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Abstract

This study examines the optimal investment strategies for risk-and-ambiguity-
averse investors and characterizes conditions under which ambiguity in-
duces investors to buy or sell options. Under identical constant relative risk
aversion utility functions, we show that ambiguity-averse investors should
sell portfolio insurance. In particular, when investors’ relative risk aversion
is less than or equal to two, ambiguity-averse investors should sell options
at any realization values of a reference asset. In addition, if the relative risk
aversion is greater than two, we demonstrate that ambiguity-averse investors
should sell options at smaller and buy them at higher realization values of
the reference portfolio.

Keywords: Ambiguity, Multiple prior model, Options demand, Kullback–
Leibler divergence

JEL Classification: G11, G22

1 Introduction
Over the past 30 years, notable progress in financial economics has been made
in the area of ambiguity and aversion toward it. Ambiguity refers to a situation
wherein a decision maker cannot recognize a precise probability distribution to
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describe the uncertainty. These situations can be modeled by using a set of pri-
ors that contains more than one distribution. The differences between decision-
making models under ambiguity are due to their axiomatized foundations on how
to select the optimal probability distribution from a set of plausible distributions.

The subjective expected utility model of Savage (1954) was the first to propose
an axiomatized foundation of choice problems under ambiguity. However, his
model is a simple extension of the classical von-Neumann–Morgenstern decision-
making theory, which is why it has faced severe criticisms from researchers such
as Ellsberg (1961). The maxmin expected utility model of Gilboa and Schmeidler
(1989) provides a rational alternative model to describe the Ellsberg’s paradox.
The maxmin model claims that an agent is rational to select a probability dis-
tribution that yields the lowest expected utility in the set of priors. Then, the
agent considers the optimal behavior that maximizes their felicity under the most
pessimistic distribution. The α-maxmin expected utility model of Ghirardato,
Maccheroni, and Marinacci (2004) and the smooth ambiguity aversion model of
Klibanoff, Marinacci, and Mukerji (2005) (henceforth, KMM) add the flexibil-
ity to the maxmin expected utility model by using additional parametric values
or functionals to describe the strength of ambiguity aversion. In particular, the
smooth ambiguity aversion model of KMM uses an additional function to describe
the agent’s preference for the variability of his/her felicity on the different proba-
bility distributions. This enable us to use the simple analogue of the Arrow–Pratt
coefficient of risk aversion to define ambiguity aversion.

Given these theoretical models, portfolio choice problems under ambiguity
have become a major topic in financial economics over the past 10 years. One
distinct feature of the decision-making models under ambiguity is that the relevant
prior under which an agent considers the optimal choice changes according to the
agent’s behavior. In other words, selecting the prior and optimal behavior cannot
be separated under ambiguity. This feature is illustrated in the seminal works by
Cao et al. (2005) and Easley and O’Hara (2009), which show the optimality of
non-participation in the market. This theoretical result implies that ubiquitous
non-participation behavior can be rationalized due to the presence of ambiguity
and the maxmin expected utility model, while it is optimal under quite restrictive
conditions in the classical expected utility model. Furthermore, as examined in the
next section, Gollier (2011) consider the relationship between ambiguity aversion
and optimal exposure for an ambiguous asset under the KMM model. He showed
that greater ambiguity aversion does not necessarily yield a reduction in optimal
exposure for the asset.

In spite of the detailed insights provided in previous studies, these models
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and most studies conducted under ambiguity focus on the simple portfolio choice
problem and adopt the assumption of one safe and one uncertain asset. As a
result, previous studies do not sufficiently illustrate how to cope with ambiguity
by using the various types of financial derivatives available in the market.1 As
far as we know, therefore, this is the first study to examine an investor’s optimal
use of derivatives under ambiguity especially in the setting similar to the model of
Leland (1980) and Franke, Stapleton, and Subrahmanyam (1998).

Ambiguity has potential to shed light on an unsolved issue in the financial
economics theory: what is the fundamental cause of demand for options? In
fact, although the trading volume of options is not small in financial markets, this
problem has not been sufficiently addressed from theoretical perspectives. This
is because the Black–Scholes (1973) arbitrage argument for derivatives pricing
assumes that financial derivatives are essentially redundant assets in markets: one
can replicate the payoff of derivative securities by combining the underlying asset
and risk-free bond. Therefore, investors need not possess the actual derivatives,
and these “redundant” assets cannot bring richer investment opportunities for the
investors.

To reconcile theory and reality, a large number of studies try to explain the di-
vergence from the Black–Scholes argument. For example, Leland (1985), Boyle
and Vorst (1992), and Grannan and Swindle (1996) examine the effect of transac-
tion costs on the replication strategy. Additionally, Shleifer and Vishny (1997) em-
phasize that intermediaries cannot hedge perfectly because of capital constraints.
However, few studies have been conducted to characterize the nature of investors
who wish to hold these financial derivatives due to supply and demand attributes.
In fact, as stressed in Leland (1980), since financial derivatives are traded among
investors, that is, financial derivatives are zero net supply in the market, we can
understand the derivatives market only in the context of an equilibrium analysis.

In this study, we adopt the robust control model of Hansen and Sargent (2001)
to analyze how ambiguity affects investors’ demand for options. A distinct fea-
ture of the robust control model compared to the other decision-making models
under ambiguity is that instead of using a set of priors that contains more than one
plausible distribution, ambiguity together with the strength of ambiguity aversion
can be implicitly specified by using some parameterized distance function from
the reference probability distribution. Thus, the Hansen–Sargent model can de-
scribe the situation wherein an agent who has a reference probability distribution

1As associated literature, Wong (2016) and Osaki and Wong (2017) use the KMM model to
analyze optimal hedging under ambiguity in the classical corporate investment problem.
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is concerned with the possibility of misspecification and attempts to find a robust
strategy.

There are two main reasons for using the model: (i) we can derive the opti-
mal shape of the payoff function by using the standard calculus of variations and
(ii) we can analyze the effect of ambiguity by specifying a single-parameter that
describes the strength of ambiguity and the aversion toward it. It should be noted
that while the latter reason is also a notable feature of the maxmin expected util-
ity model, it has been criticized, leading to the development of alternative models
such as KMM (2005). In this paper, however, all agents in an economy are as-
sumed to have identical risk-preference and thus this inflexibility is not restrictive,
but rather simplifies the analysis of the effects of ambiguity.

The remainder of this paper is organized as follows. In Section 2, we consider
the optimal linear exposure to an ambiguous risky asset under the robust control
model. In Section 3, investors’ optimal payoff functions are derived. In Section 4,
we examine the investors’ demand for contingent claims on the ambiguous asset
under an equilibrium model and characterize the nature of investors who should
buy and sell options for hedging purposes. In Section 5, we adopt the similar
representative agent model as in Leland (1980) and discuss the result. In Section
6, we summarize the findings of the study and draw conclusions.

2 Portfolio Choice Problem Under Robust Control
Model

In this section, we examine the optimal linear strategy under the Hansen–Sargent
robust control model. The linear strategy implies that the investors’ payoff func-
tions are proportional to the terminal values of a reference portfolio. Therefore,
under a real market environment wherein an investor can trade the reference as-
set dynamically, the investor takes the linear strategy if and only if the investor
follows the “buy and hold” policy.

2.1 Related literature

As explained in the previous section, decision making models under ambiguity
since Gilboa and Schmeidler (1989), have an important feature that the relevant
prior depends on the decision taken by an agent. In particular, a common feature
of the maxmin expected utility model of Gilboa and Schmeidler (1989), the α-
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maxmin expected utility model of Ghirardato, Maccheroni and Marinacci (2004),
and the smooth ambiguity aversion model of KMM (2005) is that an implicit dis-
tribution used by an ambiguity-averse investor is dominated by the distribution
used by an ambiguity-neutral investor in the sense of the second-degree stochastic
dominance (SSD) orders. Gollier (2011) show, however, these pessimistic shift of
the implicit distribution does not necessary yield a reduction in the demand for the
ambiguous risky asset. This unintuitive result is first documented by the impor-
tant work by Rothschild and Stieglitz (1971), which show that an increase in risk
(that is, SSD-dominated shift of the distribution) is not sufficient to guarantee a
reduction in the demand for the risky asset. Under the KMM model, therefore, an
increase in ambiguity aversion does not necessary yield a reduction in the optimal
risk exposure by all ambiguity-averse investors.

2.2 MLR and other stochastic orders

There are two distinct approaches to characterize the conditions under which in-
vestors reduce their demand for the risky asset: limiting the set of utility functions
or searching the set of changes in beliefs. The former approach is in line with
Rothschild and Stiglitz (1971), Fishburn and Porter (1976) and Hadar and Seo
(1990), who characterize the sufficient conditions of the shape of the utility func-
tions to guarantee a reduction in the demand for the risky asset under FSD or SSD
shift of the risky asset. Restricted sufficient conditions derived in their studies lead
to taking the latter approach to determine the set of changes in beliefs. The notion
of Central Dominance (CD) derived by Gollier (1995) is the equivalent condition
of the change in beliefs to guarantee a reduction in the demand for the risky asset
by all risk-averse investors. Several important stochastic orders that are shown to
be a part of CD: Monotone Likelihood Ratio order (MLR) (Milgrom 1981), Strong
Increase in Risk (Meyer and Ormiston 1985), Simple Increase in Risk (Dionne
and Gollier 1992), and Monotone Probability Ratio order (MPR) (Eeckhoubt and
Gollier 1995). In particular, it can be shown that MLR⇒MPR⇒FSD⇒SSD.2

The main objective in this section is to show that there is a close relationship
between the notion of MLR and the implicit probability distribution used by an
ambiguity-averse agent under the robust control criterion. We first present the
definition of MLR.

Definition 1. Consider random variables x̃i with the same support in [x−, x+].
Let fi be the probability density function of x̃i. x̃p dominates x̃q in the sense of

2See Gollier (2001, pp. 71-72).
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MLR if l(θ) = lnfq(θ)/fp(θ) is non-increasing in θ.

2.3 The model

Consider an agent under static environment with initial wealth W0. The agent
can invest the wealth into two assets. One is risk-free asset with a rate of return
denoted by rf and the other is an ambiguous risky asset with a return r̃. Let x̃
be the realization value of the excess return of the ambiguous risky asset defined
as x̃ = r̃ − rf . The investor has a reference probability measure p, but concerns
the possibility of the misspecification. When the investor follows the Hansen–
Sargent robust control criterion, the maximization problem of a typical investor
can be described as follows:

max
α

min
q∈C

Eq[u(w0 + αx̃)]

s.t. C = {q ∈ ∆(Ω) : R(q||p) ≤ η}, (1)

where w0 ≡ W0(1 + rf ), Eq denotes the expectation taken under the probability
distribution q, ∆(Ω) is a set of probability measures, and R(q||p) denotes the
Kullbuck–Leibler (KL) information divergence from p to q, which is defined as

R(q||p) = Eq

󰀗
ln
q

p

󰀘
. (2)

Almost all problems under the robust control criterion adopt the KL information
divergence as a “budget constraint” for selecting probability distribution. It should
be noted that the KL information divergence from p to q takes zero if and only if
p(x) = q(x) for all x and it never takes negative values. These favorable prop-
erties enable us to regard this function as representing the distance between one
distribution and another while the KL divergence does not satisfy the other two
axioms of distance function—symmetry and triangle inequality.

(1) indicates that the robust control model is a special case of the maxmin
expected utility model. That is, the robust control model imposes an additional
“budget constraint” in selecting the probability distribution by using the KL in-
formation divergence. Hansen and Sargent (2001) noted that this maximization
problem is equivalent to

max
α

min
q∈C

Eq[u(w0 + αx̃)] + ρR(q||p), (3)

for some ρ > 0. Under this model, ρ can be viewed as proxy of an ambiguity
aversion index. To see this, let us consider two extreme cases:
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(1) ρ → ∞: the solution for the minimization problem

max
q∈∆(Ω)

Eq[u(w0 + αx̃)] + ρR(q||p)

must be the reference probability measure p, since otherwise Eq[u(w0+
αx̃)] + ρR(q||p) → ∞. Thus, this case can be viewed as a situation
that the agent is ambiguity-neutral, or equivalently, probabilistically
sophisticate.

(2) ρ → +0: the reference probability distribution p has no effect on
selecting the probability measure in this case, so that the agent’s be-
havior is indistinguishable from the standard maxmin expected utility
model of Gilboa and Schmeidler.

For this reason, in this paper we say that an investor is ambiguity-averse if 0 <
ρ < ∞ and ambiguity-neutral if ρ → ∞.

2.4 Optimal investment under the robust control criterion

Consider this maxminimization problem for an ambiguity-averse agent (i.e., an
agent with some 0 < ρ < ∞). Let us first derive the probability distribution
under which the agent solves the maximization problem. The minimized proba-
bility distribution can be easily obtained by differentiating the objective function
with respect to q and setting it to zero. Substituting the minimized probability
distribution into the objective function, the maximization problem can be written
as

max
α

− ρlnEp

󰀗
exp

󰀕
−u(w0 + αx̃)

ρ

󰀖󰀘
. (4)

Let V (α) denote this objective function. The optimal risk exposure α∗ satisfies
the following first-order condition:

V ′(α∗) = 0 ⇔ Ep

󰀵

󰀷 e−
u(w0+α∗x̃)

ρ

Ep
󰁫
e−

u(w0+α∗x̃)
ρ

󰁬xu′(w0 + α∗x)

󰀶

󰀸 = 0. (5)

In Appendix A, we show that the objective function V (α) is concave in α, which
implies that the first-order condition is also sufficient for a maximum. The concav-
ity of the objective function V also implies that the optimal risk exposure, α∗, is
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non-negative (i.e., α∗ ≥ 0) if and only if V ′(0) ≥ 0. Thus, similar to the classical
expected utility model, an agent with robust control criterion invests non-negative
amount of their wealth into the ambiguous risky asset if and only if the expected
excess return of the risky asset under the reference probability distribution p is
non-negative.

2.5 MLR and distribution implied by the robust control criterion

The key relation between the implied distribution used by the agent with the robust
control criterion and MLR is summarized in the following lemma.

Lemma 1. The implicit probability distribution used by an ambiguity-averse in-
vestor dominates (is dominated by) the reference probability measure in the sense
of MLR when the demand for the ambiguous asset is negative (positive).

Proof. By (5), the implicit distribution used by the ambiguity-averse agent is
given by

e−
u(w0+αx)

ρ

Ep
󰁫
e−

u(w0+αx)
ρ

󰁬 . (6)

Denoting this by q(x)/p(x) and differentiating the logarithm of q(x)/p(x) with
respect to x, we obtain

dlnq(x)/p(x)

dx
= −αu′(w0 + αx)

ρ

e−
u(w0+αx)

ρ

Ep
󰁫
e−

u(w0+αx)
ρ

󰁬 . (7)

To complete the proof, note that

sign

󰀗
dlnq(x)/p(x)

dx

󰀘
= −sign [α] . (8)

This lemma illustrates an attractive feature of the robust control model: since
the notion of MLR is a subset of CD, the robust control model ensures the re-
duction in the optimal risk exposure of an ambiguity-averse agent without impos-
ing further restricting and complex assumptions on the set of beliefs. Further-
more, this lemma also clarifies that when the excess return of the risky asset under
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the reference probability distribution is negative,3 an ambiguity-averse agent in-
creases the wealth invested in the asset. This is because, the implicit probability
distribution dominates the reference probability measure in the sense of MLR if
α < 0. Similar to the other decision-making models under ambiguity, therefore,
the implicit distribution in this model also depends on the behavior taken by an
agent. Furthermore, noting the fact that an ambiguity-neutral, or equivalently, a
probabilistically sophisticate investor uses the reference probability distribution p
yields the following proposition.

Proposition 1. Under the Hansen–Sargent robust control criterion, an ambiguity-
averse agent reduces the absolute amount invested in the ambiguous risky asset
compared to an ambiguity-neutral agent.

Since we only use the fact that an ambiguity-averse agent has some 0 < ρ <
∞ to derive the results, these can be easily extended to the situation wherein both
of the agents are ambiguity-averse. The following corollary therefore follows
immediately:

Corollary 1. Suppose that two types of investors with the Hansen–Sargent robust
control criterion differ only in ρ. Then, the investor with higher degree of ambi-
guity aversion (i.e., an agent with lower ρ) asks less in absolute value of the risky
asset than the other.

Proof. Note that the implicit distribution used by the investor with higher ρ dom-
inates the other in the sense of MLR if and only if α > 0.

This corollary indicates that contrary to the other decision-making models un-
der ambiguity, the Hansen–Sargent robust control model ensures that higher am-
biguity aversion necessary yields a reduction in the optimal risk exposure.

3 Optimal Strategies Under Ambiguity

3.1 The complete market model

Taking into consideration the huge progress in markets of financial derivatives,
the assumption that investors can only achieve returns proportional to the realized

3Note that this is equivalent to α∗ < 0.
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value of the reference asset appears restrictive. Thus, it is natural to allow in-
vestors to construct non-linear relation between terminal values of their portfolio
and the reference asset. For this purpose, we use the complete market assumption
to derive the optimal payoff functions of investors. This approach is adopted in
Leland (1980) to analyze the investor’s demand for portfolio insurance. After that,
several research using this method are also conducted in continuous-time settings,
such as Wachter (2004), which examines the effect of mean-reversion property of
asset prices on the investor’s optimal consumption and investment behavior. In
this paper, we adopt essentially the same framework as in Leland (1980) except
that we use an endogenously derived pricing kernel to price and analyze investors’
demand for financial derivatives instead of assuming the existence of a represen-
tative agent in the economy.4

We use this framework for two reasons. First, it is difficult to derive a utility
function of a representative agent under ambiguity. Second and more important,
using an endogenous pricing kernel enable us to incorporate the effect of ambi-
guity and agents’ aversion toward it in a consistent way. In fact, if the market ad-
mits a representative agent and investors are allowed to transact in Arrow–Debreu
(AD) securities, ambiguity has no effect on investors’ behavior since investors
can hedge all uncertainty even though they cannot recognize the precise probabil-
ity distribution of the reference asset. In that case, there is no need to distinguish
an economy under ambiguity from the classical model as in Leland (1980). The
most satisfactory way of dealing with this problem is to use an endogenous derived
pricing kernel by imposing a market-clearing condition. In Section 5, however, we
adopt the representative agent framework as in Leland (1980) to inspect the effect
of the representative agent’s ambiguity aversion on the optimal use of derivatives
of individual investor.

3.2 Shape of payoff functions and demand for options

There are three basic types of investment strategies: convex, concave, and lin-
ear. The differences among them are literally due to the functional forms of the
payoff functions. More precisely,if the payoff functions are twice differentiable,
the convex (concave) strategies are characterized by the positive (negative) sec-
ond derivatives of the payoff functions, and the second derivatives are zero when
strategies are linear. In cases wherein the market is complete as assumed in our

4Leland (1980) used a representative agent model in an economy consist of heterogenous
agents with hyperbolic absolute risk aversion (HARA) utility functions.
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model, state price securities enable investors to construct any desirable payoff
functions. It can be presumed, however, that investors utilize alternative financial
derivatives such as options in a real incomplete market environment. Generally,
an investor’s payoff function becomes convex by holding options, and it becomes
concave by selling them. Therefore, if a convex (concave) strategy is optimal for
an investor, the investor should only buy (sell) plain vanilla options. On the other
hand, it suffices to use forward or futures contracts if the linear strategy maximizes
the investor’s expected utility. In fact, Leland (1980) shows that any arbitrary
twice continuously differentiable payoff functions can be generated by combining
the reference asset and vanilla options on the asset. That is, investors can obtain
arbitrary (twice continuously differentiable) non-linear (i.e., non-proportional) re-
lation between the terminal value of the reference asset and their payoff function
if a complete set of options are available in the market.

3.3 Portfolio insurance

The main objective of the next section is to examine whether an ambiguity-averse
investor is more willing to protect their portfolio. For our purpose, let us first
characterize an investor who wish to hold portfolio insurance. As Leland (1980)
discussed, there are two reasonable definitions for portfolio insurance: full port-
folio insurance and general insurance policy. The full portfolio insurance refers to
the situation that a payoff function of an investor has a form

W (xT ; x0) = Max[xT , x0], (9)

where xT and x0 represent the terminal and initial values of the reference portfolio,
respectively. The general insurance policy, on the other hand, refers the payoff
function

W (xT ; x0) (10)

is a strictly convex function of the terminal value of the reference asset xT . While
the full portfolio insurance is the classical definition of portfolio insurance, the
term “general insurance policy” can be rationalized as Leland (1980) wrote “con-
cavity implies greater protection from loss at lower values of the reference port-
folio.” Although the Leland’s claim is reasonable, the strict convexity of their
payoff functions is somewhat too strong to characterize investors’ incentives for
loss aversion.

To see this, Figure 1 illustrates two payoff functions for investors those who
are willing to protect their portfolio by using options. While the payoff function in
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Figure. 1 Examples of payoff functions for loss-averse investors

case (a) exhibits strict convexity, the payoff function in case (b) is neither convex
nor concave. A common feature of (a) and (b) is that these payoff functions exhibit
convexity at the lower values of the reference portfolio. In this paper, therefore,
we say that an investor should buy (sell) portfolio insurance if the payoff function
is convex (concave) at lower terminal values of the reference portfolio.

3.4 The model

We proceed the analysis to derive the optimal payoff function. The framework
adopted in this section is essentially the same as in the previous section except
that investors can utilize endogenously priced AD securities to construct arbitrary
payoff functions. Under the assumptions, the maximization problem for an in-
vestor can be written as

max
Wi

min
q

Eq[ui(Wi(x))]

s.t.

󰀝
R(q||p) ≤ η
Ep[m(Wi(x)−W0)] = 0

, (11)
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where ui(·) is the utility function of investor i, Eq and Ep are expectations un-
der probability measures q and p, respectively, and m is the pricing kernel in this
economy. Thus, in this model, an investor chooses an optimal probability mea-
sure under the constraint of the Kullback–Leibler divergence and then selects the
optimal payoff function Wi under the budget constraint.

As in the previous section, we adopt the Lagrange multiplier method to solve
this. To derive the optimal payoff function, first note that we can separate this
maximization problem into two parts since the budget constraint is not restrictive
to minimize the expected utility over the probability distribution. Therefore, we
can first focus on the minimization problem: deriving the probability distribution
under which the investors construct their optimal payoff functions.

3.5 The optimal payoff function

Let the Lagrange multiplier concerning the distributional constraint be ρ, then (11)
is precisely the same as

max
Wi

min
q

Eq[ui(Wi(x))] + ρiR(q||p)

s.t. Ep[m(Wi(x)−W0)] = 0. (12)

The following proposition summarizes the result.

Proposition 2. The optimal solution to (12) is given by

W ′
i (x) =

m′(x)

m(x)

󰀣
−u′

i(Wi(x))
2

ρi
+ u′′

i (Wi(x))

󰀤−1

u′
i(Wi(x)). (13)

Proof. See Appendix B.

As already stated, ρ’s value is the measure of each investor’s strength of beliefs
as well as aversion toward ambiguity. When the investor is ambiguity-neutral, that
is, ρi → ∞, (13) is reduced to

W ′
i (x) = −m′(x)

m(x)

u′
i(Wi(x))

u′′
i (Wi(x))

. (14)

This is exactly the same as the result obtained by Leland (1980)5 and other authors
in the literature. In this case of an ambiguity-neutral investor, the first derivative of

5We can obtain the same result as in Leland (1980) by replacing the pricing kernel, m, with
the Radon–Nikodym derivative for the risk-neutral distribution relative to the physical one.
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the optimal payoff function should be the value of risk-tolerance multiplied by the
rate of change of the pricing kernel that is determined in the market equilibrium.
Comparing (13) and (14), it can be recognized that the effect of ambiguity and the
aversion to it appears as a negative term added to the negative second derivative of
the utility function. As a result, the ambiguity and the investor’s aversion toward
it make investors to be less risk-tolerant. This result is consistent with the results
obtained in the previous section.

4 Option Demand Under the Market Equilibrium

4.1 The optimal payoff function under the market equilibrium
It is reasonable to suppose that options or other types of financial derivatives are
zero net supply in the market. Thus, under the market equilibrium, the sum of
payoff functions should coincide with the realization value of the market portfolio
itself, that is,

󰁓
i Wi(x) = x. Taking the summation of (13) over i and imposing

the restated equilibrium condition,
󰁓

i Wi
′(x) = 1, (13) can be rewritten as6

Wi
′(x) =

󰀻
󰀿

󰀽
󰁛

i

ui
′(Wi)

󰀥
−ui

′2(Wi)

ρi
+ ui

′′(Wi)

󰀦−1
󰀼
󰁀

󰀾

−1 󰀥
−ui

′2(Wi)

ρi
+ ui

′′(Wi)

󰀦−1

ui
′(Wi).

(15)
Let us define

Ti(Wi) ≡ −
󰀗
−ui

′2(Wi)

ρi
+ ui

′′(Wi)

󰀘−1

ui
′(Wi), (16)

as the risk tolerance of an ambiguity-averse investor i. Then, (15) can be rewritten
as

Wi
′
(x) =

󰀥
󰁛

i

Ti(Wi)

󰀦−1

Ti(Wi). (17)

Differentiating this equation with respect to x and using (17), we have

sign [W ′′
i (x)] = sign

󰀥
Ti

′(Wi)−
󰁛

i

Ti(Wi)󰁓
i Ti(Wi)

Ti
′(Wi)

󰀦
. (18)

6We use Wi instead of Wi(x) when it is more convenient.
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Since the risk tolerance, Ti, is positive, we can interpret Ti/
󰁓

i Ti as a weight
function specified in terms of each investor’s risk tolerance in the market. Thus,
we can restate (18) by using an expectation symbol, E∗, as

sign [W ′′
i (x)] = sign [Ti

′(Wi)− E∗ [T ′]] . (19)

Using this fact, we can obtain the following lemma.

Lemma 2. In the above economy, buying (selling) options are optimal if and only
if the first derivative of the investor’s risk tolerance function is higher (lower) than
the market average.

Proof. As discussed in the previous section, an investor should buy (sell) options
if W ′′

i is positive (negative). Then, this follows immediately from (19).

4.2 Ambiguity and demand for options under the equilibrium model

For further investigation of the model, suppose that there are only two types of
investors: an ambiguity-averse investor with some ρ > 0 and an investor with
ρ → ∞. The latter is said to be ambiguity-neutral or probabilistically sophisticate
based on the reasons explained in Section 2.3. The investors are also assumed to
have the same risk-preference.

Lemma 2 implies that if the first derivative of risk tolerance of the ambiguity-
neutral investor is less than that of the ambiguity-averse investor, then ambiguity
induces demand for options. The risk tolerance function of the ambiguity-averse
agent is given by

Ta(Wi) =
u′(Wi)

−u′′(Wi) +
u′(Wi)2

ρ

, (20)

where the subscript a denotes that it is for an ambiguity-averse investor. Then, a
direct calculation yields

T ′
a(Wi) = −

1− u′(Wi)
u′′(Wi)

󰁫
u′′′(Wi)
u′′(Wi)

− u′(Wi)
ρ

󰁬

󰁫
1− u′(Wi)2

ρu′′(Wi)

󰁬2 . (21)

Thus, if we can compare (21) under different values of ρ, whether ambiguity in-
duces demand for options can be examined. Unfortunately, however, (21) is diffi-
cult to manipulate without imposing further restrictions on the shape of the utility
function since those derivatives also depend on Wi.
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To proceed the analysis, therefore, we further assume the utility function is
constant relative risk aversion (CRRA), i.e., u(Wi) = Wi

1−γ/1 − γ. Since the
first derivative of the risk tolerance function for an ambiguity-neutral investor, T ′,
is constant, and is equal to 1/γ under CRRA preference, it allows us to obtain
sharper results. We can then prove the following proposition:

Proposition 3. Suppose that there are two types of investor in the market: an
ambiguity-averse investor with some ρ and an ambiguity-neutral (i.e., ρ → ∞)
investor. The investors are also assumed to have the same CRRA utility function,
u(Wi) = Wi

1−γ/1−γ. Then, the optimal payoff function for the ambiguity-averse
investor exhibits strict concavity when γ ≤ 2.

Proof. See Appendix C.

4.3 Ambiguity and demand for portfolio insurance

The restricting condition, γ ≤ 2, induces us to impose some further assumptions
to derive more concrete results on the effect of ambiguity on the optimal use of
derivatives. For this purpose, note that x → +0 implies Wi → +0 from the
market-clearing condition,

󰁓
i Wi = x and from the fact that Wi > 0. Further-

more, if Wi is unbounded from above, then x → ∞ implies Wi → ∞. Thus, we
can investigate the limiting cases where x → +0 and x → ∞ by taking the limits
of Wi. The result is summarized as the following proposition:

Proposition 4. Suppose that investors have the same CRRA preference, then port-
folio insurance is sold from the ambiguity-averse investor to the ambiguity-neutral
investor. Furthermore, when γ > 2, the ambiguity-averse investor should sell op-
tions at lower realization values of the reference asset and buy options at higher
values.

Proof. See Appendix D.

Therefore, contrary to our intuition, this proposition indicates that ambiguity
aversion reduces investors’ incentives for risk management by using options. In
other words, the ambiguity-neutral agent is more willing to avoid losses under the
equilibrium model.
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Figure. 2 This figure illustrates T ′
a and T ′ under four cases: (a) 0 < γ < 1;

(b) γ = 1; (c) 1 < γ < 2; and (d) 2 < γ. Under all cases, we
can see that T ′

a is less than T ′ at Wi → +0, which indicates that
the ambiguity-averse agent should sell the portfolio insurance to the
ambiguity-neutral agent. It is also noteworthy that when γ ≤ 2 (i.e.,
(a), (b) and (c)), T ′

a ≤ T ′ at all realization value of Wi, and when
γ > 2 (i.e., (d)), T ′

a ≤ T ′ at lower values of Wi, while T ′
a ≥ T ′ at

higher values of Wi, which illustrate results obtained in Proposition 3
and 4.
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4.4 Strength of ambiguity aversion and demand for options:
Logarithmic utility case

We now examine the effect of the strength of ambiguity aversion on the optimal
use of derivatives. To derive an interesting result, we assume γ = 1, that is,
investors have a logarithmic utility function and differ only in the values of ρi.
In this case, the first derivative of the risk tolerance function for agent i becomes
constant, which enables us to investigate the effect of the strength of the ambiguity
aversion ρi without detecting Wi. In fact, substituting γ = 1 into (C.1), we obtain

T ′
a(Wi) =

󰀕
1 +

1

ρi

󰀖−1

, (22)

which implies that T ′
a depends only on ρi. A direct calculation yields

∂T ′
a

∂ρi
=

󰀕
1 +

1

ρi

󰀖−2
1

ρi2
> 0, (23)

which indicates that T ′
a for an investor with a logarithmic utility function is in-

creasing in ρi. Then, recalling that options are sold from investors with lower T ′

to those who have higher values of it, we have the following corollary.

Corollary 2. Suppose that two types of investors have a logarithmic utility func-
tion and differ only in ρ. Then, the investor with higher ρ should buy options from
another type.

Proof. It is immediate from Lemma 1 and (23).

The result in Corollary 3 can be easily extended to the case wherein there
exists more than two types of investors. In that case, investors who have lower ρ
than the subjectively weighted market average (see (18)) should be option writers.
Therefore, investors under strong ambiguity and strong ambiguity aversion should
sell options in this case of logarithmic utility.

5 Option Demand Under the Representative Agent
Model
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Figure. 3 This figure illustrates the relation between the strength of ambiguity
aversion, ρ, and the first derivative of risk tolerance function, T ′ under
the logarithmic utility. We can see that T ′

a is an increasing concave
function of ρ and T ′

a is less than T ′.
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5.1 The optimal payoff function under the representative agent model

Even though the shapes of the utility functions are determined, it is difficult to
obtain the closed-form expressions for the optimal payoff functions. This is be-
cause under our equilibrium model, analytical shape of the endogenously derived
pricing kernel is hard to derive. This motivates us to use the representative agent
model as in Leland (1980) though the existence of a representative agent under
ambiguity is uncertain. Under the representative agent model, the pricing kernel
m is replaced by the risk tolerance function of the representative agent, which
implies that (13) becomes

Wi
′(x) =

−v′(x)2

ρv
+ v′′(x)

v′(x)

u′(Wi)

−u′(Wi)
2

ρu
+ u′′(Wi(x))

, (24)

where v is the utility function of the representative agent, ρv and ρu are the strength
of ambiguity aversion of the representative agent and the individual investor, re-
spectively.7 Note that the optimal payoff function of the representative agent is,
by definition, x, the realization value of the reference portfolio by definition.

5.2 Ambiguity and demand for options under the representative
agent model

Under this representative agent model, we have the following lemma, which is
first derived in Leland (1980).

Lemma 3. The optimal payoff function exhibits strict convexity if and only if the
first derivative of risk tolerance function of the individual is uniformly greater
than that of the representative investor.

Recall that the risk tolerance function of the representative agent, Tr, is given
by

Tr =
v′(x)

v′(x)2

ρv
− v′′(x)

, (25)

which is a function of x, while the risk tolerance function of the individual, Ti, is
given by

Ti =
u′(Wi)

u′(Wi)2

ρu
− u′′(Wi)

, (26)

7The important question whether the ambiguity is priced under equilibrium, that is, whether
the representative agent is ambiguity-averse or not is also outside the scope of this study.
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which is a function of Wi. Then, Lemma 3 implies that optimal payoff function
of the individual i exhibits strict convexity if and only if T ′

i > T ′
r. When the

representative investor and the individual have the same CRRA preference, we
have the following result.

Corollary 3. Suppose that the representative agent and the individual have the
same CRRA preference. Then, if the representative agent is ambiguity-neutral,
the optimal payoff function of the individual exhibits strict concavity on x > 0 if
and only if RRA is less than or equal to two. In addition, when RRA is greater
than two, the payoff function exhibits strict concavity until some point of x and
then exhibits strict convexity.

Proof. Substituting v(x) = x1−γ/1−γ, u(Wi) = Wi
1−γ/1−γ, and ρv → ∞ into

Tr and Ti, we have

Tr(x) =
x

γ
, and Ti(Wi) =

Wi

Wi
1−γ

ρv
+ γ

. (27)

Comparing the first derivative of Tr(x) and Ti(Wi) is exactly the same to what we
have done in Proposition 3 and 4. Thus, the rest of the proof is similar to that of
Proposition 3 and 4.

Although this corollary largely depends on the informal assumption of the ex-
istence of the representative agent, the result obtained in this representative agent
model has an obvious similarity to those in the equilibrium approach. This is be-
cause Proposition 3 and 4 assume that there are only two types of investors and
thus the equilibrium model in the previous section is essentially the same as the
representative agent model in this section.

5.3 A closed-form solution: Logarithmic utility case

To obtain a closed-form expression for the payoff function, we further assume a
logarithmic utility function for the both u and v. Substituting u(Wi) = lnWi and
u(x) = lnx into (24), we have

Wi
′(x) =

1 + 1
ρv

x

Wi(x)

1 + 1
ρu

. (28)
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Figure. 4 The optimal payoff functions under the representative agent model

In this case, we can obtain the closed-form expression for the optimal payoff func-
tion. A direct calculation shows that the optimal payoff function has the form:

Wi(x) = cx
1+ρ−1

v

1+ρ−1
u , (29)

where c > 0 is the constant determined by the budget constraint of the investor.
Figure 4 illustrates the optimal payoff functions under two cases: (a) the individual
investor i is less ambiguity-averse than the representative agent (i.e., ρ−1

v − ρ−1
u >

0); (b) the individual investor i is more ambiguity-averse than the representative
agent (i.e., ρ−1

v −ρ−1
u < 0). The optimal payoff function exhibits convexity in case

(a), which indicates the investor should buy options, while the optimal payoff
function exhibits concavity in case (b), which indicates the investor should sell
options. Thus, an increase in ambiguity aversion generates supply of options in
this logarithmic utility representative agent model, which is also similar to the
result obtained in the equilibrium model (see Corollary 3).
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6 Conclusion
In this study, we investigate the effect of ambiguity on investors’ demand for
options. Under the assumption that investors have identical CRRA utility and
follow the Hansen–Sargent robust control criterion, this study characterizes the
nature of investors who will benefit from holding options, particularly from buy-
ing portfolio insurance. The main conclusions of this paper are: (i) ambiguity-
neutral investors will buy portfolio insurance from ambiguity-averse investors;
(ii) Ambiguity-averse investors will demand options only when the identical RRA
is greater than two; (iii) Under the logarithmic utility, investors with relatively
stable ambiguity aversion will be option writers.

In summary, except when the identical RRA is greater than two, the answer to
the question of whether ambiguity generates demand for options is negative. In
particular, we demonstrate how ambiguity induces the supply of portfolio insur-
ance under the CRRA preference. The theoretical reason behind the result is that
the risk tolerance of an ambiguity-neutral investor increases more rapidly than that
of an ambiguity-averse investor at lower realized values of the reference asset.

Although we derive several strong conclusions about the relationship between
ambiguity and the use of options, this study adopts a simple static economy to
focus on the role of ambiguity. Thus, one natural extension of our study would
be conducting theoretical research in a dynamic and continuous time setting and
assuming more general decision-making criteria such as KMM (2005). Further-
more, it could be informative to incorporate preference heterogeneity into the
model and analyze the combined effects of risk aversion and ambiguity on in-
vestors’ demand for options. These problems are left for future research.
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Appendix A: Concavity of the Objective Function in
the Hansen–Sargent Robust Control Model
In this appendix, we show the concavity of the objective function under the Hansen–
Sargent robust control model. Differentiating V ′(α) with respect to α, we obtain

−1

ρ
Ep

󰁫
e−

u
ρ

󰁬−1
󰀝
Ep

󰁫
x2u′2e−

u
ρ

󰁬
+

1

ρ
Ep

󰁫
xu′e−

u
ρ

󰁬2
Ep

󰁫
e−

u
ρ

󰁬−1

+ Ep
󰁫
x2u′′e−

u
ρ

󰁬󰀞
,

(A.1)
where we use u instead of u(w0 + αx) to reduce notation. Let E∗ denote the
expectation under the implicit probability distribution, defined as

E∗[Z] = Ep

󰀵

󰀷 e−
u(w0+αx)

ρ

Ep
󰁫
e−

u(w0+αx)
ρ

󰁬Z

󰀶

󰀸 , (A.2)

then (A.1) can be rewritten as

−1

ρ

󰁱
E∗ 󰀅x2u′(w0 + αx)2

󰀆
− E∗ [xu′(w0 + αx)]

2
󰁲
+ E∗ 󰀅x2u′′(w0 + αx)

󰀆
.

(A.3)
Since E∗ [x2u′(w0 + αx)2]−E∗ [xu′(w0 + αx)]2 is the variance of xu′(w0 +αx)
under the expectation E∗, it takes a positive value. Combining this observation
with the fact that E∗ [x2u′′(w0 + αx)] < 0 implies that (A.1) takes negative val-
ues.

Appendix B: Proof of Proposition 2
As in Section 3.5, the maximization problem is given by

max
Wi

min
q

Eq[ui(Wi(X))] + ρR(q||p)

s.t. Ep[m(Wi(X)−W0)] = 0, (B.1)

where ρ > 0. To solve this problem, forming the Lagrangian

L = Eq[ui(Wi(X))] + ρR(q||p)− λEp[m(Wi(X)−W0)] (B.2)

and taking the derivative with respect to q yields

Lq =

󰁝 󰀗
ui(Wi(x)) + ρln

󰀕
q(x)

p(x)

󰀖󰀘
dx. (B.3)
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Therefore, we can obtain the optimal probability measure by setting [·] in the
above equation to zero:

q(x) = p(x)e−
ui(Wi(x))

ρ . (B.4)

To make this a probability measure, (B.4) should be normalized as

q(x) =
p(x)e−

ui(Wi(x))

ρ

󰁕
p(x)e−

ui(Wi(x))

ρ dx
. (B.5)

Substituting (B.5) into (B.2) yields

L = −ρlnEp
󰁫
e−

ui(Wi(X))

ρ

󰁬
− λEp[m(Wi(X)−W0)]. (B.6)

Taking the derivative with respect to Wi and setting it equal to zero yields

Ep

󰀵

󰀹󰀹󰀷u
′
i(W

∗
i (X))

e−
ui(W

∗
i (X))

ρ

Ep

󰀗
e−

ui(W
∗
i (X))

ρ

󰀘

󰀶

󰀺󰀺󰀸− λEp[m] = 0, (B.7)

where we use ∗ to denote optimal strategy. It should be noted that this equation
has some similarity to (5). Using the martingale method, we know that the optimal
payoff function W ∗

i (x) satisfies

u′
i(W

∗
i (x))

e−
ui(W

∗
i (x))

ρ

Ep

󰀗
e−

ui(W
∗
i (x))

ρ

󰀘 = λm(x) ∀x. (B.8)

Differentiating (B.8) with respect to x, solving for λ, and substituting λ back into
lead to

W ′
i (x) =

m′(x)

m(x)

󰀕
−u′

i
2(Wi)

ρ
+ u′′

i

󰀖−1

u′
i(Wi). (B.9)

Appendix C: Proof of Proposition 3
Let T ′ be the first derivative of a risk tolerance function for the ambiguity-neutral
investor, which is equal to 1/γ. For the ambiguity-averse investor, substituting
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u′(Wi) = W−γ
i into (21), we have

T ′
a(Wi) =

γ + γ
ρ
Wi

1−γ

󰀓
γ + Wi

1−γ

ρ

󰀔2 , (C.1)

To prove the proposition, we have to show that T ′
a < T ′ holds when γ ≤ 2.

If 0 < γ < 1, taking the limit Wi → +0, we have

limWi→+0T
′
a =

1

γ
, (C.2)

which shows that T ′
a = T ′ at Wi = 0. In addition, if 1 < γ, we have

limWi→+0T
′
a = limWi→+0

γ + γ
ρ
W 1−γ

i
󰀓
γ +

W 1−γ
i

ρ

󰀔2 = limWi→+0
γ

2
󰀓
γ +

W 1−γ
i

ρ

󰀔 = 0, (C.3)

where the second equality uses the l’Hôpital’s rule. Moreover, if γ = 1, T ′
a is also

constant and is given by

T ′
a =

1

1 + 1
ρ

. (C.4)

By (C.2) and (C.3), T ′′
a ≤ 0 is sufficient to establish that T ′

a ≤ T ′. Differentiating
(C.1) with respect to Wi, we obtain

T ′′
a (Wi) =

γ(1−γ)
ρ

W−γ
i

󰀓
γ +

W 1−γ
i

ρ

󰀔󰀓
γ − 2− W 1−γ

i

ρ

󰀔

󰀓
γ +

W 1−γ
i

ρ

󰀔4 , (C.5)

which implies that

sign [T ′′
a (Wi)] = sign

󰀗
(1− γ)

󰀕
γ − 2− W 1−γ

i

ρ

󰀖󰀘
. (C.6)

Since Wi > 0, (C.6) implies that T ′′
a (Wi) > 0 if 1 < γ ≤ 2 and T ′′

a (Wi) ≤ 0 if
γ ≤ 1. Thus, the concave strategy (i.e., W ′′

i < 0) is optimal for the ambiguity-
averse agent when γ ≤ 1. For 1 < γ, taking the limit Wi → ∞, we have

limWi→∞T ′
a(Wi) =

1

γ
. (C.7)

Combining this with the fact that T ′′
a (Wi) ≥ 0 for all 1 < γ ≤ 2 yields T ′

a(Wi) ≤
T ′(Wi). This implies that the payoff function of the ambiguity-averse investor
exhibits concavity when 1 < γ ≤ 2 and completes the proof.
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Appendix D: Proof of Proposition 4
Recall that an investor i should buy (sell) portfolio insurance if W ′′

i > 0 (W ′′
i < 0)

at x → +0. As discussed in Section 4.3, therefore, the market-clearing condition󰁓
i Wi = x implies that the investor i should buy (sell) portfolio insurance if

W ′′
i > 0 (W ′′

i < 0) when Wi → +0. Then, the first part of the proposition follows
from Proposition 3 (for the case of γ ≤ 2) and (C.3) (for the case of γ > 2).

To prove the second part of the proposition, note that for all γ > 2, T ′′
a (Wi) >

0 holds when Wi < [ρ(γ − 2)]
1

1−γ and T ′′
a (Wi) < 0 when Wi > [ρ(γ − 2)]

1
1−γ .

This implies that T ′
a is increasing in Wi when Wi < [ρ(γ − 2)]

1
1−γ and is decreas-

ing when Wi > [ρ(γ − 2)]
1

1−γ . Thus, T ′
a is maximized at Wi = [ρ(γ − 2)]

1
1−γ .

Substituting Wi = [ρ(γ − 2)]
1

1−γ into (C.1), we have

T ′
a

󰀓
(ρ(γ − 2))

1
1−γ

󰀔
=

γ + γ(γ − 2)

[γ + (γ − 2)]2
=

γ

4(γ − 1)
. (D.1)

To complete the proof, we need to verify that T ′
a

󰀓
(ρ(γ − 2))

1
1−γ

󰀔
> T ′(W ) for

all 2 < γ. Thus, we have to show that

γ

4(γ − 1)
>

1

γ
, (D.2)

which is immediate since (D.2) is equivalent to

(γ − 2)2 > 0. (D.3)

Finally, combining this with (C.7) completes the rest of the proof.
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