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Abstract

We study the St.Petersburg paradox from the viewpoint of bounded intelligence. Follow-
ing Llyod Shapley, we reformulate its coin-tossing gamble introducing a �nite budget of the
banker, while this is as a resolution in the narrow sense as long as the standard expected re-
ward criterion is adopted. It is still impossible for both banker and people to participate and
to generate positive pro�ts. We introduce cognitive bounds to people to modify the expected
reward criterion and show that many people are incomparable to between participation and
not. This is a rationalistic though people have cognitive bounds, and we take one more
step of going to semi-rationalistic behavioral-probability for incomparable alternatives. This
shows that some people show positive probabilities of participation in the coin-tossing with
a fee producing positive pro�ts for the banker. The last part is formulated as a monopoly
market and its activeness is shown by the Mote Carlo simulation method.

Key Words: St.Petersburg Paradox, Shapley�s Modi�cation, Expected Utility Theory with
Probability Grids, Cognitive Bounds, Bounded Intelligence, Incomparability, behavioral-
probability, Monte Carlo Method

1 Introduction

The St.Petersburg (SP for short) paradox has been a long-standing conundrum since the time
of Daniel Bernoulli [4]. The present author thinks that the paradox in the narrow sense is
resolved by Shapley [24] introducing a budget constraint for the banker. However, this raises
the di¢ culty that the banker would have no incentive to open the gamble market, i.e., having no
positive pro�ts from participants or no participants in the gamble market. Adopting Kaneko�s
[16] expected utility theory with probabilistic grids and cognitive bounds for people, we show
that participation or not is incomparable for some people. A new approach to incomparability
in terms of a behavioral-probability, along Luce�s [18] idea of probabilistic preferences, implies
that some people may incline to participate, dependent upon their cognitive bounds, and the
banker has positive pro�ts. We evaluate this, by a few criteria, as a resolution of the SP paradox.
Here, we discuss what has been resolved for the SP paradox, what remains, and what should be
required to obtain a resolution.

�The author thanks for supports by Grant-in-Aids for Scienti�c Research No.26780127, No.17H02258, and
No.20H01478, Ministry of Education, Science and Culture, Japan.

yEmeritus Professor, Waseda University and University of Tsukuba, Japan, mkanekoepi@waseda.jp
zHe thanks Je¤rey Kline, Tai-Wei Hu, Ryuichiro Ishikawa, and Yukihiko Okada for discussions on related

subjects. He also thanks Yoichi Kaneko for making a Monte Carlo program to calculate examples.
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Figure 1: the SP gamble g1 = [�; �1]

1.1 The SP gamble and a budget for the banker

The original SP coin-tossing gamble g1 = [�; �1] is as follows: You decide to participate or
not in the coin-tossing �1 with a fee �c/ (� > 0): if you participate, you toss a fair coin until
it results in the tails, and if it shows the tails at the n-th coin-toss, you get prize 2nc/ and the
gamble is over. The probability of having prize 2nc/ is 1

2n : The pro�t from participation is 2
n��;

and the pro�t from non-participation is 0: For simplicity, we focus on the prizes and opportunity
reward from non-participation, rather than pro�ts, which is depicted as Fig.1. You choose A
or B; � is the (opportunity) reward from A and the rewards from B are the prizes with their
probabilities.

The expected reward from B is 12 � 2
1 + 1

22
� 22 + � � � + 1

2n � 2
n + � � � = 1 + 1 + � � � + 1 + � � �

= +1; and this is larger than any �nite fee �. Thus, the expected reward criterion recommends
you to participate in the gamble whatever � is. On the other hand, an ordinary and careful
person would choose A unless � is very small. For example, when � = 1000$; the probability
of having a prize more than 1000$ = 100; 000c/ is almost negligible, i.e., 1� (12 +

1
22
+ � � �+ 1

216
)

= 1
216

= 1
65;536 ; since 2

16 < 100; 000 < 217; any reasonable person would perhaps choose A: We
call this con�ict the St.Petersburg paradox in the narrow sense, which we write explicitly:

(*): the recommendation by the expected reward criterion disagrees with the answer to be
considered by an ordinary person for any large �.

This paradox has been discussed by many people in the literature (cf., Peterson [22] for
a survey of discussions). As mentioned in Shapley [24] and [25], (*) is not a logical paradox;
instead, it is an �empirical�paradox in a real context ([24], p.440) between the recommendation
by the well accepted decision criterion and people�s decisions by re�ecting on their own minds.1

Shapley [24] gave a clear-cut resolution of the paradox (*) by giving a budget constraint on the
banker. The rules of a gamble in a real context should be concrete, and a (�nite) budget is a
naturally required component of a gamble.

1A salient paradox has societal.e¤ects. �Three crises in mathematics�(cf., Fraenkel et. al [10], Chap.I, Section
5) indicates that a social circumstance matters for a paradox. For example, the second crisis happened in the
18 � 19 th centuries about calculus by Newton and Libnitz; no rigorous de�nition of the concept of a �limit�,
which is the true basis of calculus, was found then. The cultural and economic success including industrial
revolution of western countries in those centuries depended upon calculus, but its basis was shakey. A paradox is
highly societal.
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Shapley considered an example of a budget: B is bounded by the maximum prize 2100c/; which
is an astronomical number. The US federal annual budget for 2018 is about 4:2 trillion dollars,
roughly 249c/: The expected reward from this coin-tossing is 1

2 � 2 + � � � +
1
247
� 247 + 1

248
� 248+

1
249
� 249 � 2 = 50c/; where in the last term, the prize is doubly counted since if the 49th toss

is reached, the prize is 249c/ independent of the result. Thus, the expected reward is almost
negligible to the budget 249c/. This is a strong example so as to eliminate the paradox (*), but
it is not compatible with our ordinary understanding of socioeconomics, i.e., the rules of the
gamble do not make sense in a real context.2

Shapley concluded the paper [24] with stating reluctancy with the SP paradox for game
theory and economics even after the introduction of a budget ([24], p.442). The present author
disagrees with his conclusion, and thinks that the SP paradox is a key for considerations of
events with large bene�ts and simultaneously very large damages with very small risks. These
may be features shared by a lot of real world events (e.g., �black swan�in Taleb [29]). Careful
considerations of the SP paradox may give clues for formal studies of such real-world events as
well as re�ections upon economics/game theory.

The coin-tossing gamble �1 includes the other type of in�nity, i.e., in�nitesimal small prob-
abilities. Ignoring very small probabilities has almost the same e¤ect as introducing a budget
on prizes (cf., Peterson [22] and Smith [28]). Since, however, the latter is an objective constraint
on a gamble and the former is a subjective constraint on the abilities of people, these play very
di¤erent roles in our development.

We look at the questions we address:

(i) what is wrong only with an introduction of a budget while keeping the expected
reward criterion unchanged?

(ii) in what sense is the situation a paradox?

For the question (i), we consider a budget compatible with our empirical world. We consider a
few examples of budgets for a banker and participation fees for ordinary people; an example is

2n = 221 = 2; 097; 152c/ + 21; 000$ and � = 500c/ = 5$: (1)

The amount 2n + 21; 000$ is slightly smaller than the half of the average annual income, about
47 thousand$; of the OECD 35 countries in 2018. This may be feasible for a trusted banker
living in these countries. If n is small such as n = 7; the budget 2n is surely feasible but the
maximum prize, 27 = 128c/; neither attracts people to participate in the gamble nor gives enough
pro�ts to open the market.

We meet a di¢ culty as long as we keep the expected reward criterion. The SP coin-tossing
gamble with a budget is described as Fig.2, where 2nc/ is the budget of the banker and the
possible prizes from B is up to 2nc/ and the probability distribution is given as

�n(2
t) =

�
1
2t if t � n� 1
1

2n�1 if t = n:
(2)

The prizes are the same as those of the original gamble but at the n-th toss the prize is 2nc/
either in the heads or tails described in the dotted balloon in Fig.2: The expected reward from

2Aumann [2] stated that instead of having a �nite budget, (*) could be naturally avoided by assuming bound-
edness on a utility function. However, the introduction of a budget is unavoidable as long as the rules of a gamble
should be speci�c and meaningful in a real world setting. This does not �exclude empirically unbelievable prospects
from at least hypothetical consideraiton� (Shapley [25], footnote 11, p.449). The point here is: such prospects
should be excluded from the rules of the gamble in a real context.
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Figure 2: The SP gamble gn = [�; �n] with a budget

B is 1
2 � 2

1 + � � � + 1
2n�1 � 2

n�1+ 1
2n
� 2n � 2 = n + 1: Also, in the numerical example of (1), the

expected reward from B is n+1 = 22c/ and is much smaller than � = 500c/; implying that people
do not participate in the SP gamble.

For simplicity, we assume � 6= n + 1 throughout the paper: The expected reward criterion
recommends people to participate in the SP gamble gn = [�; �n] if and only if � < n + 1: This
is also a condition for the banker not to open the market, because n+1 is the average expected
expenditure and is greater than the average revenue �. The situation is summarized in Table
1.1; either no people participate in the gamble, or the banker does not open the market. This
holds for any budget 2n and participation fee � with � 6= n+1. Thus, the SP gamble market is
always vacuous.

Table 1.1; the SP market is vacuous

� < n+ 1 � > n+ 1

People participate not
Banker not opens the SP market

A way out from the above vacuousness is to introduce �an intrinsic utility of a gamble�
for people. A model is given by Fishburn [9], Schmidt [23], and an extensive argument on the
model and related literature was given in Diecidue, et.al [6].3 The literature looked for utility
of gambling to explain possible choices of a gamble by modifying the classical expected utility
theory. We do not deny the possibility that some people enjoy a gamble itself. Instead, we re�ect
upon foundations of economics/game theory and look for an explanation by giving a restriction
on a free use of any probabilities in [0; 1]; which is a cognitive bound on people. Otherwise, we
keep the underlying philosophy of expected utility theory.

Consider the above question (ii). A paradox includes an inconsistency between two views
each of which is accepted in society and/or academia. This prevents us from having the two views
at the same time; no theory including the two views is allowed. In formal logic, inconsistency of
a theory means that some statement in the theory and its negation are provable; non-existence of

3Friedman-Savage [11] gave an argument of the utility of gambling and insurance by assuming �risk lover�for
some domain and "risk-averse" for a di¤erent domain. A criticism is found in Markowitz [19]. See also Diecidue,
et. al [6].
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Figure 3: Monopoly market of an SP gamble

such a statement is consistency. The completeness theorem (cf., Mendelson [20], p.34 and p.72)
states that consistency is equivalent to the existence of a model (i.e., speci�cation of parameters)
of the theory. A resolution of a paradox is given by a theory including the two views, together
with speci�cations of parameters acceptable in society and/or academia.

In the case of the SP paradox, one view is our ordinary feeling about gambles, and the other
is the expected reward criterion. Table 1.1 states that a general view obtained by introducing
a budget avoiding the paradox (*) is vacuous. We still feel that some or many people would
participate in some SP coin-tossing gamble and the banker is interested in selling it to people.
After all, what we should do is to construct a theory together with some speci�cations of
parameters compatible with these views.

1.2 A monopoly market and criteria for a resolution

We develop a monopoly market theory toward a resolution of the SP paradox in a broader sense
than in that of (*). It consists of a banker and many people. We list three criteria for a theory
as a resolution:

C1(non-vacuous): there is a coin-tossing gamble �n such that it attracts some people
and, at the same time, it produces positive pro�ts;

C2(ordinary): elements of the theory are natural relative to our ordinary understanding
of socio-economics, though some may deviate from the standard literature;

C3(sensitive): predictions from the theory are compatible with socio-economics for
some parameter values but not for other values.

Criterion C1 is to avoid the vacuousness mentioned in Table 1.1. In C2, the term �natural�
is understood in an informal manner; the above example with the maximum prize 2n = 27 =
128c/ could be rejected by C2 as �uninteresting�. This indicates that social and/or individual
experiences are included in C2. Also, C2 means that it could be empirically or experimentally
tested, but either is far beyond the scope of the paper. However, we cannot avoid some social
and/or individual subjective elements, especially in C2. C3 requires the theory have a capability
of selecting some parameter values and rejecting some others.

The monopoly market theory is depicted in Fig.3 and will be evaluated from the criteria
C1, C2, and C3. The theory consists of the description of people�s choice behavior between the
gamble [�n; �] and no-participation, and of the rationale of how the banker makes a decision.
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People and the banker are asymmetric. First, people are many but the banker is single. Second,
when [�n; �] is given, each person evaluates �n and �, but the banker�s concern is the average
pro�ts from people�s participation: Choice behavior of each person is based on a modi�cation of
the expected reward criterion with cognitive bounds, but the banker�s rationale for opening the
market is based on the average expected pro�ts minus costs, but it has no e¤ective cognitive
bounds. Our concern is the existence of a [�n; �] for the banker meeting the rationale. We do
not assume the demand (function) for [�n; �] is known to the banker.4

The banker�s rationale is as follows; the banker borrows the show-money 2nc/ and facility
costs from a �nancial institution, and after the market, the banker should return this amount
with some interests. We adopt an index ROI (return of investment) to express this capacity
of paying the additional interests, though the costs may include more. For example, when the
banker borrows that amount with the interest rate r%; the index ROI should be larger than r%
to judge [�n; �] to be pro�table and to open the market. We will see that this index is reasonably
positive for some parameter values.

The key is people�s participation, which relies upon people�s bounded understanding of gam-
ble [�n; �]; we develop a partial version of the expected utility theory with cognitive bounds
in Kaneko [16] and its probabilistic extension. In this development, we adopt the concept of
bounded intelligence, meaning a person�s �nitely bounded ability of logical and numerical cal-
culations. This is a part of the general idea of bounded rationality, due to Simon [27]. To
emphasize the nature of our approach, we use the term of bounded intelligence rather than
bounded rationality.5 ;6

Our descriptions of decision making and choice behavior for a person take three steps; the
�rst two constitute rationalistic decision-making, and the third step is a semi-rationalistic choice.
The �rst two steps are: Step M : measurement of utilities from relevant pure alternatives; and
Step E : extension of these measured utilities to the SP lottery. In Step M, person i measures
utility by digging his mind, and in Step E, he extend the utilities measured to the SP lottery.

However, person i has a cognitive bound, expressed as 1
2�i ; which is the smallest unit of

probability for perceivable probabilities: His understanding of the announced �n is truncated
as the distribution ��i ; depicted in Fig.4. Still, it follows the interpretation of sequential coin-
tossing; before the coin-tossing, he thinks about the possible results from the �rst toss, second
toss, up to the �i-th toss. On the other hand, the maximum prize 2n included in the announced
gamble �n is assumed to remain in his mind; he keeps the entire picture of Fig.4 including the
show-money.

In Step M, person i uses a measurement scale of utility from a pure alternative, adopting
the maximum prize 2n as the upper reference point and 0 as the lower reference point 0; and
the probability grids within cognitive bounds. The scale has the base unit 1

2�i so that the total

4 In the standard micro-economics, the monopolist (banker in our case) knows the demand function from
consumers (cf., Heyek [13], Chap.V, Section 2), which is a possible continuation for the behavior of the banker.
However, Simon�s [26] argument of �satis�cing with an aspiration�may be a more direct continuation.

5Simon [27] divided the notion of rationality into substrantive and procedural; the former is a property of a
realized choice such as a �rational outcome�and the latter is an attribute of a performance of a system (person).
Logical inference ability of a person is regarded as included in the latter. However, the term �bounded rationality�
is already used in many ways, and we would like to have clear-cut notion. So, we use the new term �bounded
intelligence�to express bounded ability of logical inference and numerical calculation.

6Behavioral economics explains experimentally or empirically observed anomalies by introducing new variables
or parameters, but keeps the substantive �rationality�in the classical micro-economics sense. See Berg-Gigerenzer
[3] for discussions on this issue.
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Figure 4: Person i�s subjective understanding

length 2n is divided into into 2�i number of base units. When �i is small, the scale is imprecise,
and when �i gets larger, the scale is more precise. In an analogue to the measurement of body
temperature, when a thermometer is rough, it tells the body temperature is, say, 36�C; 37�C;
or between them, and when it is �ner, it measures more accurately though incomparability may
remain. To express this incomparability, we adopt a 2-dimensional vector-valued utility function
(cf., Fishburn [8]).

It will be shown in Sections 3 and 4 that participation and not are incomparable in many
cases, which may be interpreted as �impossibility�to have a resolution of the SP paradox; the
above rationalistic (or scienti�c) steps are subject to a di¢ culty in making decisions. Re�ecting
upon, however, our own behavior, we �nd many occasions where rationalistic thinking leads only
to incomparability while we are still forced to make a choice by social custom, education etc. In
this paper, we take one more step to have semi-rationalistic choice: Step S : semi-rationalistic
probability-choice of participation. We call it semi-rationalistic, since it is still based, partially,
on results and methods in Steps M and E. This �lls incomparability with probabilistic behavior;
the basic idea is Luce�s [18] theory of probabilistic preferences, while it is entirely reformulated
in our context for our incomparable alternatives.7 ;8 This shows that people participate in the
SP coin-tossing gamble with some positive probability.9

In Section 6, we synthesize the external and internal behaviors of the banker and people in
a monopoly market theory, depicted in Fig.3, which assumes a distribution of people�s cognitive
degrees and the return of investment index ROI for the banker. We evaluate our entire theory in
terms of criteria C1, C2, and C3 with speci�cations of parameters. A methodological remark is
that we adopt the Monte Carlo Simulation method to study the outcomes of the SP coin-tossing
for participants, since the stochastic process expressing coin-tossing is not stationary including
some bankruptcy possibility for the banker. As a result, however, bankruptcy is observed to be
not very important.

This paper is organized as follows: Sections 3 and 4 formulates Steps M and E for mea-
surement of pure alternatives and its extension to a subjective understanding ��i : Section 5
gives an axiomatic approach to behavioral-probability to incomparability. Section 6 provides a

7See Echenique-Saito [7] for a general treatment of Luce�s approach and Pleskac [21] for related issues.
8Loomes-Sugden [17] discussed the source of probability as an error in probabilistic preferences.
9This argument deriving the choice-probability was used in Kaneko [16] for a consideration of Allais�s [1]

paradox referring to an experimental result by Kahneman-Tversky [15].
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formulation of a monopoly market with the banker and people. We analyze the market behavior
in terms of Monte Carlo simulation method. We give various concluding remarks in Section 7.

2 Preliminary

Person i�s cognitive degree �i; a nonnegative integer, de�nes his cognitive bound
1
2�i , meaning

that he can think about probabilities expressed only as �
2�i (0 � � � 2�i): When he faces the

coin-tossing described by Fig.2, he thinks about the 1st toss, 2nd toss, ..., and goes to the last
toss �i-th in his mind as in Fig.4, which are all within the cognitive bound

1
2�i . This is a thought

experiment conducted in the mind of person i before the actual tossing. His thought is from one
degree k to the next k + 1; where k expresses a cognitive degree within �i:

We de�ne the set of probability grids: for each k = 0; :::; �i;

�k = f �2k : 0 � � � 2
kg: (3)

Then, �0 = f0; 1g ( �1 ( � � � ( ��i : We de�ne the depth �(�) = t of � 2 �k i¤ � 2 �t ��t�1:
It holds that �(�) = t if and only if � is expressed as �

2t for some odd �: Thus, each � 2 �k has
at most depth k: The depth �(�) will play a crucial role in Section 4.

The cognitive degree �i gives a subjective constraint on i�s thought, while the budget degree
n is an objective constraint on the prizes in the SP gamble: This di¤erence creates a small shift
in their e¤ective roles. When n�1 � �i; the cognitive bound 1

2�i permits prizes 2
1; ::::; 2�i ; 2�i+1

where the last two have probability 1
2�i ; on the other hand, the budget bound 2

n induces prob-
abilities 1

21
; :::; 1

2n�1 ;
1

2n�1 where the last is the probability of the maximum prize 2n when he
reaches the n-toss: Taking this shift, we let b�i = min(�i; n � 1) in order to cover the case of
n � �i:

Let X�
n = f0; 1; :::; 2ng be the set of possible monetary payments to person i: When person

i faces a choice between A and B in Fig.2, A is represented by � and B by person i�s subjective
understanding ��i ; of the objective probability distribution �n; as of truncated in Fig.4. The set
of pure alternatives relevant to the choice between A and B is given as

X�i = f�g [ f2
1; 22; � � � ; 2b�i ; 2b�i+1g: (4)

Person i�s subjective understanding ��i is de�ned over the support f21; 22; :::; 2b�i ; 2b�i+1g:

��i(2
t) =

8<:
1
2t if t � b�i
1
2b�i if t = b�i + 1: (5)

When �i � n�1; ��i is the same as �n; and when �i � n�1; ��i has the support f21; 22; :::; 2�i ; 2�i+1g:
Person i is to choose one from � and ��i :

In the step of measurement, each pure alternative is compared with a scale. Here, we adopt
the scale Bk(x;x) consisting of the upper reference point x; the lower reference point x; and
probability grids �

2k
(0 � � � 2k). More precisely, we assume the maximum prize 2n for x and

the zero 0 for x: The scale Bk(x;x) of depth (precision) k is given as the set:

Bk(x;x) = f[x; �;x] : � 2 �kg (6)
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Figure 5: Thought process into the inner lotteries

for k = 0; 1; :::; �i: Expression [x; �;x] means that the upper reference x and lower reference x
happen with probabilities � and 1��; which is a scale lottery. Then, the scale Bk(x;x) consists of
scale lotteries. The scale B0(x;x) = f[x; 1;x]; [x; 0;x]g consists of only two lotteries [x; 1;x] = x
and [x; 0;x] = x; and compares x 2 X�

n with [x; 1;x] and [x; 0;x]: The scale B1(x;x) = f[x; 1;x];
[x; 12 ;x]; [x; 0;x]g contains the middle point [x;

1
2 ;x]: As k increases, the scale Bk(x;x) is getting

more precise, up to the most precise scale B�i(x;x) for person i:

The two steps stated in Section 1.1 are more precisely described;

Step M: for each k = 0; :::;b�i; he measures each x 2 X�
n by the scale Bk(x;x);

Step E: he extends the measured utilities in Step M to derive his subjective lottery ��i :

In Step M, person i re�ects, using the scale, upon his mind to �nd a closest lottery in Bk(x;x)
to pure alternative x 2 X�

n: In Step E, person i extends these measurements and derives the
utility value of ��i : Thus, he makes a comparison between � and ��i :

Our description of Step M is richer than Step E in that Step M takes the pure alternatives in
X�
n; while Step E include only the pure alternatives in the description in � and �n:We take this

di¤erent restrictions so as to have a clear-cut description of Step M and a clear-cut extension.
The restriction of Step M to X�i is more faithful to the viewpoint of bounded intelligence.

Fig.5 illustrates a thought process from the outermost �0�i = ��i into the innermost (right-

most) probability distribution �b�i�1�i over 2b�i and 2b�i+1 with probability 1
2 each: It is a decom-

position process; we describe this process in a faithful manner in that no other elements than
those in �0�i are included. Thus, Step E forms a very partial theory. We can restrict Step M in
the same manner, but provide it in a global manner to have a clear-cut conceptual picture. See
Remarks 2.1 and 4.1

Steps M and E are connected by Axiom ME in Section 4.2. Fig.6 depicts the relationship
between Steps M and E. These two steps meet incomparability. Section 5 analyzes behavioral-
probability for the alternatives ��i and � in the incomparable case.

Kaneko [16] started with preference relations both in Steps M and E, and then derived 2-
dimensional vector-utility functions associated with the interval order (cf., Fishburn [8]). In this
paper, we adopt vector-utility functions associated with the interval order in Steps M and E.

Let Q2 = Q�Q be the Cartesian product of the set of rationals Q: For two vectors � = (�; �)
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Figure 6: Connections between the axiomatic systems

and � = (�; �) in Q2 with � � � and � � �; we de�ne the interval order �I over � and � by

� �I � if and only if � � �: (7)

The �rst component � of � = (�; �) is the least upper bound of possible utility values, and the
second � is the greatest lower bound. The comparison � �I � means that any upper possible
utility value is larger than or equal to any lower possible utility value: This comparison may not
be complete. There are three cases:

(a) strict preference: � >I � if and only if � > �;

(b) equality : � �I � and � �I �; in this case, � = � = � = �:
(c) incomparability : neither � �I � nor � �I �; which is denoted by � 1I �.

Incomparability is crucial in our theory.

In Sections 3 and 4, it will be shown that the fee � and subjective understanding ��i of
�n are incomparable in many cases of cognitive degrees �i; i.e., � 1�i � where � = u�i(�) and
� = u�i(��i): As stated in Section 1, when people are in incomparability, they are forced to make
choices by society. In fact, incomparability is not uniform among people, but some cases show
high incomparability and other cases are close to comparability. We extend such non-uniform
incomparability in a quantitative manner, which is compatible with our theory since u�i(�) is
a 2-dimensional vector function showing often incomparability but the vector representation is
still determined up to a positive transformation. This is:

Step S: person i extends incomparability between � and � to a probabilistic choice
between them.

This step will be given in Section 5. We will calculate the choice probability of ��i and � in
examples. Fig.6 illustrates the three steps from M, E, and S.

Remark 2.1 (Restrictions from the viewpoint of bounded intelligence): Our theory is
based on Kaneko�s [16] expected utility theory with probability grids, which discusses a deriva-
tion of a preference relation over the sets of all lotteries of given degrees. The present paper
applies this theory to a comparison between � and ��i : However, this application needs a lot of
speci�c details and also faces new issues which do not appear in [16]. One issue is a locality of
the present theory; although Kaneko�s [16] theory was already quite restricted and constructive,
it is still a global theory in that a preference relation is considered over the set of all pairs of al-
ternatives. Here, an ultimate comparison is between � and ��i : This may be regarded as a severe
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restriction from the standard point of view, but it is reversed from the viewpoint of bounded
intelligence. Only small number of comparisons are less restrictive than a global theory.

3 Step M: Measurement of pure alternatives

Let k be a depth with 0 � k � �i: A base utility function �k is a function over Bk(x;x) [X�
n

having a 2-dimensional vector-valued �k(f) = [�k(f); �k(f)] in Q2 with �k(f) � �k(f) for
each f 2 Bk(x;x) [ X�

n: As stated above, the components �k(f) and �k(f) are interpreted as
the least upper and greatest lower bounds of possible utilities from f: When �k(f) = �k(f);
person i �nds a precise measurement value from f ; in this case, we say that �k(f) is singular.
When �k(f) > �k(f); he reaches only imprecise measurements; in this case, �k(f) is called non-
singular. Two vector-utility values �k(f) and �k(g) are compared by the interval order �I :We
assume two axioms on �k; the �rst axiom states that �k includes a scale: for k = 0; :::; �i.

Axiom M0(Determination of a scale):(1)(Upper and lower references):

�k([x; 1;x]) = �k([x; 1;x]) > �k([x; 0;x]) = �k([x; 0;x]): (8)

(2)(Expected utility for scale lotteries): for all [x; �;x] 2 Bk(x;x);

�k([x; �;x]) = ��k([x; 1;x]) + (1� �)�k([x; 0;x]): (9)

Axiom M0(1) means that �k adopts the two reference points [x; 1;x] = x = 2n and [x; 0;x] =
x = 0; and states that x is strictly better than x. Also, it requires �k([x; 1;x]) and �k([x; 0;x])
be singular. M0(2) is regarded as the expected utility property over the scale lotteries; the value
�k([x; �;x]) is expressed as a convex combination of the values �k([x; 1;x]) and �k([x; 0;x])
of two reference points x = [x; 1;x] and x = [x; 0;x] with weights � and 1 � �: The value
�k([x; �;x]) is singular, too. Since the set of values f�k([x; �;x]) : [x; �;x] 2 Bk(x;x)g with �I
is isomorphic to the set scale �k; as well as Bk(x;x); with the natural order on �k; the function
�k is a representation of �k and Bk(x;x):

The next axiom, M1, describes how a pure alternative x 2 X�
n is measured.

Axiom M1 (Measurement by the smallest unit in a scale): For any k = 0; 1; :::; �i;

(1): �k(x) w �k+1(x); i.e., �k(x) � �k+1(x) and �k(x) � �k+1(x);
(2): �k(x) = [�k(x); �k(x)] is expressed as either [�k([x;

�+1
2k
;x]); �k([x;

�
2k
;x])]

or �k([x; �2k ;x]) for some � (0 � � < 2
k)

Axiom M1(1) states that the measurement of utility is more accurate as k is larger; the strict
case (either �k(x) > �k+1(x) or �k(x) < �k+1(x)) is denoted by �k(x) = �k+1(x). Moreover,
Axiom M1(2) means that the measurement of x is characterized by the unit interval in the scale
Bk(x;x) containing x; or the measurement is done exactly. In the former case, it is represented by
the two values of scale lotteries �k([x; �+12k ;x]) = �k([x;

�+1
2k
;x]) and �k([x; �2k ;x]) = �k([x;

�
2k
;x]):

Preciseness of the utility value �k(x) is increasing with respect to depth k:

Lemma 3.1 (Accuracy of measurement). Assume Axioms M0 and M1. Then, for all k;

(1): �k�1(x) = �k(x) or �k�1(x) = �k(x) is singular;

(2): if �k�1(x) = �k(x); then �k�2(x) = �k�1(x); and if �k�1(x) = �k(x); then �k(x) =
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�k+1(x):

Proof.(1): Suppose �k�1(x) = [�k�1([x; �
2k�1

;x]); �k�1([x;
�

2k�1
;x])]: By AxiomM1(2), �k�1(x) =

�k(x) and they are singular. Next, suppose �k�1(x) = [�k�1([x;
�+1
2k�1

;x]); �k�1([x;
�

2k�1
;x])]:

Then, �k�1(x) > �k�1(x) by Axiom M0. In this case, the interval between [x; �+1
2k�1

;x] and
[x; �

2k�1
;x] is divided into two intervals from [x; 2�+2

2k
;x] = [x; �+1

2k�1
;x] to [x; 2�+1

2k
;x]; and from

[x; 2�+1
2k
;x] to [x; 2�

2k
;x] = [x; �

2k�1
;x]: By Axiom M1, �k(x) has the interval of length 1

2k
or 0: In

either case, �k�1(x) = �k(x):

(2): The �rst claim follows from (1) and Axiom M1(2). Taking the contrapositive of this, we
obtain the second claim by (1).�

Axiom M1 describes a process for person i to �nd the utility values �0(x);�1(x); :::;��i(x)
by digging cognitive layers in his mind. Here, the base assumption is the existence of �0(x); :::;
��i(x) for a given x hidden in his mind. Under Axiom M1, this existence implies a utility
function �n : X�

n ! Q[0;1], which we call a latent utility function. This theorem is stated from
the viewpoint of the outside analyzer, and it gives a great convenience.

Theorem 3.1 (Latent utility function). Let f�kg�ik=0 be a given sequence of base utility
functions with Axiom M0. Then, f�kg�ik=0 satis�es Axiom M1 for all x 2 X�

n if and only if there
is a function �n : X�

n ! Q[0;1] such that for any k = 0; :::; �i;

(a): if �+1
2k

> �n(x) >
�
2k
; then �k(x) = [�k([x; �+12k ;x]); �k([x;

�
2k
;x])];

(b): if �n(x) = �
2k
; then �k(x) = �k([x; �2k ;x]):

Proof.(If ): Axiom M1(2) follows directly from (a) and (b). Noting that �n(x) is independent
of k; M1(1) follows also from (a) and (b).

(Only-if ): We show the existence of a �n : X�
n ! Q[0;1] with (a) and (b). Let x 2 X�

n. Let
�n(x) = (��i(x) + ��i(x))=2: When ��i(x) = ��i(x); �n(x) belongs to ��i � ��i+1: When
��i(x) is non-singular, by Axiom M1, ��i(x) = [�k([x;

�+1
2�i ;x]); �k([x;

�
2�i ;x])] for some �: Hence,

�n(x) = (��i(x) + ��i(x))=2 =
2�+1
2�i+1

: Since �k(x) is weakly decreasing and �k(x) is weakly
increasing with �k(x) � �k(x) for all k � �i; we have �k(x) � �n(x) � �k(x) for all k � �i: If
�+1
2k

> �n(x) >
�
2k
; then, by Axiom M1.(1), we have �k(x) = [�k([x; �+12k ;x]); �k([x;

�
2k
;x])]; and

if �n(x) = �
2k
; then �k(x) = �k([x; �2k ;x]):�

Notice that a latent utility function �n(x) is uniquely determined if and only if �n(x) =
�k(x) = �k(x) for some k � �i: Otherwise, it is not uniquely determined.

This theorem connects a bridge between the point of view of person i and that of the outside
analyzer. As stated already, �0(x);�1(x); :::;��i(x) mean that they are hidden in the mind of
person i and are found step by step by digging his mind from a shallow cognitive degree to
deeper. In this sense; �n(x) is latent for person i: As long as Axiom M1 is assumed, however, the
sequence goes to the value of a latent utility function �n(x) and the values are determined by
(a) and (b) of Theorem 3.1. Person i cannot avoid the digging process, but the outside analyzer
can use �n(x); which gives a convenient representation conceptually as well as computationally.

The latent utility function �n(�) derived in Theorem 3.1 has no constraint with respect to
x 2 X�

n: Since X
�
n is the set of monetary payments, it would be natural to assume that �n(x) is

at least weakly monotone function of x; i.e., �n(x+1) � �n(x) for all x = 0; :::; 2n�1: It could be
natural also to assume some structure; for example, concavity over X�

n; i.e., �n(x)� �n(x� 1) �
�n(x+1)� �n(x) for all x = 1; :::; 2n� 1: This is interpreted as weakly risk-averse. One example
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is the risk-nuetral one:
�RNn (x) =

x

2n
for x 2 X�

n: (10)

We assume this �RNn for our consideration of a resolution of the SP paradox. The latent function
�RNn (x) is entirely risk neutral, but for k < n; if �+1

2k
> �RNn (x) > �

2k
; then �k(x) is represented

by interval [�k([x; �+12k ;x]); �k([x;
�
2k
;x])]: This interval is larger, i.e., measurement is coarser for

a smaller k. This will cause incomparability, which will be discussed speci�cally for participation
fee � and the subjective understanding ��i of the SP lottery �n in Section 4.2.

A risk-averse example for the latent utility function is �Rtn (x) =
p
x=2n for x 2 X�

n; and a
risk-lover example is �Sqn (x) = (x=2

n)2, for which is convex.

Axiom M0 determines the utility function �k over Bk(x;x): Axiom M1 uniquely extends this
�k over X�i ; thus, these axioms determine the function �k uniquely over Bk(x;x)[X�i : In fact,
this determination depends only upon �k([x; 1;x]) and �k([x; 0;x]):10 Using this fact, we can
normalize �k as

�k([x; 1;x]) = [x;x] and �k([x; 0;x]) = [x;x]: (11)

Under this normalization, Axiom M1 is expressed as follows:

�k(x) =

8<: [(� + 1) � 2n�k; � � 2n�k] if (� + 1) � 2n�k > �n(x) � 2n > � � 2n�k

[� � 2n�k; � � 2n�k] if �n(x) � 2n = � � 2n�k:
(12)

For example, the �rst case of (12) follows from Axiom M1 and (11); �k([x; �+12k ;x]) =
�+1
2k
� x+

0 = (� + 1) � 2n�k and �k([x; �2k ;x] =
�
2k
� x + 0 = � � 2n�k. The second case is similar. We use

(12) since it is convenient for the calculation purpose.

In the following, we suppose condition (10): Under this condition, we state a few speci�c
facts for calculation purposes. When �i � n; it holds that 2n�k � 1 for k with �i � k � n: This
implies that the lower case of (12) holds; thus,

if �i � k � n; then �k(x) = [x;x] for all x 2 X�i : (13)

Thus, when the cognitive degree �i is precise enough, all alternatives x are measured precisely.
The other extreme is that k (� �i) is very small. Then, the case � = 0 in the upper case of (12)
is speci�cally important, and is written explicitly:

if 2n�k > x; then �k(x) = [2
n�k; 0]: (14)

The set of pure alternatives X�i has only two types f�g and f21; :::; 2b�i+1g; only � may not
be a binary number. Either (14) or the assertion of (13) holds for a binary number x. This is
stated as Lemma 3.2 under �n(x) = �RNn (x) for all x 2 X�

n:

Lemma 3.2 (Shape of �k(x) for a binary x): Let x = 2n�k
�
for some k� (0 � k� � n):

Then,

�k(x) =

8<:
[2n�k; 0] if k < k�

[x;x] if k � k�:
10This further implies that the utility representation �k of %k is uniquely determined up to a positive linear

transformation (cf., Section 3 in Kaneko [16]).
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Proof. Let k < k�: Then x = 2n�k
�
< 2n�k: By (14), �k(x) = [2n�k; 0]: Let k � k�: Since

2n�k � 2n�k� ; we have x = 2n�k� = 2k�k� � 2n�k: Let � = 2k�k� : Then, x = � � 2n�k = �
2k
� x: By

(12), we have �k(x) = [� � 2n�k; � � 2n�k] = [x;x]:�

4 Step E: Extension to have a choice from � and ��i

We de�ne a process of deriving the utility function u�i to make a comparison between fee �
and subjective understanding ��i of a coin-tossing �n given by (2). we use new utility functions
u�i(�); :::;u�i�b�i(�) for this process, and then we add Axiom ME to make a connection between
uk(�) and the base utility function �k(�) given in Section 3.

4.1 Process to evaluate ��i

The ultimate goal of the extension process is to evaluate u�i(�
0
�i
) = u�i(��i) to make a compar-

ison with u�i(�) = ��i(�): It starts separating the smallest prize 2
1 from the other part �1�i ; this

is depicted in Fig.5, where the the other part is expressed as the subtree in the second outermost
broken-line rectangular. It is expressed as the compound lottery 1

22
1 � 12�

1
�i
; meaning that each

of 21 and �1�i happens with probability
1
2 . These components are is evaluated by u�i�1 ; i.e.,

1
2 �u�i�1(2

1)+ 1
2 �u�i�1(�

1
�i
): The term u�i�1(�

1
�i
) needs to be further decomposed such as in the

third rectangular in Fig.5; the second prize 22 is separated from �2�i , and these are evaluated by
u�i�2: Repeating this decomposition and evaluation, person i goes to the innermost rectangular
to �nish this process. We will show that this process leads to the formula (15) by connecting
the process to the result in Section 3;

u�i(�
0
�i
) =

b�iP
k=1

1

2k
� ��i�k(2

k) +
1

2b�i � ��i�b�i(2b�i+1): (15)

The very last term has the same probability coe¢ cient as the last term of the summation,
because of the truncation rule mentioned after (2). The formula (15) is the �nal goal of Step E.

We prepare a few concepts. Recall X�i = f�g [ f21; :::; 2b�i+1g given in (4). First, let
Ll(X�i) = ff : X�i ! �l :

P
x2X�i

f(x) = 1g; (16)

where l is a nonnegative integer. We say that (u;�) is a legitimate pair i¤ u = (u; u) is
de�ned over some nonempty subset � of Ll(X�i) for some l and its region is Q

2 satisfying
u(f) � u(f) for all f 2 �: We say that h(u�i ;�0); (u�i�1;�1); :::; (u�i�b�i ;�b�i)i is a trajectory
of the decomposition process i¤ (u�i�k;�

k) is a legitimate pair for each k = 0; 1; :::;b�i: The
length of a trajectory can be shown to be b�i (without counting (u�i ;�0)) as a result from our
axioms for the process, but to avoid unnecessary complications, we use the length b�i as given.

In Kaneko [16], a lottery is simply a probability distribution, but here, it has the order
structure of coin-tossing. A trajectory h(u�i ;�0); (u�i�1;�1); :::; (u�i�b�i ;�b�i)i goes along this
order structure, but its evaluation is made before the coin-tossing. The depths involved in
�0 must be the most precise among those domains �0;�1; :::;�b�i : The following axioms are
described along this order structure. Note that the depth structure used in [16] is opposite in
that it is ordered from the roughest probability grids to more precise ones.
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The �rst axiom states that the process aims to evaluate utility values from participation fee
� and his subjective understanding ��i of �n.

Axiom E0 (Target): The domain of u�i is �
0 = f�; �0�ig; where �

0
�i
= ��i :

We give two axioms on connections between adjacent pairs (u�i�k;�
k) and (u�i�(k+1);�

k+1)
in a trajectory: The following de�nition plays a key role for this connection. Let f; f1; f2 be
three lotteries in Ll(X�i) with some l � 1: We say that ff1; f2g is a decomposition of f i¤

f(x) =
1

2
� f1(x) + 1

2
� f2(x) for all x 2 X�i ; (17)

for t = 1; 2; �(f t(x)) < �(f(x)) for all x 2 X�i with �(f(x)) > 0: (18)

In Fig.5, subjective lottery �k�i is decomposed to 2
k+1 and �k+1�i

: These are candidates for de-
composed lotteries f1 and f2: In general, a lottery may have multiple decompositions.

We say that f 2 Ll(X�i) is mixed i¤ 0 < �(f(x)) for some x 2 X�i :

Axiom E1 (Decomposition): Let k = 0; :::;b�i � 1 and let f be mixed: Then, f 2 �k if and
only if f has a decomposition ff1; f2g such that f1 2 �k+1 and f2 2 �k+1:

When f 2 �k is mixed, f is decomposed into two lotteries in �k+1; and conversely, if f is
obtained by combining two lotteries f1; f2 in �k+1; then f belongs to �k: By (18), the depths
of lotteries in �k are decreasing, and the process stops when �k has no mixed lottery: This
happens for k = b�i � 1; thus the length of a trajectory is uniquely determined to be b�i:

The next axiom connects the utility values of (u�i�k;�
k) to those of (u�i�(k+1);�

k+1) via
decompositions.

Axiom E2 (Reduction of utility value): For k = 0; :::; �i�1; if f 2 �k has a decomposition
ff1; f2g; then

u�i�k(f) =
1
2 � u�i�(k+1)(f

1) + 1
2 � u�i�(k+1)(f

2): (19)

The subscripts of the utility functions are numbered along the decomposition process, and
contain the information of permissible depths. For example, person i evaluates the utility value
u�i(f) from the viewpoint of cognitive degree �i: Then, he enters the scope of probability weight
1
2 covering a decomposition ff

1; f2g; and evaluates each of ff1; f2g is from the viewpoint of
cognitive degree �i � 1: Thus, u�i�1 is used with the outer weights

1
2 in (19):

Let us de�ne the probability distributions �0�i ; �
1
�i
; :::; �

b�i
�i in Fig.5: for each l = 0; :::;b�i; each

�l�i with the support f2
l+1; :::; 2b�i ; 2b�i+1g is given as

�l�i(2
t) =

8<:
1
2t�l

if l + 1 � t � b�i
1

2t�1�l
if t = b�i + 1: (20)

The �rst �0�i is ��i itself, and �
1
�i
is de�ned over the support f22; :::; 2b�i ; 2b�i+1g: In general, �l�i

is de�ned over the support f2`+1; :::; 2b�i ; 2b�i+1g: The last �b�i�i has the support �b�i = f2b�i ; 2b�i+1g;
and the decomposition is not applied to either 2b�i or 2b�i+1; and the process does not go any
further. We stipulate to write �b�i�i = 2b�i+1; then �b�i = f2b�i ; �b�i�ig:We have the following theorem
from Axioms E0 to E2: the domains �0; �1; :::;�b�i are uniquely determined, but the utility
functions u�i ;u�i�1; :::;u�i�b�i are determined within some freedom, which will be explained
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below: A proof will be given below.

Theorem 4.1 (Decomposition trajectory): Suppose �0 = f�; �0�ig: A trajectory h(u�i ;�
0);

(u�i�1;�
1); :::; (u�i�b�i ;�b�i)i satis�es Axioms E1 and E2 if and only if for each k = 1; :::;b�i;

�k = f2k; �k�ig; (21)

u�i(�
0
�i
) =

kP
t=1

1

2t
� u�i�t(2

t) +
1

2k
� u�i�k(�

k
�i
): (22)

Under Axioms E0, Axioms E1 and E2 form necessary and su¢ cient conditions for a trajectory
to be the same as what is described in Fig.5. As remarked stated, the domain �k in (21) is
uniquely determined and ��i = f2b�i ; �b�i�ig = f2b�i ; 2b�i+1g: (22) is an intermediate expression
obtained in the decomposition process up to k: Plugging k = b�i to (22) and �b�i�i = 2b�i+1; we
obtain

u�i(�
0
�i
) =

b�iP
k=1

1

2k
� u�i�k(2

k) +
1

2b�i � u�i�b�i(2b�i+1): (23)

This formula di¤ers from our goal (15) in that the utility functions in the right-hand side
are u�i�k�s in (23) and ��i�k�s in (15). Also, these utility values u�i�1(2

1); :::; u�i�b�i(2b�i);
u�i�b�i(2b�i+1) are still arbitrary. This arbitrariness is �xed when they are connected to the base
utility functions ��i�k�s given in Step M.

Axiom ME (Bridge): For each k = 0; :::;b�i; if x 2 �k \X�i ; then u�i�k(x) = ��i�k(x):
Suppose Axioms M0, M1 for ��i ; :::;��i�b�i and E0 to E2 for h(u�i ;�0); :::; (u�i�b�i ;�b�i)i:

Then, Axiom ME connects these axiomatic systems; we have the target result (15). Since
u�i(�) = ��i(�) is also �xed by Axiom ME, u�i(�) and u�i(��i) are compared by the interval
order �I :

We give one remark on a possible restriction of the domain of ��i�k:

Remark 4.1 (Implications with respect to bounded intelligence for formula (15)).
In Section 3, the base utility function ��i�k is de�ned �rst on the scale lotteries B�i(x;x) by
Axiom M0, and then it is de�ned over X�

n = f0; :::; 2ng by Axiom M1. However, since u�i�k is
de�ned over �k\X�i and since u�i�k = ��i�k is required by Axiom ME for �

k\X�i ; the target
set X�

n = f0; :::; 2ng in Axiom M1 for ��i�k can be restricted to X�i : Hence, the calculation
of formula (15) can be done by concentrating on X�i : This is an implication with respect to
bounded intelligence. Nevertheless, Axiom M0 required ��i�k be de�ned over the scale lotteries
B�i(x;x): Some restriction on the scale lotteries is also possible, but it needs some systematic
consideration.

Now, we go to the proof of Theorem 4.1. In general, a lottery f 2 Lk(X�i) may have
multiple decompositions. This multiplicity makes an application of Kaneko�s [16] theory more
complicated. In the case of SP lottery �k�i , however, we can prove uniqueness, which simpli�es
the application of Axiom E2..

Lemma 4.1 (Unique decomposition). For each k � b�i � 1; lottery �k�i has the unique
decomposition consisting of 2k+1 and �k+1�i

:

Proof. It is easy to see that f2k+1; �k+1�i
g is a decomposition of �k�i : We show its uniqueness.
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Suppose that f�1; �2g is a decomposition of �k�i : Since the support of �
k
�i
is f2k+1; :::; 2b�i+1g by

(20), it holds by (17) that

1

2
� �1(2t) +

1

2
� �2(2t) = �k�i(2

t) for t = k + 1; :::;b�i + 1: (24)

Since �k�i(2
k+1) = 1

2 ; we have
1
2�1(2

k+1)+ 1
2�2(2

k+1) = 1
2 : By (18), �(�1(2

k+1)) < �(�k�i(2
k+1)) =

1 and �(�2(2k+1)) < �(�k�i(2
k+1)) = 1; which implies that each of �1(2k+1) and �2(2k+1) is 0 or

1: Since 1
2�1(2

k+1) + 1
2�2(2

k+1) = 1
2 ; at least one of �1(2

k+1) and �2(2k+1) is 0: Thus,

�1(2
k+1) = 0 or �2(2k+1) = 0: (25)

Let �1(2k+1) = 0; the other case �2(2k+1) = 0 is parallel. Then, �2(2k+1) = 1; thus, �2(2t) = 0
for all t = k + 2; :::;b�i + 1: So, �2 is pure outcome 2k+1: It remains to show �1 = �k+1�i

: By (24),
�1 is obtained from �k�i by restricting the support to f2

k+2; :::; 2b�i+1g with normalization by
multiplying by 2: The resulting lottery is �1 = �k+1�i

: We have proved f�1; �2g = f�k+1�i
; 2k+1g.�

Proof of Theorem 4.1 (Only-if): Suppose that h(u�i ;�0); (u�i�1;�1); :::; (u�i�b�i ; �b�i)i
satis�es Axioms E1 and E2. Repeating Axiom E1 and Lemma 4.1, we have �k = f2k; �k�ig for
k = 1; :::;b�i: Applying Axioms E2 and E1 to each �k�i , we have (22) for k = 1; :::;b�i:
(If): Axiom E1 follows from Lemma 4.1. Axiom E2 is proved as follows: by (15), u�i�k(�

k
�i
) =

2k � u�i(�0�i) �
Pk
t=1 2

k�t � u�i�t(2t) =
1
2 � [2

k+1 � u�i(�0�i) �
Pk+1
t=1 2

k+1�t � u�i�t(2t)] +
1
2 � 2

0 �
u�i�(k+1)(2

k+1) = 1
2 � u�i�(k+1)(�

k+1
�i
) + 1

2 � u�i�(k+1)(2
k+1):�

4.2 Value u�i(��i) under Axioms M0-M1, E0-E2, and ME

Our concern is a comparison between the utility values u�i(�) and u�i(��i) for person i with
cognitive degree �i: Under the risk-nuetrality condition (10), u�i(�) and u�i�k(2

k) are deter-
mined in terms of the maximum prize n; cognitive degree �i; and k: This is given by (12): It
follows from this and and the result (15) that u�i(��i) must be expressed in terms of n and �i:
However, the result (15) is indirectly expressed in terms of n and �i in that a variable k occurs
in the formula. Here, we express u�i(��i) directly by n and �i: In the following, we assume
Axioms M0-M1, E0-E2, and ME as well as (10).

Theorem 4.2 (Value of u�i(��i)).
(1): Let �i � n� 1: Then u�i(��i) = [n+ 1;n+ 1]:
(2): Let �i � n� 2: Then u�i(��i) = [(�i + 1) � 2n��i ; 0]:

Proof.(1): Recall b�i = min(�i; n � 1): Let �i � n � 1: First, for t � b�i; we calculate u�i�t(2t)
using (12); since 0 < 2t = 2t+�i�n � 2n��i ; we have the second case of (12) and thus u�i�t(2t) =
[2t+�i�n � 2n��i ; 2t+�i�n � 2n��i ] = [2t; 2t]: Consider u�i�b�i(2n): Since 2n = 2n � 20; we have
u�i�b�i(2n) = [2n; 2n] by the second case of (12). Plugging these to the formula (15), we have

u�i(��i) =
Pb�i
t=1

1
2t � u�i�t(2

t)+ 1
2�i � u�i�b�i(2b�i+1) = [b�i + 2;b�i + 2] = [n+ 1; n+ 1]:

(2): Suppose that �i � n � 2: Let t � �i: First, we calculate u�i�t(2
t) using (12); since

0 < 2t < 2t � 2(n��i) = 2n�(�i�t); we have the �rst case of (12); from this, we have

u�i�t(2
t) = [2n�(�i�t); 0] for t � �i: (26)
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Since �i � n� 2; i.e., �i + 2 � n; we have 0 < 2�i+1 < 2�i+1 � 21 � 2n = 2n�0: By the �rst case
of (12), u0(2�i+1) = [2n; 0]: Thus,

if �i � n� 2, then u0(2�i+1) = [2n; 0]: (27)

Now, we calculate u�i(��i) = [u�i(��i);u�i(��i)]: Using (26) and (27), we have, for �i � n� 2;

u�i(��i) =
�iP
t=1

1

2t
� u�i�t(2

t) +
1

2�i
� u0(2�i+1)

=
�iP
t=1

1

2t
� 2n��i � 2t + 1

2�i
� 2n = �i � 2n��i + 2n��i = (�i + 1) � 2n��i :

The lower bound u�i(��i) is given
P�i
t=1

1
2t � 0+

1
2�i � 0 = 0:�

To have comparisons between u�i(�) and u�i(��i), we use the interval order �I . We state a
simple observation from Theorem 4.2 and (12).

Lemma 4.2 (Precise cognitive bound). Let �i � n� 1 and � an even number. Then,

(1): both u�i(��i) and u�i(�) are singular;

(2): u�i(��i) �I u�i(�) if and only if n� 1 � �.

Proof. (2) follows from (1). Consider (1). By Theorem 4.2.(2), u�i(��i) = [n + 1;n + 1]: We
change �i � n� 1 into n� �i � 1: We show that � = � � 2n��i for some �: Indeed, If n� �i = 1;
then � = � � 2n��i = � � 2 for some �; since � is an even number: If n��i � 0; then, � = � � 2n��i
for some �: By (12), ��i(�) = [�;�].�

The formula (12) for u�i(�) as well as Theorem 4.2 for u�i(��i) are still abstract. Let us see
what would happen with comparisons between them in an numerical example. The example has
the salient feature that u�i(�) and u�i(��i) are incomparable in many cases, which leads us to
Section 5.

Example 4.1 (Small): Let n = 17 and � = 500; that is, the maximum prize is 217 =
131; 072c/ + 1; 300$ and the participation fee is 500c/ = 5$: It is simpler to calculate u�i(��i) =
[u�i(��i);u�i(��i)] than u�i(�) = [u�i(�);u�i(�)]: We can directly apply Theorem 4.2 to have
u�i(��i) = [u�i(��i);u�i(��i)]: However, we need to return to the formula (12) to have u�i(�) =
[u�i(�);u�i(�)]; Lemma 3.2 is not applied to x = 500:
Let us calculate u�i(��i) by applying Theorem 4.2: By Theorem 4.2.(1), we have u�i(��i) =

[(�i+1)�2n��i ; 0] for �i � n�2 = 15; and by Theorem 4.2.(2), we have u�i(��i) = [n+1;n+1] for
�i = 16; 17: These are written in the second and third rows in Tables 4:1 and 4:2. For example,
when �i = 3; u�i(��i) = [(�i+1) �2n��i ; 0] = [4 �214; 0]: Observe that u�i(��i) is non-singular up
to �i = 15; and that the width of u�i(��i) is almost exponentially decreasing with �i; and when
�i = 16; it is singular, i.e., u�i(��i) = [18; 18] is the same as the expected reward from �n.
On the other hand, u�i(�) is obtained by (12). The cognitive degrees from �i = 0 to 17 are

divided into three cases. In Table 4:1; u�i(�) = ��i(�) = [2
n��i ; 0] is to �i = 0 to 8; then, the

�rst case of (12) is applied to �i = 9 to 12; and �nally, the second case is to �i � 13: The values
are written in the fourth and �fth rows. The width of u�i(�) = ��i(�) is almost exponentially
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decreasing, and when �i � 13; this utility value gets singular.

Table 4:1; example with n = 17

�i 0 1 2 3 4 5 6 7 8

u�i(��i) 217 2 � 216 3 � 215 4 � 214 5 � 213 6 � 212 7 � 211 8 � 210 9 � 29
u�i(��i) 0 0 0 0 0 0 0 0 0

u�i(�) 217 216 215 214 213 212 211 210 29

u�i(�) 0 0 0 0 0 0 0 0 0

Comparisons ./ ./ ./ ./ ./ ./ ./ ./ ./

�n;�[�i] 1=2 3=4 5=6 7=8 9=10 11=12 13=14 15=16 17=18

Table 4:2; example with n = 17

�i 9 10 11 12 13 14 15 16 17

ui(��i) 10 � 28 11 � 27 12 � 26 13 � 25 14 � 24 15 � 23 16 � 22 18 18

ui(��i) 0 0 0 0 0 0 0 18 18

ui(�) 2 � 28 4 � 27 8 � 26 16 � 25 500 500 500 500 500

ui(�) 28 3 � 27 7 � 26 15 � 25 500 500 500 500 500

Comparisons ./ ./ ./ � � � � � �

�n;�[�i] 17=20 15=22 9=24 0 0 0 0 0 0

In the last rows of these tables, ./ from �i = 0 to 11 means that ui(��i) and ui(�) are
incomparable, and for �i � 12; � (not participate) is strictly preferred to ��i (participate).
It is important to see the structure of incomparability di¤ers signi�cantly between the cases
�i � 8 and 9 � �i � 11: Even for these �i, the inequalities determining incomparability di¤ers
signi�cantly, for example, for �i = 0; u�i(�) = u�i(��i) = [217; 0]; but for �i = 8; u�i(��i) =
[9 � 29; 0]; u�i(�) = [29; 0]: Incomparability ./ does not re�ect these detailed di¤erences. To
capture them, we will introduce semi-rationalistic choice probability in Section 5. The last row
gives choice-probabilities for ��i , which will be explained in there.

5 Semi-rationalistic Choice for Incomparable Alternatives

We described preferences of person i with cognitive degree �i over his subjective understanding
��i of the SP coin-tossing �n and participation fee �: As shown in Example 4.1, in many cases,
��i and � are incomparable: This may appear to mean the impossibility of a resolution of the
SP paradox. However, behavioral consideration of incomparability suggests that some people
still participate in the SP coin-tossing. In this section, we give a probabilistic approach to this
incomparability, and show that it is quite possible to have participations of some people in the
coin-tossing.

5.1 Forced semi-rationalistic choice; reduction to rationalistic choices

People are often unable to make choices by rational thinking for various reasons, for example,
cognitive bounds, lack of precise information etc. Nevertheless, they are often required to make
choices by norm, social pressure. One famous exception is Buridan�s donkey (cf., Zupko [30]); a
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donkey faces two carrots in the same distances (up to his cognitive ability) and he cannot choose
the right carrot or the left, and eventually dies of starvation. Our incomparability is applied
to this example.11 The other exception is that some people consciously refuse to make choices
because the description of a situation is not enough.

The incomparability results obtained in Sections 3 and 4 dictate the existence of a limit to
have a conscious decision by his free will; the theory stops at preferences or incomparabilities.
When person i �nds a preference between ��i and �, he chooses the preferred. If he reaches
incomparability, what is the next step? So far, the theory suggests nothing for him. In the real
world, however, majority of people make choices because they have been forced to make choices
by social norm, authorities, etc.12

Suppose that person i is forced to make a choice. He has already used his capacity for his
rationalistic choice and reached incomparability between ��i and �: Now, he need to use di¤erent
sources to make a choice. The theory in Sections 3 and 4 is restricted in the explicitly formulated
process of measurement and extension, except for the assumption that the utility is hidden in
the mind of person i: People have many more experiences and practices, even including similar
processes. Person i digs memories in past choice practices to have a choice between incomparable
��i and �, while trying deviations from the rationalistic method as small as possible.

We describe an extension of our theory called the semi-rationalistic behavioral-probability
�(u�i(��i); u�i(�)), which is the probability of person i choosing ��i when he faces a choice be-
tween ��i and �: It has some similarity to Luce�s [18] approach in that both approaches extend
the standard theory of preferences in terms of probability. However, the essential part of our ap-
proach is between two incomparable alternatives, while Luce�s theory is simply a generalization
of preferences in terms of probability.13 We reduce the behavioral-probability �(u�i(�);u�i(��i))
to comparable cases; in other words, we construct a theory of probabilistic choice for incompa-
rable ��i and � based on the rationalistic-choice theory developed in Sections 3 and 4. We call
this the reduction method to rationalistic choices.

In order to illustrate this method, consider the value �(u�i(��i);u�i(�)) = �([10 � 28; 0];
[2 � 28; 28]) in Table 4.2 for �i = 9: The �rst interval [10 � 28; 0] contains the second [2 � 28; 28]:
Focussing on [10 � 28; 0]; we divide [10 � 28; 0] at the point 2 � 28 of the second interval to the right
term of (28), and then [2 � 28; 0] is divided again at 28: Thus, we have the second line of (28);

[10 � 28; 0] ! [10 � 28; 2 � 28]; [2 � 28; 0] (28)

! [10 � 28; 2 � 28]; [2 � 28; 28]; [28; 0]:

Each of these intervals can be compared with u�i(�) = [2 � 28; 28] with the interval order �I ;
that is, [10 � 28; 2 � 28] �I [2 � 28; 28]; [2 � 28; 28] = [2 � 28; 28]; and [28; 0] �I [2 � 28; 28]: We
assign probability 1 to the �rst since the left interval is chosen, the probability 1

2 to the second
since they are identical with respect to utility representations, and the probability 0 to the left
[28; 0]: Thus, �(u�i(��i);u�i(�)) = �([10 � 28; 0]; [2 � 28; 28]) is calculated by reducing it into these
11 Interpreting this situation by indi¤erence means that he can choose either rather than he cannot choose. This

goes to a probablistic choice of each with 1
2
.

12 In literature, there are many instances treating such problems, e.g., �Sophie�s Choice�by William Styron and
�Terror� by Ferdinand von Schirachon. In the literature of economics, however, people (experimental subjects)
are supposed to answer to questionaires. In the game theory literature, Davis-Maschler [5] asked game theorists
about about a questionaire related to the theory in [5], only Martin Shubik made an explicit refusal to.answer to
it because of insu¢ ciency of descriptions the theory to answer.
13Our theory may look similar to �propensity probability� (cf., Gillies [12], Hájek [14], Section 3.5). It is is

interpreted as a (probablisitc) generalization of causality In our theory, causality is hidden in Step M.
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subintervals, while we need some weights for summing up these values. Thus, the probability
�(u�i(��i);u�i(�)) of choosing ��i is obtained in a rationalistic manner.

The reduction method to rationalistic choices is interpreted as follows. Recall that in the
rationalistic method given in Sections 3 and 4, person i considers his choice in terms of the
elements in the SP gamble of Fig.2 up to his cognitive bound, digging his latent satisfac-
tions/dissatisfactions in his mind, which is the measurement step, and he extends those utility
values in a logical manner. In the reduction method, he recalls his past practices of this rational-
istic choice, and reduces the present problem of incomparability to a few pieces of past memories.
In this sense, this method is not totally rationalistic, in which sense it is semi-rationalistic. The
practical meaning will get clearer as an axiomatic representation is developed.

5.2 An axiomatic system determining the semi-rationalistic choice-function

Let us formulate the above reduction method. We work on representing utility vectors, rather
than basic objects to be represented. Let � be a �nite subset of Q2(�) = f� = h�;�i 2 Q2 :
� � �g; associated with the interval order �I : We start with a given pair (�;�I). Let us
de�ne the following condition (decomposition closedness:): for any �;� 2 � and � = �; � with
� � � � �;

[�; �] and [�;�] are in �: (29)

Here, � is decomposed into [�; �] and [�;�] by � = � or �: When � = �; (29) implies [�;�] 2 �
and [�;�] 2 �: However, the essential case of (29) is � > � > �; in this case, a new non-
degenerated interval is [�; �] and [�;�]. This decomposition generates a �nite number of subin-
tervals.

We say that � is the set generated by �;�, denoted by �(�;�); i¤� satis�es (29) and � � �0
for any �0 that includes �;� and satis�es (29). This �(�;�) is uniquely determined, nonempty,
and consists of a �nite number intervals. For example, when � > � > � > �; we have

�(�;�) = f[�;�]; [�;�]; [�;�]g [ f[�;�]; [�;�]; [�;�]; [�;�]g [ f�;�g: (30)

In (30), [�;�] is missing.

Let �;� 2 Q2(�): We de�ne a behavioral-probability function �:

Axiom S0(Choice probability): A behavioral-probability function is given as � : �(�;�)2 !
Q[0;1]:

For �;� 2 �(�;�)2; the value �(�;�) means that person i chooses � with probability
�(�;�): Here, we focus on a person i for �(�;�); but we do not put the subscript i: Our �nal
target is to calculate �(�;�) rather than f�(�;�) : (�;�) 2 �(�;�)2g: The following axiom is
associated with the above interpretation of �(�;�):

Axiom S1(Probability): �(�;�) + �(�;�) = 1 for �;� 2 �(�;�).

Person i chooses � with probability �(�;�) and � with probability 1� �(�;�): Lemma 5.1
is an implication of Axiom S1, which is the hint discussed in the beginning of Section 5, and
plays a key role in the determination of the probability function �.

Lemma 5.1(Equal probability for an equal utility representation): �(�;�) = 1
2 for

� 2 �(�;�).
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Proof. By Axiom S1, we have �(�;�) + �(�;�) = 1; which implies �(�;�) = 1
2 :�

Notice that since � = [�;�] is a utility representation of some underlying alternatives, this
lemma has a non-trivial content.

The next axiom is the connection to the previous theory in Sections 3 and 4: if �;� are
comparable with �I , the behavioral-probability �(�;�) coincides with his rationalistic decision
expressed by �I :

Axiom S2 (Preservation of the interval order): Let �;� 2 �(�;�): If � �I � and � 6= �,
then �(�;�) = 1:

It follows from Axioms S1 and S2 that if � �I � but � 6= �, then �(�;�) = 0:

The third axiom states that �(�;�) is decomposed along (29) with some weights. This axiom
is well-de�ned since the domain �(�;�) satis�es the condition (29).

Axiom S3 (Proportional reduction to irreducibles): Let �;� 2 �(�;�) and � = � or �
with � � � � �; and let 
 2 Q[0;1] satisfying � = (1� 
) � �+ 
 � �: Then,

�(�;�) = 
 � �([�; �];�) + (1� 
) � �([�;�];�): (31)

The interval � = [�;�] is divided into [�; �] and [�;�] for � = � or � with � � � � �: Then,
�(�;�) is decomposed to the weighted sum of �([�; �];�) and �([�;�];�) with their weights 

and 1� 
 given by � = (1� 
) � �+ 
 � �: The weight 
 is given as


 = ���
��� and 1� 
 =

���
��� ; under �� � > 0: (32)

Thus, the weight 
 is the proportional of the length [�; �] over [�;�]:When � = �; 
 is arbitrary
but the assertion (31) holds in a trivial sense.

Let us summarize the axioms. Axiom S0 states what are measured, and Axiom S1 requires the
way be represented by a probability of a choice from � and �. Axiom S2 requires the behavioral-
probability function � to preserve the interval order �I : These axioms are basic requirements.
On the other hand, Axiom S3 decomposes �(�; �) into two subintervals in a proportional manner.
By this, these are reduced to the cases satisfying Lemma 5.1 and Axiom S1. By this, �(�;�) is
proved to be uniquely determined.

Axiom S3 plays an central role for the reduction process leading the unique determination of
�(�;�). We look at how Axiom S3 is used in the reduction process. For an interval � = `[�;�];
we denote `[�] = `[�;�] = � � �; it is simply the length of the interval �: By (32), Then,

 = `[�;�]

`[�] and 1� 
 =
`[�;�]
`[�] : Thus, (31) is expressed as

�(�;�) = `[�;�]
`[�] � �([�; �];�) +

`[�;�]
`[�] � �([�;�];�): (33)

This means that �(�;�) is reduced to a weighted sum of the choice-probabilities of subintervals.
In fact, the behavioral-probability of at least one of the subinterval is determined by some other
axiom. For example, when � = �; the value �([�; �];�) is determined to be 1 by Axiom S2.
Then, the same argument is applied to �([�;�];�) of the second terme. In this manner, the
value �(�;�) is reduced to a sum of terms expressed by `[�]; 1; 0 and 1

2 :

Theorem 5.1 expresses �(�;�) and �(�;�) explicitly by `[�] with 0; 12 ; 1 in three cases. After
stating the theorem, it will be explained that the three cases are exhaustive. A proof will be
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given in Section 5.3.

Theorem 5.1 (Semi-rationalistic behavioral-probability). Assume Axiom S0 for � : �2

! Q[0;1]; i.e., � = �(�;�). A function � : �(�;�)2 ! Q[0;1] satis�es Axioms S1 to S3 if and
only if for each (�;�) 2 �2; �(�;�) is given by
(0): if � � �; then

�(�;�) =

�
1 if � 6= �
1
2 if � = �;

and �(�;�) =

�
0 if � 6= �
1
2 if � = �;

(34)

(1): if � � � � � � � and both �;� are non-singular, then

�(�;�) = `[�;�]
`[�] +

1
2 �

`[�;�]
`[�] �

`[�;�]
`[�] +

`[�;�]
`[�] �

`[�;�]

`[�] (35)

�(�;�) = 1
2 �

`[�;�]
`[�] �

`[�;�]
`[�] ;

(2): if � � � � � � � and � is non-singular, then

r(�;�) = `[�;�]
`[�] +

1
2 �

`[�]
`[�] and r(�;�) = 1

2 �
`[�]
`[�] +

`[�;�]

`[�] : (36)

First, let us see that the above three cases of Theorem 4.1 are exhaustive. Since both r(�;�)
and r(�;�) are given in the three cases, it su¢ ces to consider the case � � �: Thus, we consider
the following three subcases:

(a): � � �; (b): � � � � � � �; and (c): � � � � � � �:

In (a), (0) covers all the cases where � and/or � are singular or not. In (b), if � and/or � is
singular, then this is included in (0). In (c), if � is singular, then it is included in (0). Thus, (0)
to (2) of Theorem 5.1 cover all the cases.

Theorem 5.1 states that Axioms S0 to S3 determine the semi-rationalistic behavioral-probability
function �(�; �) uniquely. Then, this axiomatic system is connected to the axiomatic system M0
and M1 with the risk-neutral latent utility function �RNn and the system E0 to E2 by �(�;�)
in Axiom S0 with

� = u�i(��i) and � = u�i(�): (37)

In the following, we consider this set �(�;�): Let us look at the example �(u�i(��i);u�i(�))
= �([10 � 28; 0]; [2 � 28; 28]) in Table 4.2 for �i = 9: Case (2) is applied to this example;

�(u�i(��i);u�i(�)) =
10�28�2�28
10�28�0 + 1

2 �
2�28�28
10�28�0 =

8
10 +

1
2 �

1
10 =

17
20 ;

which is given in Table 4.2.

Example 4.1 illustrated calculations of involved utility values and their comparisons. As a
purpose of considering a resolution of the SP paradox, this example is too small. It would be
needed to consider a larger example for it. The following example is based on the parameter
values discussed in Section 1.1.

Example 5.1 (Large): Consider the example with the budget degree n = 21 for the banker
and participation fee � = 5$ (and later � = 50$; 100$). If people�s cognitive degrees �i are high
and close to n, the expected revenue is again n+1 = 22c/; and they do not participate in the coin-
tossing. However, since participation could give the large (maximum) prize 221 = 2; 097; 152c/ +
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20; 000$ with the relatively small fee � = 5$; some people may think of participation in the
coin-tossing. If this induces participations of some people, the banker would receive positive
pro�ts unless some person reaches a coin-toss with large prize such as the 21th toss. Let us
calculate u�i(��i) and u�i(�); which are done in the same way as in Example 4.1.

Table 5:1; �i = 0; :::; 10

�i 0 1 2 3 4 5 6 7 8 9 10

u�i(��i) 221 2 � 220 3 � 219 4 � 218 5 � 217 6 � 216 7 � 215 8 � 214 9 � 213 10 � 212 11 � 211
u�i(��i) 0 0 0 0 0 0 0 0 0 0 0

u�i(�) 221 220 219 218 217 217 215 214 213 212 211

u�i(�) 0 0 0 0 0 0 0 0 0 0 0

�[n;�](�i) 1=2 3=4 5=6 7=8 9=10 11=12 13=14 15=16 17=18 19=20 21=22

We abbreviate �(u�i(��i);u�i(�)) as �[n;�](�i); and the row �comparisons�, since the last row
includes this information, i.e., �[n;�](�i) > 0 if and only u�i(��i) 1�i u�i(�):

Table 5:2; �i = 11; :::; 20

�i 11 12 V 13 14 15 16 17 18 19 20

u�i(��i) 12 � 210 13 � 29 14 � 28 15 � 27 16 � 26 17 � 25 18 � 24 19 � 23 20 � 22 22

u�i(��i) 0 0 0 0 0 0 0 0 0 22

u�i(�) 210 29 2 � 28 4 � 27 8 � 26 16 � 25 32 � 24 63 � 23 500 500

u�i(�) 0 0 1 � 28 3 � 27 7 � 26 15 � 25 31 � 24 62 � 23 500 500

�[n;�](�i) 23=24 25=26 25=28 23=30 17=32 3=34 0 0 0 0

From these tables, we observe that the participation probability is quite high in many cases,
e.g., up to �i = 12; the participation probability is increasing to 25=26 from 1=2 at �i = 0; and
after it, it is decreasing (e.g. 8�26

16�26 +
1
2 �

26

16�26 =
8
16 +

1
2 �

1
16 =

17
32 at �i = 15) to 0 at �i = 17:

The above calculation indicates that our study is moving in a direction of a resolution of
the SP paradox. So far, however, our theory includes no consideration of the banker�s choice
or �nancial moves. Since we introduced a budget, it would be a problem for the banker to
meet a possible bankruptcy. Therefore, we need to consider a theoretical extension including
the banker�s behavior. This will be given in Section 6.

5.3 Proof of Theorem 5.1

If part: Axiom S1: �(�;�) + �(�;�) = 1 for all �;� 2 �(�;�)2: This is veri�ed for the

cases (0), (1), and (2). This is straightforward for (0). For (1), �(�;�) + �(�;�) = `[�;�]
`[�] +

`[�;�]
`[�] �

`[�;�]
`[�] +

`[�;�]
`[�] �

`[�;�]

`[�] =
`[�;�]
`[�] +

`[�;�]
`[�] � (

`[�;�]
`[�] +

`[�;�]

`[�] ) =
`[�;�]
`[�] +

`[�;�]
`[�] = 1: (2) is similar.

Axiom S2 is proved by (1).

Consider Axiom S3. It holds by (0) that �([�;�];�) = 1; �(�;�) = 1
2 ; and �([�;�];�) = 0:

Consider case (2). Then, by (36),

�([�;�];�) = `[�;�]
`[�] � 1 +

`[�]
`[�] �

1
2 +

`[�;�]

`[�] � 0

= `[�;�]
`[�] � �([�;�];�) +

`[�]
`[�] � �(�;�) +

`[�;�]

`[�] � �([�;�];�)

= `[�;�]
`[�] � �([�;�];�) +

`[�;�]
`[�] � �([�;�];�):
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This is Axiom S3. Case (1) is similarly proved.

Only-If part: It su¢ ces to derive ( 34), (35), and (36) in the cases (0), (1), and (2) of Theorem
5.1.

(0): Let us see the left statement of (34); the right follows from Axiom S1. Suppose � � �: If
� 6= � , then �(�;�) = 1 by Axiom S2, and if � = �, then �(�;�) = 1

2 by Lemma 5.1.

(1) and (2): To prove (1) and (2) of Theorem 5.1, �rst we prove the following lemma.

Lemma 5.3. Let � = [�; �] and �0 = [� 0; � 0] with � = � 0: Then

(1): if � > � 0 � �; then �(�; �0) = 1
2 �

`[�;�0]

`[�] ;

(2): if � > � � � 0; then �(�; �0) = 1
2 �

`[�]
`[�0]

+
`[�;�0]

`[�] :

Proof. (1): By Axiom S3 and (33), we have �(�; �0) =
`[�;�0]

`[�] � �([�; �
0]; �0)+

`[�0;�]

`[�] � �([�
0; �]; �):

Since [�; � 0] = �0; we have �([�; � 0]; �) = 1
2 by Lemma 5.1. Since �0 �I [� 0; �]; we have

�([� 0;�]; �) = 0 by Axioms S1 and S2. Hence, �(�; �0) = 1
2 �

`(�;�0)

`(�) :

(2): Switching � with �0; (2) is reduced to (1).�

Now, we return to the proof of the only-if part. To prove (1) and (2) of Theorem 5.1. We
write the assumptions of (1) and (2) explicitly:

(A): � � � � � � �; and both �;� are non-singular;
(B): � � � � � � �;and � is non-singular.

Suppose (A). Then,

�(�;�) = `(�;�)
`(�) � �([�; �];�) +

`(�;�)
`(�) � �([�; �];�): (38)

In the �rst term of the right-hand side, we have �([�; �];�) = 1 by Axiom S2. The second

term is reduced by Lemma 5.3.(1), and we have `(�;�)
`(�) � �([�; �];�) =

`(�;�)
`(�) �

1
2 �

`([�;�])

`(�) : Thus,

�(�;�) = `(�;�)
`(�) +

1
2 �

`(�;�)
`(�) �

`([�;�])

`(�) ; which is (1) of the theorem.

Consider (B). By (33), we have

�(�;�) = `[�;�]
`[�] � �([�; �];�) +

`[�;�]
`[�] � �([�;�];�): (39)

By Axiom S2, �([�; �];�) = 1: When � is singular, we �([�;�];�) = 0 by Axiom S2; thus,

�(�;�) = `[�;�]
`[�] =

`[�;�]
`[�] +

`[�]
`[�] : Suppose that � is non-singular. The second term is decomposed

into
�([�;�];�) =

`[�;�]

`[�] � �([�;�];�) +
`[�;�]

`[�] � �([�;�];�):

Lemma 5.1, we have �([�;�];�) = 1
2 : If � = �; then

`[�;�]

`[�] = 0; and if � > �, then by Axiom

S2, �([�;�];�) = 0: Summing up these, we have �([�;�];�) = 1
2 : Plugging this to (39), we have

�(�;�) = `[�;�]
`[�] =

`[�;�]
`[�] +

`[�]
`[�] :�

6 Monopoly Market of an SP Coin-tossing Gamble

We formulate a monopoly market of an SP coin-tossing gamble with a banker and people.
People�s inclinations to participate in the market follow the theory given in Sections 3, 4, and
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5. The banker has a criterion, expressed by the index of pro�t/investment, to open or not the
market. The behavior of the market is analyzed by the Monte Carlo simulation method. We
show that with some speci�cations of parameters, some people incline to buy an SP coin-tossing
gamble and the banker produces the pro�ts satisfying the criterion.

6.1 Monopoly market with a banker and people

We express the basic parameters of the SP gamble market with a banker and people as (f0g[M;
n; �;C j �) :
S0 : 0 is the banker facing people M = f1; :::; jM jg;
S1 : n > 0 is a budget degree (natural number) for banker 0; and

2n is the maximum prize and show-money;

S2 : � is a participation fee which is an even number with 2 � � and � 6= n+ 1;
S3 : C(`) is a facility cost when ` people participate in the gamble;

S4 : �i is a cognitive degree (natural number) of person i 2M and
1
2�i is his cognitive bound :

The banker and people are given in S0: We consider only jM j = 1; 000 in the examples in this
section. In S1; the maximum prize (show-money) 2n for banker 0 is given. In S2; a participation
fee � is given, and is assumed to be even for simplicity. Condition � 6= n+1 is already assumed
in Section 1.1. Since the SP gamble market is organized by the banker, he knows S1 to S2 but
does only some people are gathering. The last parameters � = f�igi2M in S3 are subjective and
unobservable: When person i 2M considers the SP coin-tossing, he may �nd his own cognitive
bound �i: Our concern is to consider whether or not there are some � and � = f�igi2M so that
the SP gamble market is actively played and bankruptcy would happen with a small probability.

In the following examples, the facility cost C(`) is assumed to be a step function having a
step size for 100 people, and the unit size requires cost 200c/� 100. Formally, it is given as

C(`) = 200 � 100 � d `
100e; (40)

where d `
100e is the smallest natural number not less than

`
100 : For example, when ` = 120; two

steps are applied, i.e., C(120) = 200 �100 � d120100e = 4; 000c/: In the following, we use $ rather than
c/ for simplicity.

The banker borrows the show-money 2n + the facility cost C(`) from some �nancial institute
and the banker returns 2n + C(`) with some interests to the institute after the SP market. We
do not consider a speci�c interest rate; but instead, we adopt an index of pro�ts/investments in
Section 6.2.

The SP gamble market are formulated in Fig.6. First, the banker 0 decides to open or
not the gamble market with a participation fee � to be announced to the people. We study
whether or not this would be pro�table for the banker, and if it is pro�table, it is a candidate
for an actual choice of the banker. Our question is whether such an SP gamble exists. After
its announcement, each person decides (or inclines) to participate in the gamble. These people
go to the coin-tossing in a given order, until all participants �nish coin-tossing or the banker
goes bankrupt, i.e., banker 0 cannot pay the the maximum prize 2n to the next person. Since
coin-tossing is independent for people and fee � is paid at the time of coin-tossing, the results
and ordering of coin-tossing do not a¤ect people�s choices.
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Figure 7: The SP gamble market

Each person�s concern is to participate in the coin-tossing with fee � or not; this depends
upon the show-money 2n; fee �; and his subjective cognitive bound �i: He knows the rules of the
gamble but his e¤ective understanding is restricted by �i: If �i � n� 1; he goes to the last 2n;
but if �i � n� 1; then he would stop at 2�i+1: The latter case is our central interest, described
in Fig.3: Recall the stipulation b�i = min(�i; n� 1):

We consider the following three examples of cognitive degrees � = f�igi2M ; it is distributed
over the people M described in Table 6.1.

Table 6.1; distributions of cognitive degrees (%)

�i � � � 7 8 9 10 11 12 13 14 15 16 17 18 19 � � �
I: 'I(�i) � � � 0 5 10 20 30 20 10 5 0 0 0 0 0 � � �
II: 'II(�i) � � � 0 0 0 5 10 20 30 20 10 5 0 0 0 � � �
III: 'III(�i) � � � 0 0 0 0 0 5 10 20 30 20 10 5 0 � � �

In Case I, �i is distributed from �i = 8 to 14 with density function 'I . The cognitive bound
of the least precise person is 1

28
= 1

256 ; meaning that he thinks only up to the event that the
SP coin tossing goes to the 8-th toss. The number of people of this type is 1000 � 5

100 = 50:
The most precise person has cognitive degree �i = 14; i.e., his cognitive bound is 1

214
= 1

16384 ;
meaning that he thinks about up to the 14-th coin-toss. In Cases II and III, the distribution of
I is shifted to the upper direction by 2 and 4 degrees. E¤ects of these shifts will be considered
after the calculations of the total % of participants.

We consider how many people are expected to buy the SP coin-tossing gamble in Examples
4.1 and 5.1.

Example 6.2 (Small): Let n = 17 and � = 500c/ = 5$: Using the values of �n;�[��i ] =
�(u�i(��i);u�i(�)) given in Tables 4.1 and 4.2, we calculate, in Case I,

�[n;�] =
17P
�i=0

'I(�i) � �n;�[��i ] + 38:0%; (41)

and in Case II, �[n;�] =
P17
�i=50

'II(�i) � �n;�[��i ] + 7:2%: In Case I, 38:0% of people M =
f1; :::; 1000g incline to participate in the SP coin-tossing gamble, and in Case II, the percentage
is smaller, 7:2%: In Case III, no body participate in the gamble. The total %�s are given also
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for � = 3$; 10$; 20$; and 50$; for these, u�i(�) in Tables 4.1 and 4.2 should be recalculated. For
� = 1$; the banker�s pro�ts are negative because of (40); we start this table with � = 3$:

Table 6.2; Total % of participants
n = 17 n � 3$ 5$ 10$ 20$ 50$
Case I 59.0% 38.0% 15.2% 5% 0%
Case II 21.7% 7.2% 1.1% 0% 0%
Case II 1.3% 0% 0% 0% 0%

This table states that the total percentage decreases as the participation fee � becomes
higher. Yet, the detailed numbers di¤er between Cases I and II; more people participate in Case
I than in Case II. This di¤erence is because the cognitive degrees in Case II are distributed in
a higher region than in Case I and people with higher cognitive degrees are more cautious.

This example tells that we avoid the absurd consequence in Table 1.1 that when n = 17
and people have precise cognitive degrees, i.e., �i � 16; no people are attracted in the gamble if
� � 19c/:

Now, we calculate the percentages in the large example with 2n = 221.

Example 6.2 (Large): Let n = 21: The maximum prize is 221c/ + 20; 972$: In the same manner
as in (41), we calculate �[n;�] in Cases I, II, III for � from 3$;to 500$ :

Table 6.3; Total % of participants

n � 3$ 5$ 20$ 50$ 100$ 200$ 300$ 500$
Case I 94.4% 94.1% 78.8% 52.8% 29.3% 11.8% 5.6% 1.4%
Case II 84.3% 81.5% 51.2% 15.3% 5.0% 0.7% 0% 0%
Case III 60.8% 46.4% 8.3% 1.3% 0% 0% 0% 0%

This table shows similar qualitative shapes to that of Table 6.2, but are quite di¤erent quan-
titatively; the numbers in the corresponding columns are much larger here. For example, for
� = 5$; the total %�s in Cases I, II, and III are 94.1, 81.5, and 46.4 for n = 21 and 38.0, 7.2, and
0 for n = 17: This di¤erence is caused by the large show-money 221c/ + 20; 972$: 14 A question
of which case I, II, or III is more suitable is a question on an empirical fact on cognitive bounds.
An experimental study of such facts is an open question.

6.2 Dynamics of budgetary changes with an SP coin-tossing

An SP coin-tossing gamble includes large prizes, and it possibly induces the banker to have
large payments. Therefore, a market structure to manage coin-tossing for participants should
be speci�ed; one important constraint is a temporal budget changing by having participation
fees and paying prizes. There are many possible market structures, but here, we consider a
simple structure, which still needs to take the banker�s bankruptcy into account.

Suppose that people in M(n; �) � M have chosen to participate in the coin-tossing, where
the cardinality of M(n; �) is the nearest whole number, `; rounded o¤ from jM j � �[n;�]. We
assume that M(n; �) is enumerated as f1; 2; :::; `g for simplicity; and each person i 2 M(n; �)
14We note that our theory does not include budget constraints for people; Case I may need to have budgets for

people.
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does coin-tossing one-by-one following the order 1; 2; :::; `; which is illustrated as the latter part
in Fig.9. The initial budget of banker 0 is 2n + c: For person i�s SP coin-tossing, the budget
increases by � but decreases by the prize 2ki if he reaches the ki-th toss. Coin-tossing follows the
rule of the SP coin-tossing gamble, and the objective distribution �n is relevant - - subjective
understanding ��i is no longer relevant to actual coin-tossing.

Since the SP coin-tossing is repeated, the following rule is e¤ective:

(Guarantee rule): any prize in the coin-tossing �n should be paid by the banker.

In the process, the banker may become not able to pay a next possible prize, which is bankruptcy.
The process may go to the last person ` without bankruptcy, but the banker may goes bankrupt
before `. Let (n1; :::; n`B ) be a �nite sequence with ni 2 f1; :::; ng for i = 1; :::; `B � `; each ni
means that coin-tossing results in the tails in the ni-th toss. In this case; we denote the budget
B(i) in the beginning of person i�s coin tossing; person i pays participation fee � and starts
coin-tossing. After `B; the banker goes bankrupt.

We de�ne the sequence of budgets (B(0); B(1); :::; B(`B)) by

b0: B(0) = 2n;

b1: B(i) = B(i� 1) + � � 2ni for i = 1; :::; `B;
b2: B(i) + � � 2n for i = 1; :::; `B � 1;
b3: if `B < `; then B(`B) < 2n � �:

Before the start, the banker prepares the initial budget B(0). Person 1 pays participation fee
� and then makes coin-tossing. If coin tossing goes to n1; the banker pays 2n1 cents to the
banker. After this payments, the resulting money amount becomes B(1) = B(0) + � � 2n1 and
is brought to the second coin-tossing if B(1)+� � 2n: If B(1)+� < 2n; then the banker cannot
guarantee the maximum prize 2n for person 2 and goes bankrupt. These are described in b0 to
b3. In general, this process goes up to person `B with bankruptcy or to the last person `: For
simplicity, we include the case B(`) < 2n + � in bankruptcy.

As stated, the banker borrows the show-money 2n and the facility cost C(`) from some
�nancial institution, and the banker should return 2n + C(`) with an interest rate r after the
SP market. The banker�s income may have a lower bound and his B(`B) � (1 + r)(2n + C(`))
should be larger than the bound. However, we consider only the return of investment, ROI;
index given as

ROI =
B(`B)� (2n + C(`))

2n + C(`)
: (42)

When this index ROI is positive, the banker generates a positive pro�t after returning (1 +
r)(2n + C(`)) with r < ROI; and if ROI is non-positive, the banker cannot make a pro�t. We
take this index ROI as an economic index to judge whether the banker possibly opens the SP
market. The lower bound for his income will be considered in interpretations of this index in
addition to the absolute number of B(`B)� (2n + C(`)) in the examples.

The above process (B(0); B(1); :::; B(`B)) is a stochastic process. If includes no bankruptcy,
the process can be reduced to a stationary process, but since it includes a possibility of bank-
ruptcy, it can not be reduced to a stationary one. It is analytically di¢ cult to evaluate the
possibility of bankruptcy and the behavior stochastic process. Instead, we adopt theMont Carlo
method to evaluate the distribution of (B(0); B(1); :::; B(`B)): Each coin-tossing is implemented
by a random generator and a run follows the rules b0-b3. We take 10; 000 iterations of this run.
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Separating the facility cost C(`); we calculate the average AV of B(`B)�B(0) over such 10; 000
runs where B(0) = 2n. Using this, the index ROI is expressed as [AV � C(`)]=[B(0) + C(`)]:

We have the calculation results.

Example 6.1 (Small-continuing): In each case, we make 10; 000 iterations of each coin-
tossing and take the averages of B(`B) � 217. In the case � = 3$ of Table 6.4, ` = 590
people participate in the coin-tossing, and 3:1% of 10; 000 iterations meet bankruptcy. The
(average/10; 000) revenue for the banker is 1623$: The ROI index is 0:17; the banker makes a
positive pro�ts even after paying the facility cost C(590) = 1200$: In Case I, the index ROI
is increases up to 10$ with � even when the number ` decreases. In Case II, the index ROI is
positive only for � = 5$; and in Case III, it is negative.

The bankruptcy frequency is 3:1% in Case I with � = 3$: It is decreasing with �; since
the accumulation of participation fees prevents a possible bankruptcy; typically, the bankruptcy
possibility itself is decreasing for later people. These bankruptcy percentages can be regard as
small.

Table 6.4; Case I Table 6.5; Case II Table 6.6; Case III

n� 3$ 5$ 10$ 20$

` 590 380 152 50
AV $ 1623 1,799 1482 988
ROI 0.17 0.47 0.63 0.52
b.ruptcy 3.1% 2.0% 0.9% 0.4%

n� 3$ 5$ 10$ 20$

` 217 72 11 0
AV $ 597 343 108 �
ROI -0.00 0.09 -0.06 �
b.ruptcy 2.9% 1.5% 0.6% �

n� 3$ 5$ ...
` 13 0
AV $ 36 �
ROI -0.11 �
b.ruptcy 1.4% �

What are observed from Tables 6.4 to 6.6? Apparently in Table 6.6, the number of partici-
pants in the SP gamble is too small for the banker to have a positive pro�ts, while in Table 6.4,
some people participate in it and the banker possibly gets reasonable positive pro�ts. Table 6.5
is closer to Table 6.6. These di¤erences are caused by the di¤erences in distributions of cognitive
bounds in Table 6.1. That is, when people have low cognitive bounds, i.e., Case I, more people
participate and when people have high cognitive bounds, i.e., Case III, people avoid SP gamble.

Let us go to the main example in this paper.

Example 6.2 (Large-continuing): In this example, the show-money 2n is 16 times larger
than that in Example 6.1. When 2n becomes larger, more people are incentivized to buy the
gamble; for example, in Case I, when n = 17, the number of participants is 380 for � = 5$;
but when n = 21; the number becomes 941: This increases the gross pro�ts from 1; 623$ to
4; 403$; but the banker should pay back some interests to the �nancial institute in addition to
the borrowed amounts 2n + C(`). The index is ROI = 0:47 for n = 17, but it is ROI = 0:09
for n = 21:When the interest rate is 0:20 between the banker and institute, the banker�s pro�ts
are negative.

In Table 6.7, the pro�t/investment index ROI takes the maximum around � = 100$; the
ROI index is much larger than 0:2 and the absolute pro�ts are also much than the corresponding
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value in Table 6.4.

Table 6.7; n = 21 & Case I

n � 3$ 5$ 20$ 50$ 100$ 200$ 300$ 500$

#partic ipants 944 941 788 528 293 118 56 14
AV $ 2,555 4,403 15,491 26,270 29,219 23,566 16,783 6,997
ROI 0.02 0.09 0.62 1.13 1.33 1.08 0.78 0.32
bankruptcy% 3.2 2.4 0.7 0.1 0.07 0.04 0.03 0.01

Table 6.8; n = 21 & Case II

n � 3$ 5$ 20$ 50$ 100$ 200$ 300$

#partic ipants 843 815 512 153 50 7 0
Av$ 2274 3841 10091 7612 4988 3496 �
ROI -0.04 0.09 0.40 0.34 -0.01 0.16 �
b.ruptcy% 3.3 2.1 0.5 0.2 0.1 0.0 �

In Table 6.8, the index ROI and absolute value of pro�ts are smaller than in Table 6.7. In
Table 6.9, the index ROI does not exceed 0:10: Thus, a possible trade between the banker and
people depends upon the distribution of people�s cognitive bounds.

Table 6.9; n = 21 & Case III

n � 3$ 5$ 20$ 50$ 100$

#partic ipants 608 464 83 13 0
Av$ 1643 2184 1640 647 �
ROI 0.01 0.05 0.07 0.002 �
bankruptcy% 3.3 2.1 0.3 0.1 �

Table 6.7 to 9 with n = 21 considerably di¤er from Table 6.4 to 6 with n = 17: In Table
6.7, the numbers of participants may be too large; for example, for � = 100$; 293 people would
participate out of 1000: Table 6.8 has a less tendency; for � = 20$; 512 people participate. Table
6.9 has a much less tendency; for � = 5$, 464 people participate. These di¤erences are caused
by the di¤erences in the distribution of cognitive bounds in Table 6.1. At least for the present
author, the result in Table 6.7 that 293 people would participate with � = 100$ in Case I is
incompatible with his observations in Japan. The above other two results are less but they sound
too much. One possibility is to discount participations in the coin-tossing, since some people�s
refusal to choose from � and ��i is interpreted as behavioral equivalent to non-participation.

To have better answers, we need to test more examples with other parameter values, such
as n; distributions of �i; and even refusal percentages. Such calculations may give a better
understanding of the structure of the theory, and a hint even on possible experiments.

As long as a resolution of the SP paradox is concerned, some references to ordinary obser-
vations/experiences are perhaps unavoidable. The above examples are interpreted as progress
toward a resolution of the SP paradox.

7 Conclusions

Let us evaluate our theory relative to the three criteria C1, C2, and C3 for a resolution of the SP
paradox in Section 1.2. Criterion C1, to have an SP coin-tossing gamble to attract people and
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produces reasonably positive pro�ts, is apparently satis�ed. Sections 3, 4, and 5 are relevant for
C2 and they are more delicate. Section 6 is relevant for C3 and it is less delicate than C2.

Consider Sections 3, 4, and 5 with respect to C2. The methods discussed in Sections 3 and 4
are regarded as natural, since they follow with a general scienti�c method of measurement, i.e.,
the measurement step with a well de�ned scale and the logical extension step. Also, the theory
is partial to the targeted alternatives and subjective distribution following the general idea of
bounded intelligence, which is a part of Simon�s [27] bounded rationality.

Semi-rationalistic choice for incomparability in Section 5 is a generalization of the rational-
istic choice in Sections 3 and 4, though people are bounded by cognitive degrees. One element
should be discussed; Axiom S3 (proportional decomposition) may be too stringent. The present
author is not very happy with this axiom. It may be relaxed, keeping the result (Theorem 5.1)
in a qualitative manner. Numerical examples remain with the same tendencies. This relaxation
remains open.

Criterion C3 is applied to Section 6; the theory in Sections 3 and 4 include only parameters,
budget degree n and cognitive degree �i, and theory treats them as arbitrary. Only in Section
6, these parameters are tested with speci�c values, that is, n = 17 and 21; and Cases I, II, and
III for � = f�igi2M . Choice n = 21 was discussed in Section 1.1, and n = 17 was considered
for the reference purpose. Case II is our main concern, and Cases I and II are given to see
sensitivity of the parameter changes. These examples show reasonably positive pro�ts with
some parameter values and negative results with other parameter values. Our theory passes
Criterion C3. Nevertheless, it would be fruitful to have more numerical tests to have more
precise evaluations of our theory for C3.

As long as a resolution of the SP paradox is concerned, some references to ordinary observa-
tions/experiences are perhaps unavoidable, which is the nature of criterion C2. To have better
answers, we test more examples with other parameter values, such as n; distributions of �i; and
even refusal percentages. Such calculations may give a better understanding of the SP paradox
and a hint on further analysis.

The theory may be modi�ed to apply it to similar but di¤erent problems where some events
take place with very small probabilities; one example, problems of investments. The other
class of important problems are; events have huge negative e¤ects with very small probabilities
(�black swan� in Teleb [29]). When probabilities are very small, typically, people ignores the
probabilities for such event, while they logically aware the events. This is quite close to our
theory. It would be a challenge to extend our theory to such seemingly related problems.
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