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Abstract: The Uzawa-Lucas model is a benchmark model in endogenous growth 

theory. But Lucas (1988) is so influential that the Uzawa-Lucas model is virtually 

the Lucas model. This paper distinguishes between the Uzawa (1965) model and the 

Lucas model, and examines the Uzawa model in detail. It is certain that the two 

models have much in common. However, there are also important differences. 

Economically the Uzawa model assumes full employment, whereas the Lucas model 

admits unemployment. Mathematically the maximum growth rate must be smaller 

than the rate of time preference in the former, whereas the opposite must hold in the 

latter. 
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1. Introduction 

The Uzawa-Lucas model is a symbolic name for an endogenous growth theory 

regarding education (or learning) as the engine of economic growth. Under the 

influence of Schultz (1961) who emphasized the importance of investment in human 

beings for explaining the puzzle of large discrepancies between the rates of growth 

of inputs and outputs, Uzawa (1965) introduced the education sector into Solow’s 

(1956) neoclassical growth model. A crucial part of the Uzawa model is a linear labor 

efficiency function which makes it possible that there exists a persistent growth in a 

two-sector model of production and education. It was a natural extension of Solow’s 

exogenous growth model and the earliest endogenous model connecting education 

and economic growth.1 

Unfortunately, despite its striking originality, the model had been forgotten for a 

long time partly because of the downward trend in growth theory as a whole in the 

1970’s and 1980’s. Then, it is Lucas (1988) who resuscitated it. Lucas (1988) took as 

a serious problem the observed diversity across countries in per capita income levels 

and its consequences for human welfare, saying “Once one starts to think about them, 

 
* Faculty of Political Science and Economics, Waseda University, 1-6-1 Nishiwaseda, 

Shinjuku-ku, Tokyo 169-8050, Japan. E-mail: sasakura@waseda.jp 
1 Nelson and Phelps (1966) is also an incipient theoretical attempt to connect economic 

growth with education, though their model is not an endogenous one. 
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it is hard to think about anything else,” as is often cited. He needed a theory of 

economic development to cope with such a problem, and it is the Uzawa model that 

was chosen as the theoretical basis. In the Lucas model too, an indispensable part is 

a linear learning function which is the counterpart of Uzawa’s labor efficiency 

function.2  

Unlike in the Uzawa model, however, there is an external effect in the production 

sector of the Lucas model. The growth rate is depressed due to the effect. Such a 

situation corresponds, Lucas (1988) argues, to actual economies. Anyway, with or 

without an external effect, the Uzawa model with a linear labor efficiency function 

and the Lucas model with a linear learning function have much in common both 

economically and mathematically. Hence the name the Uzawa-Lucas model. Since 

Lucas (1988), numerous studies have been made under the name of the Uzawa-Lucas 

model (or sometimes the Lucas-Uzawa model).  

   As for examples without an external effect, Caballé and Santos (1993) shows that 

every positive initial condition converges to some steady state. Faig (1995) 

introduces government consumption as well as private consumption and analyzes 

the response to technology and government spending shocks. Ortigueira (1998) 

examines the implications of tax policies. Boucekkine and Ruiz-Tamarit (2008) and 

Chilarescu (2011) pursue rigorously transitional dynamics toward a unique steady 

state by virtue of closed-form solutions. Canton (2002) (in discrete time) and Tsuboi 

(2018) (in usual continuous time) analyze the stochastic Uzawa-Lucas model with 

uncertainty in the education sector. And among them is Lucas (1990) too who 

proposes the best structure of income taxation using the CES production function 

and the utility function with leisure.  

On the other hand, as for examples with an external effect in the production 

sector as in Lucas (1988), Mulligan and Sala-i-Martin (1993) calculate the steady 

state and simulate transitional paths toward it. Xie (1994) shows that when the 

external effect is relatively strong, there exists a continuum of equilibrium paths 

starting the same initial condition against Lucas’s conjecture.3 Gómez (2003) derives 

a fiscal policy which leads to the first-best optimum equilibrium. Hiraguchi (2009) 

obtains a closed-form solution by applying the method of Boucekkine and Ruiz-

Tamarit (2008). Finally, as for other examples, Chamley (1993) and Kuwahara (2017) 

prove the existence of multiple steady states in the Uzawa-Lucas model with an 

 
2 Romer (1990) also adopts Uzawa’s linearity assumption in the specification of his 

design function.  
3 See also footnote 20 below. 
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external effect in the education sector. 

   As is seen from the above, the Uzawa-Lucas model has been widely used as a 

benchmark model in endogenous growth theory, and for certain will be so. But I wish 

to point out that what is called the Uzawa-Lucas model is in fact the Lucas (1988) 

model, not the Uzawa (1965) model. Indeed, they resemble each other considerably 

as said above, but there are also differences which cannot be ignored economically 

or mathematically. Economically, the Uzawa model assumes full employment of 

workers, whereas the Lucas model admits (voluntary) unemployment. That is, in the 

former model workers are always employed either in the production sector or in the 

education sector, and without workers in the education sector there is no economic 

growth. In the latter model a worker must attend school (or rather read books at 

home) instead of working in order to increase human capital (i.e., embodied 

knowledge and skills) and as a result enhance his/her wage as well as economic 

growth. Mathematically, the crucial difference is that the utility function is linear in 

consumption in the Uzawa model, whereas it is the CRRA in the Lucas model. 

Needless to say, the CRRA utility function is generally accepted in economics. All 

authors cited above (except Uzawa) adopt it. On the other hand, a linear utility 

function belongs to a special class in economics. It can be regarded mathematically 

as a degenerate or limiting case of the CRRA utility function. Thus, judging from 

such a relation between the two utility functions, one might be tempted to infer that 

the Uzawa model is a limiting case of the Lucas model. However, as will be shown 

below, it is not. The two models cannot be applied to the same economy.4  

   The purpose of this paper is to examine the Uzawa model in detail. As far as I 

know, the model has never been analyzed even briefly. So this is a first study of it. 

The paper is structured as follows. Section 2 compares the Lucas model and the 

Uzawa model and pays attention to five conditions for the steady state in the Uzawa 

model. Section 3 considers economic implications of the five conditions, while Section 

4 specifies the labor efficiency function in the Uzawa model and derives some results. 

Section 5 concludes.  

 

2. The Lucas Model vs. the Uzawa Model 

   The economy under consideration starts from time 0 and has population 𝐿(𝑡) at 

 
4 A linear utility function is not denied at least theoretically. For example, Arrow 

(1962), Romer (1986), and Aghion and Howitt (1992) also make use of it to demonstrate 

their endogenous growth models. On the other hand, Mankiw et al. (1985) cast a 

serious doubt on the CRRA utility function from an empirical point of view. Lucas 

(2003) discusses the merits and demerits of the CRRA utility function. 
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time 𝑡 which is equal to total supply of labor and grows at a constant rate 𝑛  

 

      𝐿̇(𝑡) = 𝑛𝐿(𝑡), 𝐿(0) > 0.                                                (1) 

 

   First, let us review the basic structure of the Lucas (1988) model (without an 

external effect) as compactly as possible.5 The production technology is described by 

the Cobb-Douglas production function 

 

      𝑌(𝑡) = 𝐾(𝑡)𝛼(ℎ(𝑡)𝑢(𝑡)𝐿(𝑡))
1−𝛼

, 0 ≤ 𝑢(𝑡) ≤ 1, 0 < 𝛼 < 1,                  (2) 

 

where 𝑌(𝑡) , 𝐾(𝑡) , ℎ(𝑡) , and 𝑢(𝑡)  represent aggregate net output, aggregate 

physical capital, human capital per worker, and the fraction of a unit time of a 

worker devoted to producing output, respectively. ℎ𝑢𝐿 is total effective labor at time 

𝑡.6 The equation of physical capital accumulation is written as 

 

      𝐾̇ = 𝐾𝛼(ℎ𝑢𝐿)1−𝛼 − 𝐿𝑐,                                                (3) 

 

where 𝑐 is per capita consumption and so 𝐿𝑐 is aggregate consumption at time 𝑡.  

 

 

Figure 1. The Lucas Model 

 

The accumulation of human capital is assumed to follow 

 

      ℎ̇ = 𝛿(1 − 𝑢)ℎ, 𝛿 > 0.                                                 (4) 

 

 
5 Although it is the influence of the external effect of human capital in the production 

sector that is the selling point of Lucas (1988), this paper focuses on the case of no 

external effect in order to compare the Lucas model and the Uzawa model.  
6 In what follows, time 𝑡 of variables is dropped unless confusion is involved. 
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1 − 𝑢  on the right-hand side is the fraction of available time (= 1) of a worker 

devoted to increasing human capital. How? Lucas (1988) mentions as an example a 

worker going to school instead of working. In this sense (4) is often referred to as a 

learning function. Then, 1 − 𝑢  can be interpreted as a rate of voluntary 

unemployment. Figure 1 shows such a worker’s choice between working and not 

working. When 𝑢 = 1, i.e., all workers produce output without going to school at all, 

human capital does not change. On the other hand, when 𝑢 = 0, i.e., all workers go 

to school without producing output at all, the growth rate of human capital reaches 

a maximum feasible rate 𝛿. 

   By controlling 𝑐 and 𝑢 under the constraints (3) and (4) consumers (or workers) 

maximize the discounted sum of utility 

 

      ∫
𝑐1−𝜎

1−𝜎
𝐿

∞

0
𝑒−𝜌𝑡𝑑𝑡, 𝜎, 𝜌 > 0, 

 

where 𝜌 is a rate of time preference and 𝜎 is the degree of relative risk aversion 

(the inverse of which is the intertemporal elasticity of substitution). In order to solve 

this problem, construct the current-value Hamiltonian with 𝜃1 and 𝜃2 as costate 

variables with respect to (2) and (4) respectively 

 

      𝐻 =
𝑐1−𝜎

1−𝜎
𝐿 + 𝜃1[𝐾𝛼(ℎ𝑢𝐿)1−𝛼 − 𝐿𝑐] + 𝜃2[𝛿(1 − 𝑢)ℎ]. 

 

Applying Pontryagin’s Maximum Principle and arranging the results yields the 

Euler equation 

 

      𝜎
𝑐̇

𝑐
= 𝛼𝐾𝛼−1(ℎ𝑢𝐿)1−𝛼 − 𝜌,                                             (5) 

 

and the steady-state values of the fraction 𝑢 and the growth rate of human capital 

ℎ̇/ℎ7 

 

      𝑢∗ =
𝜌−𝑛−𝛿(1−𝜎)

𝜎𝛿
,                                                     

 
7 A superscript ∗ means a steady-state value or a value on a balanced growth path in 

what follows. 
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      (
ℎ̇

ℎ
)

∗

= 𝛿(1 − 𝑢∗) =
𝛿−(𝜌−𝑛)

𝜎
.                                           (6) 

 

The economically meaningful situation 0 < 𝑢∗ < 1 requires that 

 

      𝛿(1 − 𝜎) < 𝜌 − 𝑛 < 𝛿.                                                (7) 

 

It follows from (5) that in the steady state 

 

      𝛼𝐾∗𝛼−1(ℎ∗𝑢∗𝐿)1−𝛼 = 𝜌 + 𝜎 (
ℎ̇

ℎ
)

∗

.                                       (8) 

 

This is well known as the modified-golden-rule state. 

 

 

Figure 2. The Uzawa Model 

 

   Next turn to the Uzawa (1965) model. Population evolves in the same way as (1). 

But it is divided into those who work in the production sector, 𝐿𝑃, and those who 

work in the education sector, 𝐿𝐸, as follows: 

 

      𝐿 = 𝐿𝑃 + 𝐿𝐸. 

 

Simply speaking, 𝐿𝑃 is the number of people producing goods in factories, while 𝐿𝐸 

is that of people teaching in schools to improve the quality of labor (or labor 
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efficiency). Thus, there is no unemployment at each moment of time 𝑡, as shown in 

Figure 2.8 

Production technology is described by a general form of neoclassical production 

function with constant returns to scale with respect to physical capital 𝐾 and labor 

𝐿𝑃 

 

      𝑌 = 𝐹(𝐾, 𝐴𝐿𝑃), 𝐿𝑃 = 𝑢𝐿, 0 ≤ 𝑢 ≤ 1,                                     (9) 

 

where 𝑌, 𝐴, and 𝑢 represent respectively aggregate gross output, labor efficiency, 

and the ratio of workers employed in the production sector to total workers. 𝐴𝐿𝑃 (=

𝐴𝑢𝐿) is total effective labor in the production sector at time 𝑡.  

Define output per capita and capital-labor ratio respectively as 𝑦 = 𝑌/𝐿 and 𝑘 =

𝐾/𝐿. Then (9) can be rewritten per capita as 

 

      𝑦 = 𝐴𝑢𝑓 (
𝑘

𝐴𝑢
) , 𝑓 (

𝑘

𝐴𝑢
) = 𝐹 (

𝑘

𝐴𝑢
, 1).                                     (10) 

 

Let 𝑠 be denoted by the gross rate of saving. Then, the equation of physical capital 

accumulation can be written in per capita terms as 

 

      𝑘̇ = 𝑠𝑦 − (𝑛 + 𝜇)𝑘, 0 ≤ 𝑠 ≤ 1,                                         (11) 

 

where 𝜇  is the rate of depreciation of physical capital. The quality of labor is 

governed by the labor efficiency function 

 

      𝐴̇ = 𝐴𝜙 (
𝐿𝐸

𝐿
) , 𝐿𝐸 = (1 − 𝑢)𝐿, 𝜙′ ≥ 0, 𝜙′′ ≤ 0.                             (12) 

 

The distinctive feature of (12) is that it is linear in 𝐴, as stressed in the introduction. 

Lucas’s learning function (4) shares the same feature, i.e., it is linear in ℎ. 1 − 𝑢 in 

(12) stands for the ratio of workers employed in the education sector to total workers. 

It implies, say, that the higher the ratio, not the number, of teachers becomes, the 

faster the labor efficiency of factory workers improves, but the extent to which the 

 
8 Phelps (1966) constructs a model similar to Uzawa (1965) in which labor force is so 

allocated to the production sector and the research sector as to maximize consumption 

at each point in time. Full employment of labor is assumed in his model too.     
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labor efficiency improves will be diminishing.9 In order for 𝑢 to lie between 0 and 

1 it is assumed that 

 

       𝜙(1) < 𝜌 − 𝑛 < 𝜙(0) + 𝜙′(0).                                       (13) 

 

It should be emphasized here that the Uzawa model is quite different economically 

from the Lucas model because it is “teachers” that contribute to the rate of economic 

growth in the former, whereas it is “students” in the latter.10  

   By controlling 𝑠  and 𝑢  under the constraints (11) and (12) consumers (or 

workers) maximize the discounted sum of aggregate consumption (1 − 𝑠)𝑌 (=

(1 − 𝑠)𝑦𝐿 = 𝑐𝐿)11 

 

      𝑈 = ∫ (1 − 𝑠)𝑦
∞

0
𝑒−(𝜌−𝑛)𝑡𝑑𝑡.                                          (14) 

 

In order to solve this problem, construct the Hamiltonian with 𝑞 and 𝑣 as costate 

variables with respect to (11) and (12) respectively 

 

 

9 Although mathematically equivalent, it may be more desirable to write (12) as 𝐴̇/𝐴 =
𝜙(1 − 𝑢), as Uzawa (1965, p. 19) just writes, in order to avoid misunderstanding. That 

is, (12) says that the growth rate of labor efficiency 𝐴̇/𝐴 is a (nonlinear) function of the 

educational workers’ ratio 1 − 𝑢 (see again Figure 2). Similarly the learning function 

(4) says that the growth rate of human capital ℎ̇/ℎ is a (linear) function of the time 

spent on schooling 1 − 𝑢. The term (1 − 𝑢)ℎ is not the part of human capital which is 

used in the education sector. It should be added, however, that this interpretation does 

not apply to the Uzawa-Lucas-type model constructed by King and Rebelo (1990) in 

which human capital is assumed to be allocated between the two sectors. 
10 Schultz (1961, p. 9) categorizes human investment into five forms: (i) health 

facilities and services, (ii) on-the-job training, (iii) formally organized education at the 

elementary, secondary, and higher levels, (iv) study program for adults that are not 

organized by firms, including extension programs notably in agriculture, and (v) 

migration of individuals and families to adjust to changing job opportunities. Then, the 

Uzawa model corresponds to (iii), while the Lucas model to (iv). 
11 The objective to be maximized in Uzawa (1965) seems to be ∫ (1 − 𝑠)𝑦𝑒−𝜌𝑡∞

0
𝑑𝑡 (=

∫ 𝑐
∞

0
𝑒−𝜌𝑡𝑑𝑡). It corresponds to Millian criterion (average utilitarianism). However, he 

suggests an alternative (14) in Uzawa (1965, p. 20) too. It corresponds to Benthamite 

criterion (total utilitarianism) which is adopted in the Lucas model. In order for the 

Uzawa model to be comparable with the Lucas model, I adopt (14) as the objective. See 

Marsiglio and La Torre (2012) for the two criteria in the context of the Lucas-Uzawa 

model. Correctly speaking, the right-hand side of (14) should be 𝐿(0) ∫ (1 −
∞

0

𝑠)𝑦 𝑒−(𝜌−𝑛)𝑡𝑑𝑡, but dropping the term 𝐿(0) does not affect the utility maximization. 
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      𝐻 = [(1 − 𝑠)𝐴𝑢𝑓 (
𝑘

𝐴𝑢
) + 𝑞 (𝑠𝐴𝑢𝑓 (

𝑘

𝐴𝑢
) − (𝑛 + 𝜇)𝑘) + 𝑣(𝐴𝜙(1 − 𝑢))] 𝑒−(𝜌−𝑛)𝑡. 

 

It is convenient here to introduce a new variable 𝑥 = 𝑘/𝐴 = 𝐾/𝐴𝐿, that is, physical 

capital per unit of effective labor. Then, applying Pontryagin’s Maximum Principle 

and arranging the results leads to the following relations which characterize the 

steady state in the Uzawa model:12 

 

𝜙(1 − 𝑢∗) + 𝑢∗𝜙′(1 − 𝑢∗) = 𝜌 − 𝑛, 0 < 𝑢∗ < 1,                          (15) 

𝑓′ (
𝑥∗

𝑢∗) − 𝜇 = 𝜌,                                                     (16) 

𝑓 (
𝑥∗

𝑢∗) −
𝑥∗

𝑢∗ 𝑓′ (
𝑥∗

𝑢∗) = 𝑣∗𝜙′(1 − 𝑢∗),                                     (17) 

𝑠∗𝑓 (
𝑥∗

𝑢∗) =
𝑥∗

𝑢∗ [𝑛 + 𝜇 + 𝜙(1 − 𝑢∗)], 0 < 𝑠∗ < 1,                           (18) 

𝑞∗ = 1.                                                            (19) 

 

Proceeding from (15) to (18) it is easy to confirm that four steady-state values, 𝑢∗, 

𝑥∗ ,  𝑣∗ ,  𝑠∗ , are uniquely determined in a recursive way. This is a matter of 

mathematics. Then, what do (15)-(19) mean economically? Uzawa (1965) is very 

technical and says little about economic implications. Then, it is the task of the next 

section to make them clear.  

 

3. Economic Implications 

   Suppose that the economy under examination starts on a balanced growth path 

at time 0 and continues to stay on it.13 Then, five conditions for the steady state 

(15)-(19) always hold. First of all, let us look at (18). Using 𝑥 = 𝑘/𝐴 and 𝐴̇/𝐴 =

𝜙(1 − 𝑢), the capital accumulation equation (11) can be rewritten as 

 

      𝑥̇ = 𝑠𝑢𝑓 (
𝑥

𝑢
) − [𝑛 + 𝜇 + 𝜙(1 − 𝑢)]𝑥.                                    (20) 

 

Thus, (18) means 𝑥̇ = 0, that is, physical capital per unit of effective labor remains 

 
12 Equations (15)-(18) are the same respectively as Equations (36)-(39) in Uzawa (1965, 

p. 25). 
13 For the reason see the next paragraph. 
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constant.14 In other words, the growth rate of aggregate capital is the sum of the 

growth rates of population and labor efficiency.  

   In order to understand what (16) and (15) mean, remember that in neoclassical 

theory the real rate 𝑟 of interest and the real rate 𝑤 of wage coincide respectively 

with the marginal productivity of capital (𝑀𝑃𝐾) net of the depreciation rate (𝜇) and 

the marginal productivity of labor (𝑀𝑃𝐿). That is, 

      𝑟 = 𝑀𝑃𝐾 − 𝜇 =
𝜕𝐹(𝐾,𝐴𝐿𝑃)

𝜕𝐾
− 𝜇 = 𝑓′ (

𝑥

𝑢
) − 𝜇,                              (21) 

      𝑤 = 𝑀𝑃𝐿 =
𝜕𝐹(𝐾,𝐴𝐿𝑃)

𝜕𝐿𝑃
= 𝐴 [𝑓 (

𝑥

𝑢
) −

𝑥

𝑢
𝑓′ (

𝑥

𝑢
)] .                             (22) 

(16) is obtained in Uzawa (1965) as the condition on which costate variable 𝑞 

remains constant (𝑞̇ = 0) and takes a value of one at the same time. According to (21), 

(16) means that the steady-state value 𝑟∗ of the real rate of interest is equal to the 

rate of time preference 𝜌. This seems to be related to the modified-golden-rule state 

(8). In the Lucas model where 𝜎 is assumed to be positive, the first term on the 

right-hand side of the Euler equation (5) represents the 𝑀𝑃𝐾 for the Cobb-Douglas 

(2). And it is also the real rate 𝑟 of interest.15 Then, the Euler equation implies that 

if 𝑟 > 𝜌  ( 𝑟 < 𝜌 ), more (less) saving to increase (decrease) future per capita 

consumption is desirable for utility maximization. In particular, (8) says that in the 

steady state 𝑟∗ exceeds 𝜌 by 𝜎(ℎ̇/ℎ)∗. So it may induce one to think that (16) is a 

limiting case of (8) as 𝜎 tends to 0. But it is not. In fact, as Uzawa (1965) shows, if 

the economy starts from an initial value 𝑥(0) other than the steady state 𝑥∗ in his 

model, 𝑥(𝑡) tends to 𝑥∗ with 𝑠 = 1 and 𝑞 > 1 in the case of 𝑥(0) < 𝑥∗, but with 

𝑠 = 0 and 𝑞 < 1 in the case of 𝑥(0) > 𝑥∗.16 It means that (5) with 𝜎 = 0 does not 

 
14 In fact (18) is obtained from (20) by setting 𝑥̇ = 0 in Uzawa (1965). 
15 Recall that 𝑌 in (2) is net output. So the rate of capital depreciation does not appear 

in (5).  
16 See also Intriligator and Smith (1966) who consider the optimal allocation of new 

scientists between teaching and research careers using Pontryagin’s Maximum 

Principle and obtain the result similar to that of Uzawa (1965). Optimal solutions of 

such a type are known as bang-bang control. Probably because of the seemingly 

unrealistic character of transitional paths, the Uzawa model has not been taken so 

seriously as the Lucas model. I wish to make comments on this point in three ways. 

First, transitional dynamics of the Uzawa model may be regarded as an extreme 

simplification of a complicated real economy. In the Lucas model, on the other hand, 

the transitional path is difficult to calculate in spite of the specifications of functions 

therein, and then the extreme assumption of 𝜎 = 𝛼 (𝛼 is capital share in (2)) is often 

used in the literature for the analysis of transitional dynamics. Second, in the Uzawa 

model the economy arrives at the steady state within a finite time, whereas in the 

Lucas model, as is usual with optimal growth models, the economy does not reach the 
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describe the Uzawa model. It is worth stressing here that (8) is just a special case of 

(5). Therefore, (16) is not a limiting case of (5) despite their close resemblance.  

   (15) is obtained in Uzawa (1965) as the condition on which costate variable 𝑣 

remains constant (𝑣̇ = 0) under (17) and (19). At first glance it is hard to understand 

what it means. Then, I would like to rely on Lucas (1990, p. 298) who provides the 

condition the ratio 𝑢 must satisfy at each moment of time 𝑡 on an optimum growth 

path. It can be written with some modifications as follow: 

 

      𝑤(𝑡) = 𝜙′(1 − 𝑢) ∫ exp[− ∫ (𝑟(𝜏) − 𝑛)
𝑠

𝑡
𝑑𝜏]

∞

𝑡
 𝑢(𝑠)𝑤(𝑠)𝑑𝑠.                 (23) 

 

The left-hand side is the real wage (22) at time 𝑡 if people of the number 𝑢𝐿 work 

in the production sector. The right-hand side is the product of the marginal increase 

in the growth rate of labor efficiency (𝜙′(1 − 𝑢)) when “some” of the people move to 

the education sector and the discounted sum of the resulting increased real wages 

from time 𝑡  on. Both sides must be equal on an optimum path and the utility 

maximizing value of 𝑢 is determined by solving (23). In the steady state of the 

Uzawa model (23) becomes  

 

      𝑤∗(0) = 𝜙′(1 − 𝑢∗) ∫ exp[− ∫ (𝑟∗ − 𝑛)
𝑠

0
𝑑𝜏]

∞

0
𝑢∗𝑤∗(0)𝑒𝜙(1−𝑢∗)𝑠𝑑𝑠,           (24) 

 

because of (12) and (22). Using the fact that 𝑟∗ = 𝜌 due to (21) and arranging (24) 

leads to (15). 

   In general, a costate variable in optimal control theory measures the marginal 

contribution of the corresponding state variable to the objective.17 In the case of the 

Uzawa model, it means 𝑞 = 𝜕𝑈/𝜕𝑘  and 𝑣 = 𝜕𝑈/𝜕𝐴 . In the steady state the 

maximized 𝑈 can be calculated as 

 

      𝑈∗ = ∫ (1 − 𝑠∗)𝑦∗∞

0
𝑒−(𝜌−𝑛)𝑡𝑑𝑡 

             = ∫ (1 − 𝑠∗)𝐴∗𝑢∗𝑓 (
𝑥∗

𝑢∗)
∞

0
𝑒−(𝜌−𝑛)𝑡𝑑𝑡 

             = 𝐴(0) ∫ (1 − 𝑠∗)𝑢∗𝑓 (
𝑥∗

𝑢∗)
∞

0
𝑒−[𝜌−𝑛−𝜙(1−𝑢∗)]𝑡𝑑𝑡 

 

steady state forever. Third, the usefulness of endogenous growth models may not 

depend on their transitional paths. For example, there is no transitional dynamics in 

the AK model, but it gives wide applications as Barro (1990) shows for instance. 
17 See Arrow (1968). 
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             = 𝐴(0) [𝑓 (
𝑥∗

𝑢∗) − 𝑠∗𝑓 (
𝑥∗

𝑢∗)] 𝑢∗ ∫ 𝑒−𝑢∗𝜙′(1−𝑢∗)𝑡∞

0
𝑑𝑡 

             = 𝐴(0) [𝑓 (
𝑥∗

𝑢∗) −
𝑥∗

𝑢∗ 𝑓′ (
𝑥∗

𝑢∗) + 𝑥∗𝜙′(1 − 𝑢∗)]
1

𝜙′(1−𝑢∗)
 

             =
𝑓(

𝑥∗

𝑢∗)−
𝑥∗

𝑢∗𝑓′(
𝑥∗

𝑢∗)

𝜙′(1−𝑢∗)
𝐴(0) + 𝑘(0), 

because of (10), (12), (15), and (18). Then, it is seen at once that 

 

      𝑣∗ =
𝜕𝑈∗

𝜕𝐴(0)
=

𝑓(
𝑥∗

𝑢∗)−
𝑥∗

𝑢∗𝑓′(
𝑥∗

𝑢∗)

𝜙′(1−𝑢∗)
, 

      𝑞∗ =
𝜕𝑈∗

𝜕𝑘(0)
= 1, 

 

which are none other than (17) and (19), respectively.18  

   Now the economic implications of five conditions (15)-(19) have been made clear. 

There remains, however, one simple question: How are teachers paid their wages? 

So far, it looks as if the total amount of wages, 𝑤∗𝐿𝑃
∗ , go to workers in the production 

sector. But it makes no sense of course. Even teachers would never do their job 

without pay. In other words, they could work in factories for wages. Then, it is 

natural to assume that they receive wages by (1 − 𝑢∗)𝑤∗𝐿𝑃
∗  from the production 

sector, while 𝑢∗𝑤∗𝐿𝑃
∗  is for workers in the production sector.19 

 

4. Specifications and Some Results 

 

 
18 Thus, in the steady state (17) and (24) coincide. 
19 This assumption is similar to that of the Romer (1990) model. In the model there are 

the production sector and the research sector, and workers (or engineers) in the 

research sector receive wages from the production sector in reward for the designs they 

produce in the research sector. See also footnote 2 above. 



13 

 

 

Figure 3. Labor Efficiency Function 

 

   This section studies the Uzawa model further by specifying related functions. As 

is seen from (15), an overwhelmingly important function in the Uzawa model is the 

labor efficiency function (12). Then, let it be specified as 

 

      
𝐴̇

𝐴
= 𝜙(1 − 𝑢) = 𝛿(1 − 𝑢)𝛽 , 𝛿 > 0, 0 < 𝛽 < 1,                           (25) 

 

where 𝛿  and 𝛽  represent respectively the potentially maximum growth rate of 

labor efficiency and the elasticity of the growth rate of labor efficiency with respect 

to the ratio of workers in the education sector to total workers. The shape of the 

graph of 𝛿(1 − 𝑢)𝛽 can been seen from Figure 3 for a low value and a high value of 

𝛽. Note that the value of 𝛿(1 − 𝑢)𝛽 is greater in the former case than that in the 

latter case because of 0 < 1 − 𝑢 < 1. That is, given 𝛿 and 1 − 𝑢, the growth rate of 

labor efficiency decreases as 𝛽 rises. 

   Next write 𝑔(𝑢) = 𝜙(1 − 𝑢) + 𝑢𝜙′(1 − 𝑢) which corresponds to the left-hand side 

of (15). Then, in the case of (25) for 0 < 𝑢 < 1,  

 

      𝑔(𝑢) = 𝛿(1 − 𝑢)𝛽−1[1 − (1 − 𝛽)𝑢] > 0,                                (26) 

      𝑔′(𝑢) = 𝛿𝛽(1 − 𝛽)𝑢(1 − 𝑢)𝛽−2 > 0, 

      𝑔′′(𝑢) = 𝛿𝛽(1 − 𝛽)(1 − 𝑢)𝛽−3[(1 − 𝑢) + (2 − 𝛽)𝑢] > 0, 

 

𝑔(0) = 𝛿 , 𝑔(1) = ∞ , 𝑔′(0) = 0 , and 𝑔′(1) = ∞ . Remember that 𝜙(1 − 𝑢)  must 

satisfy Condition (13). In the case of (25), it becomes  
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       𝛿 = 𝜙(1) = 𝑔(0) < 𝜌 − 𝑛 < 𝑔(1) = 𝜙′(0)=∞.                          (27) 

 

It should be noted that the left inequality 𝛿 < 𝜌 − 𝑛 is diametrically opposite to the 

right inequality 𝜌 − 𝑛 < 𝛿 in (7). It can be said, therefore, that the Uzawa model and 

the Lucas model are not applicable to the same economy.20 

 

Figure 4. Optimum Ratio 𝒖∗ of 𝑳𝑷 to 𝑳 

 

Figure 4 shows how the steady-state value 𝑢∗ is determined as an intersection 

of the graph of 𝑔(𝑢) and the horizontal line 𝜌 − 𝑛  in the interval between 0 and 

1. As has been seen above, the graph of 𝑔(𝑢) is an upward sloping curve, taking a 

value of 𝛿 (> 0) for 𝑢 = 0 and approaching ∞ as 𝑢 tends to 1. Since 𝛿 < 𝜌 − 𝑛 by 

(27), it is apparent that the intersection always exists for 0 < 𝑢 < 1 and it is unique. 

Since the growth rate 𝐴̇/𝐴 of labor efficiency is a decreasing function of 𝑢, it is 

straightforward to derive Results 1-3 below: 

 

Result 1. The growth rate of labor efficiency is higher the more patient are consumers 

(i.e., the smaller is 𝜌).  

Result 2. The growth rate of labor efficiency is higher the faster grows population 

(i.e., the larger is 𝑛).  

 
20 Nevertheless, as Xie (1994) shows, under certain circumstances 𝛿 < 𝜌 − 𝑛 must hold 

in the original Lucas (1988) model in order for 𝑢∗ to lie between 0 and 1 and also in 

order for any initial condition to converge to 𝑢∗. Everything depends! 
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Result 3. The growth rate of labor efficiency is higher the greater is the potentially 

maximum growth rate of labor efficiency (i.e., the greater is 𝛿). 

 

 

Table 1. Numerical Examples 

Notes: 𝜌 − 𝑛 = 0.05, 𝜌 + 𝜇 = 0.11, and 𝑓 (
𝑥

𝑢
) = (

𝑥

𝑢
)

𝛼
, 𝛼 =

1

3
. 

 

Interestingly, as is known at once from (6), Results 1-3 apply to the Lucas model too. 

In my opinion, Result 3 is particularly noteworthy because the endogenized growth 

rate still depends on the other growth rate, 𝛿, which is assumed to be exogenous. 

How is 𝛿  determined? This crucial question is not answered in either model. 

Anyway, Table 1 shows numerical examples of the effect of 𝛿  on the values 𝑢∗ , 

𝛿(1 − 𝑢∗)𝛽 , and 𝑠∗ , when production function (9) is the Cobb-Douglas 𝑌 =

𝐾𝛼(𝐴𝑢𝐿)1−𝛼 , 0 < 𝛼 < 1, or 𝑓 (
𝑥

𝑢
) = (

𝑥

𝑢
)

𝛼
. As is expected from Result 3, a greater value 

of 𝛿  leads to a smaller 𝑢∗  which in turn implies a higher growth rate of labor 

efficiency. In addition, it is seen from the table that the saving rate becomes larger. 

It is already inferred from (18), though. 
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Figure 5. Graphs of 𝒉(𝒖) 

 

The effect of the elasticity 𝛽 on the growth rate of labor efficiency is peculiar to 

the Uzawa model. Then, let us examine it. First, taking the logs of both sides of (26) 

gives 

 

      log 𝑔(𝑢) = log 𝛿 − (1 − 𝛽) log(1 − 𝑢) + log (1 − (1 − 𝛽)𝑢). 

 

Next, write the derivative of log 𝑔(𝑢) with respect to 𝛽 as ℎ(𝑢). Then, 

 

      ℎ(𝑢) =
𝑑log 𝑔(𝑢)

𝑑𝛽
= log(1 − 𝑢) +

𝑢

1−(1−𝛽)𝑢
, 

      ℎ′(𝑢) =
𝑑ℎ(𝑢)

𝑑𝑢
=

𝑢[(1−2𝛽)−(1−𝛽)2𝑢]

(1−𝑢)[1−(1−𝛽)𝑢]2 . 

 

Moreover, ℎ(0) = 0 and ℎ(1) = −∞. It depends on the sign of ℎ(𝑢) whether 𝑔(𝑢) 

is an increasing or a decreasing function of 𝛽. And the sign of ℎ(𝑢) depends on the 

value of 𝛽. Two cases of the graph of ℎ(𝑢) are depicted in Figure 5. The left panel 

(i) represents the case of 0 < 𝛽 < 1/2. Starting at the origin, the graph of ℎ(𝑢) is 
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upward sloping until 𝑢 =
1−2𝛽

(1−𝛽)2. After that it begins to decrease and approaches −∞ 

as 𝑢  tends to 1. Therefore, there exists 0 < 𝑢𝛽 < 1  such that ℎ(𝑢𝛽) = 0 . Thus, 

ℎ(𝑢) > 0 for 0 < 𝑢 < 𝑢𝛽, while ℎ(𝑢) < 0 for 𝑢𝛽 < 𝑢 < 1. It turns out that 𝑔(𝑢) is an 

increasing (a decreasing) function of 𝛽 for 0 < 𝑢 < 𝑢𝛽 (𝑢𝛽 < 𝑢 < 1). The right panel 

represents of the case of 1/2 ≤ 𝛽 < 1. In this case ℎ′(𝑢) < 0 and so ℎ(𝑢) < 0 for 

0 < 𝑢 < 1. Therefore, 𝑔(𝑢) is always a decreasing function of 𝛽. 

 

 

  

 

Figure 6. Response of the Steady-State Value of 𝒖 to a Rise in the Elasticity 𝜷 
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   According to the above considerations, the response of the steady-state value of 

𝑢 to a rise in 𝛽 needs to be investigated for four cases. Such cases are pictured in 

Figure 6. The first panel (i) represents the case of 0 < 𝛽 < 1/2 and 𝑢∗ < 𝑢𝛽, where 

𝑢∗ is the initial steady-state value of 𝑢. When 𝛽 rises, the graph of 𝑔(𝑢) shifts 

upward (downward) for 0 < 𝑢 < 𝑢𝛽 (𝑢𝛽 < 𝑢 < 1) because 𝑔(𝑢) is an increasing (a 

decreasing) function of 𝛽. It means that a rise in 𝛽 leads to a fall in the steady-state 

value of 𝑢. The second panel (ii) represents the case of 0 < 𝛽 < 1/2 and 𝑢∗ = 𝑢𝛽. In 

this special case a rise in 𝛽  does not change the steady-state value of 𝑢  from 

𝑢∗(= 𝑢𝛽). The third panel (iii) represents the case of 0 < 𝛽 < 1/2 and 𝑢∗ > 𝑢𝛽. In 

this case, a rise in 𝛽 leads to an increase in the steady-state value of 𝑢. Finally, the 

fourth panel (iv) represents the case of 1/2 ≤ 𝛽 < 1. In this case, when 𝛽 rises, the 

graph of 𝑔(𝑢) shift downward for 0 < 𝑢 < 1. So there is no need to take account of 

the initial position of 𝑢∗. As is apparent from the panel, a rise in 𝛽 leads to an 

increase in the steady-state value of 𝑢. 

   It should be remembered here that the growth rate of labor efficiency is described 

by (25) and it decreases in response to a rise in 𝛽 if the value of 𝑢 remains constant 

as Figure 3 shows. It is now known, however, that the steady-state value of 𝑢 

changes depending on the value of 𝛽 and the relation between 𝑢∗ and 𝑢𝛽  as in 

Figure 6. Taking all these analyses into account, the effect of the elasticity 𝛽 of the 

labor efficiency function on the steady-state growth rate of labor efficiency can be 

stated as follows: 

 

Result 4. For 0 < 𝛽 < 1/2 the effect of the elasticity 𝛽 on the growth rate of labor 

efficiency is indeterminate if the initial steady-state value 𝑢∗ is smaller than the 

critical value 𝑢𝛽. 

Result 5. For 0 < 𝛽 < 1/2 a rise in the elasticity 𝛽 leads to a decrease in the growth 

rate of labor efficiency if the initial steady-state value 𝑢∗ is greater than or equal to 

the critical value 𝑢𝛽. 

Result 6. For 1/2 ≤ 𝛽 < 1 a rise in the elasticity 𝛽 leads to a decrease in the growth 

rate of labor efficiency irrespective of the initial steady-state value 𝑢∗. 

 

In numerical examples in Table 1 𝛽 takes a value of 1/2. Then, according to Result 

6, if 𝛽 rises marginally from 1/2, each value of 𝑢∗ increases and the corresponding 

value of the growth rate of labor efficiency decreases.21 

 
21 The same function as (25) is used in Rosen (1976) and Lucas (1990), where the 

elasticity (𝛽 in this paper) is estimated at 0.5 and 0.8, respectively. 
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5. Conclusion 

   Lucas (1988) is so influential that the Uzawa-Lucas model is virtually the Lucas 

model. This paper distinguished between the Uzawa model and the Lucas model, 

and studied the Uzawa model in detail for the first time. Although the two models 

have much in common both economically and mathematically, this paper focused on 

the differences between the two. From the economic point of view, the Uzawa model 

assumes full employment, whereas the Lucas model admits unemployment. To put 

it another way, it is teachers who contribute to the growth rate in the Uzawa model, 

whereas it is students in the Lucas model. From the mathematical point of view, the 

two models are based on the opposite conditions. That is, the potentially maximum 

growth rate must be smaller than the rate of time preference (less population 

growth) in the Uzawa model, whereas the opposite must hold in the Lucas model. 

This implies that the two models cannot be applied to the same economy. One may 

infer that the Uzawa model with a linear utility function (𝜎 = 0) is a limiting case of 

the Lucas model with the CRRA utility function (𝜎 > 0) because a linear utility 

function can be regarded as a limiting case of the CRRA utility function. This paper 

showed that such an inference is not true. In conclusion, it is true that the two models 

resemble each other considerably, but they are not the same.22 
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