
,
13
2
,4

)
, σ∗(w)(26.5) =

(
59
4
,
31
4
,4

)
, σ∗(w)(29) = (16,9,4) .

Comparing Shapley mapping σ∗ with interval Shapley mappingΦ, σ∗(w)(24) and σ∗(w)(29) are
same as the vectors consisting of the lower and upper bounds of each element in Φ(w), respec-
tively. Furthermore, each element of σ∗(w)(26.5) is identical to the midpoint of the corresponding
player’s interval in Φ(w). In general, regarding the relationship between Shapley mapping and the
interval Shapley value, the following holds:11

Theorem 4.1 Let Φ and σ∗ be the interval Shapley value and Shapley mapping, respectively. For
the realization of the worth set of the grand coalition, t ∈ w(N ), in an interval game w ∈ IGn,
let α ∈ [0,1] be a number satisfying t = (1 − α)w(N ) + αw(N ). When w is size monotonic, the
following holds:

σ∗(w)(t) = (1 − α) minΦ(w) + αmaxΦ(w). (12)

10Regarding the null player property, see Subsection 4.2.
11As for operators min and max, see (3).
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Proof When w ∈ IG is size monotonic, Φ(w) can be defined, and the following holds for every
i ∈ N :

Φi (w) =
∑
S:i∈S

(s − 1)!(n − s)!
n!

{w(S) − w(S \{i})}

=
∑
S:i∈S

(s − 1)!(n − s)!
n!

{[w(S), w(S)] − [w(S \{i}), w(S \{i})]}

=
∑
S:i∈S

(s − 1)!(n − s)!
n!

{[w(S) − w(S \{i}), w(S) − w(S \{i})]}

=


∑
S:i∈S

(s − 1)!(n − s)!
n!

{w(S) − w(S\{i})},
∑
S:i∈S

(s − 1)!(n − s)!
n!

{w(S) − w(S \{i})}


= [ϕi (vw), ϕi (vw)]. (13)

Equality (13) holds because α = 0 when t = w(N ), thus σ∗i (w)(w(N )) = ϕi (vw), and because
σ∗i (w)(w(N )) = ϕi (vw) based on the same argument. Further, (13) implies minΦi (w) = ϕi (vw)
and maxΦi (w) = ϕi (vw). Therefore, the following holds:

(1 − α) minΦi (w) + αmaxΦi (w) = (1 − α)ϕi (vw) + αϕi (vw) = σ∗i (w)(t). (14)

The last equality in (14) holds from (11). Since (14) holds for every i ∈ N , (12) is true. ■
Theorem 4.1 implies some equivalency between the interval Shapley value and Shapley mapping,
in the sense that the allocation for a realization of the worth set of the grand coalition proposed
by Shapley mapping is identical to the real-valued vector obtained by dividing internally each
interval in the interval Shapley value by the ratio associated with the realization of the worth set.
Considering this equivalence and the fact that the interval Shapley value is only defined in a size
monotonic interval game, Shapley mapping has high generality and applicability to all interval
games. Furthermore, the Shapley mapping can be characterized by a standard axiomatization.
The next section provides its axiomatization.

4.2 Axiomatization of the Shapley mapping

This subsection proposes a set of axioms and shows there exists a unique solution mapping sat-
isfying the properties of efficiency, symmetry, null player property, and interval game version of
additivity, and this solution mapping is the Shapley mapping.

In particular, for an interval game w and a solution mapping σ, we consider the following
axioms.

• Axiom 1-1: Efficiency [EF](∑
i∈N

σi (w)(t) = t
) (
∀w ∈ IG

) (
∀t ∈ w(N )

)
.
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• Axiom 2-1: Symmetry [SYM](
σi (w)(t) = σ j (w)(t)

) (
∀w ∈ IG where i and j are symmetric

) (
∀t ∈ w(N )

)
.

• Axiom 3-1: Null player property [NP](
σi (w)(t) = 0

) (
i f w(S) = w(S ∪ {i}) ∀S ∈ 2N

) (
∀t ∈ w(N )

)
.

• Axiom 4-1: Additivity-1 [AD1](
σi (w′ + w′′)(t′ + t′′) = σi (w′)(t′) + σi (w′′)(t′′)

)(
∀w′,w′′ ∈ IG

) (
∀t′ ∈ w′(N )

) (
∀t′′ ∈ w′′(N )

) (
∀i ∈ N

)
.

• Axiom 4-2: Additivity-2 [AD2]
For an α ∈ [0,1] and w′,w′′ ∈ IG, we define t′ ∈ w′(N ) and t′′ ∈ w′′(N ) as :

t′ = (1 − α)w′(N ) + αw′(N )

t′′ = (1 − α)w′′(N ) + αw′′(N ).

Then, (
σi (w′ + w′′)(t′ + t′′) = σi (w′)(t′) + σi (w′′)(t′′)

)(
∀w′,w′′ ∈ IG

) (
∀α ∈ [0,1]

) (
∀i ∈ N

)
.

Note that, when all worth sets are singleton, both in w′ and w′′, AD2 becomes identical to
Shapley’s ([28]) axiom of additivity for the characteristic function form games equivalent
to w′ and w′′.

Axiom EF asserts that all t ∈ w(N ) is allocated to either player and no residual exists. Note
that this notion corresponds to the “efficiency on realizations of the worth set for the grand coali-
tion” discussed in footnote 7. Axiom SYM argues that only what a player can obtain on its
own in the game should matter, not its specific name or label. Axiom NP asserts that a zero
payoff should be assigned to a null player. Axioms AD1 and AD2 essentially come from the
additivity axiom in Shapley ([28]), which considers interval game (w′ + w′′) ∈ IG, defined as
(w′ + w′′)(S) = w′(S) + w′′(S) ∀S ∈ 2N for two different games w′,w′′ ∈ IG. Specifically,
AD1 asserts that, when σ gives σi (w′)(t′) to player i for realization t′ ∈ w′(N ) in w′ ∈ IG and
σi (w′′)(t′′) to i for realization t′′ ∈ w′′(N ) in w′′ ∈ IG, in the sum game (w′ + w′′) ∈ IG σ

should give σi (w′)(t′) + σi (w′′)(t′′) to player i for realization t′ + t′′ ∈ (w′ + w′′)(N ). AD2 is
similar to AD1, but differs in that it imposes restrictions on t′ and t′′, so that these are generated
by the common “ratio” α ∈ [0,1] regarding the worth sets of the grand coalition. Therefore, AD1
is stronger than AD2 in terms of the condition that a solution concept has to be satisfied.
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We first present below the so-called “impossibility theorem” regarding AD1 and other axioms.

Lemma 4.1 There exists no solution mapping that simultaneously satisfies EF, SYM, NP, and
AD1.

Proof To derive the contradiction, we assume a solution mapping σ satisfies EF, SYM, NP, and
AD1, and consider the following three-person interval game, w, and its partition w1, w2 and w3,
that is, w = w1 + w2 + w3:



w(1) = [0,1]
w(2) = [0,1]
w(3) = [0,1]
w(12) = [0,2]
w(13) = [0,2]
w(23) = [0,2]
w(123) = [0,3]



w1(1) = [0,1]
w1(2) = [0,0]
w1(3) = [0,0]
w1(12) = [0,1]
w1(13) = [0,1]
w1(23) = [0,0]
w1(123) = [0,1]



w2(1) = [0,0]
w2(2) = [0,1]
w2(3) = [0,0]
w2(12) = [0,1]
w2(13) = [0,0]
w2(23) = [0,1]
w2(123) = [0,1]

w3(1) = [0,0]
w3(2) = [0,0]
w3(3) = [0,1]
w3(12) = [0,0]
w3(13) = [0,1]
w3(23) = [0,1]
w3(123) = [0,1]

Note that players 2 and 3 are null players in w1, 1 and 3 are null players in w2, and 1 and 2
are null players in w3. Therefore, letting t1, t2, t3 be realizations in w1, w2 and w3, respectively
(t1 ∈ w1(123), t2 ∈ w2(123) and t3 ∈ w3(123)), the following holds.

σ(w1)(t1) = (t1,0,0), σ(w2)(t2) = (0, t2,0), σ(w3)(t3) = (0,0, t3)

From AD1, it follows that:

σ(w)(t1 + t2 + t3) = σ(w1)(t1) + σ(w2)(t2) + σ(w3)(t3) = (t1, t2, t3),

which contradicts SYM unless t1 = t2 = t3, which does not always hold. ■

For the following analysis, we select AD2 instead of AD1 as the interval game version of
additivity. The main result of this paper is shown by Theorem 4.2.

Theorem 4.2 Shapley mappingσ∗, as defined in (10), is the unique solution mapping that satisfies
EF, SYM, NP, and AD2.

To prove Theorem 4.2, we first posit the following lemma.
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Lemma 4.2 Shapley mapping σ∗ satisfies EF, SYM, NP, and AD2.

Proof EF and SYM are obvious from the definition of the Shapley mapping. For NP, letting i be
a null player in interval game w, yields:

σ∗i (w)(t) =
∑
S:i∈S

(s − 1)!(n − s)!
n!

{vαw (S) − vαw (S \{i})}

=
∑
S:i∈S

(s − 1)!(n − s)!
n!

· 0

= 0.

For AD2, from (11), it follows that:

σ∗i (w′)(t′) + σ∗i (w′′)(t′′) = (1 − α)ϕi (vw′) + αϕi (vw′) + (1 − α)ϕi (vw′′) + αϕi (vw′′)

= (1 − α){ϕi (vw′) + ϕi (vw′′)} + α{ϕi (vw′) + ϕi (vw′′)}
= (1 − α)ϕi (vw′ + vw′′) + αϕi (vw′ + vw′′)

= (1 − α)ϕi (vw) + αϕi (vw)

= σ∗i (w)(t). ■

Then, we show Lemmas 4.3–4.6.

Lemma 4.3 For a coalition R ∈ 2N \ {∅}, we define a characteristic function form game vR ∈ CG
as:

vR(S) =
 1 if R ⊂ S

0 otherwise.

Then, for an interval game w ∈ IG, there uniquely exist 2(2n − 1) real numbers, denoted by cR

and cR for R ∈ 2N \ {∅} (note: the number of R is 2n − 1), which satisfy

vw =
∑
R⊂N

cRvR, vw =
∑
R⊂N

cRvR,

and cR and cR are determined by:

cR =
∑
T⊂R

(−1)r−tvw (T ), cR =
∑
T⊂R

(−1)r−tvw (T ),

where r and t denote the number of players in the coalition of R and T, respectively.

Proof The proof is essentially identical to Shapley’s [28].

Lemma 4.4 For a coalition R ∈ 2N \ {∅} in interval game w ∈ IG, (15) holds:

w +
∑

R:cR>cR

[−cR, − cR]vR =
∑

R:cR≤cR

[cR, cR]vR. (15)
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Proof For a coalition R ∈ 2N \ {∅} satisfying cR ≤ cR, [cR, cR] can be defined as a closed interval,
and For a coalition R ∈ 2N \{∅} satisfying cR > cR, [−cR, −cR] can be defined as a closed interval.
From Lemma 4.3, it holds that:

vw =
∑
R⊂N

cRvR =
∑

R:cR≤cR

cRvR +
∑

R:cR>cR

cRvR

vw =
∑
R⊂N

cRvR =
∑

R:cR≤cR

cRvR +
∑

R:cR>cR

cRvR.

Therefore,
[vw, vw] +

∑
R:cR>cR

[−cR, − cR]vR =
∑

R:cR≤cR

[cR, cR]vR. ■

Lemma 4.5 Let σ be a solution mapping in w ∈ IG satisfying EF, SYM, NP, and AD2. Then, for
an interval game of [c, c]vR ∈ IG (c ≤ c) and a realization t = (1 − α)c + αc:

σi ([c, c]vR)(t) =


t
r

if i ∈ R

0 otherwise
, (16)

where r is the number of players in R ∈ 2N \ {∅}.

Proof First, assume c ≥ 0. If i is not in R, i is a null player in the interval game of [c, c]vR ∈ IG.
Therefore, σi ([c, c]vR)(t) = 0 from NP. Moreover, since i and j in R are symmetric in [c, c]vR ∈
IG, σi ([c, c]vR)(t) = σ j ([c, c]vR)(t) from SYM. Meanwhile, EF follows:∑

i∈R

σi (cvR)(t) = t.

Consequently, σi ([c, c]vR) = t
r holds for i ∈ R.

Next, assume c < 0. Then, the following holds:

t − c = (1 − α) · 0 + α(c − c)

t = (1 − α) · c + α · c
−c = (1 − α) · (−c) + α · (−c).

Therefore, from AD2:

σi ([0, c − c]vR)(t − c) = σi ([c, c]vR + [−c, − c]vR)(t + (−c))

= σi ([c, c]vR)(t) + σi ([−c, − c]vR)(−c).
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Since:

σi ([0, c − c]vR)(t − c) =


t − c
r

if i ∈ R

0 otherwise

σi ([−c, − c]vR)(−c) =

−c
r

if i ∈ R

0 otherwise,

(16) also holds when c < 0. ■

Lemma 4.6 Assume ϕi (vw) and ϕi (vw) are i’s Shapley values in characteristic function form
games vw and vw, respectively. Then, the following holds:

ϕi (vw) =
∑

R:i∈R

cR

r
, ϕi (vw) =

∑
R:i∈R

cR

r

Proof The proof is essentially identical to Shapley’s ([28]).

Finally, we prove Theorem 4.2 using Lemmas 4.3–4.6.

Proof of Theorem 4.2 From Lemma 4.2, it suffices to prove the uniqueness of σ∗, that is, letting
σ be a solution mapping satisfying EF, SYM, NP, and AD2, σ = σ∗ must be proved.

For a realization of grand coalition t = (1 − α)w(N ) + αw(N ) ∈ w(N ) in w ∈ IG, let
tR = (1 − α)cR + αcR be a realization of the grand coalition in [c, c]vR ∈ IG. Then, from Lemma

4.3, vw (N ) =
∑
R⊂N

cR and vw (N ) =
∑
R⊂N

cR hold. Therefore, t =
∑
R⊂N

tR is true. From Lemma 4.4

and AD2, it follows that:

σi (w)(t) +
∑

R:cR>cR

σi ([−cR, − cR]vR)(−tR) =
∑

R:cR≤cR

σi ([cR, cR]vR)(tR).

From Lemma 4.5:
σi (w)(t) +

∑
R∋i:cR>cR

−tR

r
=

∑
R∋i:cR≤cR

tR

r
,

σi (w)(t) =
∑

R:i∈R

tR

r
=

∑
R:i∈R

{
(1 − α) ·

cR

r
+ α · cR

r

}
= (1 − α)

∑
R:i∈R

cR

r
+ α

∑
R:i∈R

cR

r

hold. From Lemma 4.6:

σi (w)(t) = (1 − α)ϕi (vw) + αϕi (vw) = σ∗(w)(t). ■
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5 Conclusions

This paper considers the cooperative interval games model. Top this end, we employ the notion of
solution mappings as the solution concept to be applied to n-person interval games and show that
there exists a unique solution mapping that satisfies the axioms of efficiency, symmetry, null player
property, and an interval game version of additivity, and this solution mapping is the Shapley
mapping.

We conclude the analysis by pointing out some topics for further research. First, it is worth
providing other axiomatizations of the Shapley mapping. In particular, in the literature on coali-
tion form games, the axiom of additivity is known as controversial because sum game w′ + w

′′

may induce a behavior that can differ from the behavior induced by the two games, w′ and w
′′

separetely. Therefore, other axiomatization using axioms such as Young’s ([32]) strong mono-
tonicity instead of the additivity would enhance the validity of the Shapley mapping. Second, we
can use the solution concepts of the Banzhaf index and discounted Shapley value in the context
of coalition form games, and redefine them as solution mappings rather than existing interval so-
lution concepts. Those could be characterized by an axiomatic approach, as shown in this paper.
Furthermore, non-singleton set solutions such as the core and stable sets may also be redefined as
solution mappings in interval games. Third, once those solutions are defined as solution mappings,
it is possible to examine the relationships between them. For example, whether a real valued pay-
off vector assigned by the Shapley mapping is included in the core mapping for every realization
of the worth set of the grand coalition or which class of the interval games satisfies this property
may be worth examining. Finally, solution mappings can be applied to actual cooperative game
situations with uncertainty. For example, a classical game-theoretic analysis of the bankruptcy
problem essentially entails the uncertainties that creditors face regarding debtor’s future solvency.
Here, new insights may be derived by reconstructing the bankruptcy problem as an interval game
and applying solution mapping to those games. 12
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