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Abstract

This study compares the optimal consumption amount for a risk-averse agent under different
uncertainty resolution times in a time-separable utility setting. We show that an agent with
a positive third derivative utility function (i.e., a prudent agent) reduces his/her consumption
amount when the uncertainty resolution is postponed. We also demonstrate that an agent does
not change consumption behavior under different uncertainty resolution times if and only if
the agent has a quadratic utility.
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1 Introduction
An agent who reduces his/her current consumption amount in the presence of an uninsurable back-
ground risk is said to be prudent. Given that the behavior of an agent is described using the von
Neumann–Morgenstern utility function, u, the pioneering works of Leland (1968) and Sandmo
(1970) show that agents are prudent if and only if the third derivative of their utility function is
positive. In other words, an agent with u′′′ > 0 saves more when faced with an uninsurable back-
ground risk that has a non-positive expected value than otherwise.

Kimball’s seminal works (1990, 1993) advance the analysis a step further and propose a novel
measure of the strength of the precautionary saving motive. This measure is referred to as abso-
lute prudence, which is analogously defined as the Arrow–Pratt measure of risk aversion applied
to the marginal utility function multiplied by −1. The optimal saving/consumption problem be-
tween agents can be investigated directly through a comparison of their absolute prudence or the
precautionary premiums.

In this paper, we focus on the effect of the timing of existing background risks on an agent’s
optimal saving/consumption behavior. Specifically, we assume that the uncertainty that might
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negatively impact wealth is postponed and explore whether the agent saves more or less compared
to the case when the uncertainty is not postponed. This problem is relevant not only in studies of
financial economics, but also in the macroeconomic context. For example, if the late resolution of
uncertainty has a negative impact on an agent, then he/she has an incentive to shift such a risk to
younger generations and prefers to bear the older generations’ risks when he/she is young. Thus,
our study may be applied to problems regarding the optimal risk shifting scheme, such as annuities
across generations.

The remainder of this article proceeds as follows. Section 2 presents the model and demon-
strates the equivalence between the positivity of the third derivative of a utility function and the
reduction of current consumption under late resolution of uncertainty. Section 3 provides the con-
cluding remarks.

2 The Model
For simplicity, we explore a two-period model. The model, however, can be easily extended to, for
instance, an n-period model.

The following assumptions are made throughout this paper:

Assumption 1. Two-period economy. t ∈ {0, 1, 2} denote the point in time, referred to as dates.

Assumption 2. An agent has an arbitrarily differentiable risk-averse time-separable von Neumann–
Morgenstern utility function; that is, there exist functions ut = u, t = {0, 1, 2} defined on some
interval D ⊆ R such that1

U(C0, C1, C2) = u(C0) + u(C1) + u(C2).

Assumption 3. The agent has an initial endowment, W0.

Assumption 4. The interest rate in the economy is zero, and there are no investing opportunities.

Assumption 5. The subjective discounting factor of the agent is unity. That is, the agent evaluates
tomorrow’s unit consumption to be exactly the same as that of today.

Assumption 6. There is an uninsurable, independent background risk, denoted by X .

Assumption 7. X is continuous random variables so that the support of (W0 + X)/3 is in the
interior of D, which is denoted by IntD.

Note that Assumptions 4 and 5 are necessary to focus on the analysis of the preference for
the timing of the uncertainty resolution. In addition, to recognize the necessity of Assumption 7,
suppose that the utility function u is defined on D =[a, b]. Let x be a realization value of X . Since
the agent consumes no less than a, if C0 = C1 = a, then C2 becomes W0 + x − 2a. Conversely,
since the agent consumes no more than b, if C0 = C1 = b, then C2 becomes W0 + x− 2b. Under
Assumption 7, therefore, the agent can choose C0 and C1 in IntD while C2 is also in IntD for any
realization values x.

1u being differentiable is equivalent to u being differentiable in the interior of D.
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We first consider an agent with X at date 2. To derive a condition for an agent’s optimal
consumption at date 0, we first define the agent’s value function, which can be expressed as

v(z) = max
C1∈IntD

u(C1) + E1[u(z − C1 +X)], (1)

where the subscript indicates that the expectation is taken conditionally on date 1 information.
Under our independence assumption (Assumption 6), date 1 information does not improve the
precision of the conditional expectation value for X , and (1) is restated as

v(z) = max
C1∈IntD

u(C1) + E0[u(z − C1 +X)]. (2)

Since the function is maximized with respect to C1, the resultant function depends solely on z,
which is stochastic at date 0. With this value function at hand, the maximization problem for the
optimal consumption at date 0 can be written as

max
C0∈IntD

u(C0) + E0[v(W0 − C0)]. (3)

Since the objective function is concave in C0, the optimal consumption, C∗
0 , is characterized by the

first-order condition:
u′(C∗

0)− E0[v
′(W0 − C∗

0)] = 0. (4)

By using the envelope theorem, v′(z) = E0[u
′(z − C1 +X)], (4) can be rewritten as

u′(C∗
0)− E0[u

′(W0 − C∗
0 − C1 +X)] = 0. (5)

Since there is no uncertainty at date 1, C∗
0 = C1 is necessary for the optimality; the agent can

otherwise improve his/her felicity by transferring the amount consumed from the larger to the
smaller. Therefore, substituting C∗

0 = C1 into (5) yields

u′(C∗
0)− E0[u

′(W0 − 2C∗
0 +X)] = 0. (6)

Next, consider an agent with X at date 1. In this case, there is no uncertainty at date 2, C1 = C2 is
necessary for optimality. By using the envelope theorem, this implies that the value function takes
a form:

v′(z) = u′
󰀓z
2

󰀔
. (7)

The agent’s maximization problem can be described as

max
C0∈IntD

u(C0) + E0[v(W0 − C0 +X)]. (8)

Using (7), optimal consumption can be characterized by2

2Note that this maximization is equivalent to

max
C0∈IntD

u(C0) + 2E0

󰀗
u

󰀕
W0 − C0 +X

2

󰀖󰀘
. (9)
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u′(C∗
0)− E0

󰀗
u′
󰀕
W0 − C∗

0 +X

2

󰀖󰀘
= 0. (10)

Let C0(LR) and C0(ER) be optimal consumption satisfying (6) and (10), respectively.3 To
compare C0(LR) and C0(ER), we use a useful instrument called “diffidence theorem,” introduced
by Gollier (2001). We first summarize the diffidence theorem as the next lemma.

Lemma 1. (Diffidence theorem)

E[f(X)] = 0 ⇒ E[g(X)] ≤ 0 ⇔ ∃m g(x) ≤ mf(x) ∀x.

Proof. See Gollier (2001).

This useful result by Gollier enables us to convert a seemingly complex problem into a tractable
one. As an application of the diffidence theorem, we can prove a simple relation between the shape
of the utility function and the sign of C0(ER) − C0(LR). The following proposition summarizes
the result.

Proposition 1. Consider an agent who has an increasing, concave utility function defined on D
with a non-zero third derivative, and suppose the derivatives do not alternate in wealth. Then,
C0(LR) < C0(ER) if and only if the third derivative of the utility function is positive.

Proof. To apply the diffidence theorem to our context, note that C0(LR) ≤ C0(ER) is equivalent
to

u′(C0)− E0

󰀗
u′
󰀕
W0 − C0

2
+

X

2

󰀖󰀘
= 0 ⇒ u′(C0)− E0[u

′(W0 − 2C0 +X)] ≤ 0. (11)

Based on the diffidence theorem, a necessary and sufficient condition for (11) is

∃m u′(C0)− u′(W0 − 2C0 + x)−m

󰀗
u′(C0)− u′

󰀕
W0 − C0

2
+

x

2

󰀖󰀘
≤ 0 ∀x. (12)

Denoting the left-hand side of (12) as H(x,m), we should look for the value m, such that H(x,m) ≤
0 for any realization values of X . Since H(3C0 −W0,m) = 0,4

∂H

∂x

󰀏󰀏󰀏󰀏
x=3C0−W0

= 0,
∂2H

∂x2

󰀏󰀏󰀏󰀏
x=3C0−W0

≤ 0 (13)

are necessary. Thus,
−u′′(C0) +

m

2
u′′(C0) = 0 ⇔ m = 2, (14)

and substituting this back to H and differentiating twice at x = 3C0 −W0 results in

1

2
u′′′(C0) ≤ u′′′(C0). (15)

3“LR” and “ER” denote “late resolution of uncertainty” and “early resolution of uncertainty.
4Let x and x be the lower and upper bound of X , respectively. By using the concavity of u, it can be verified that

(x+W0)/3 ≤ C0 ≤ (x+W0)/3. Then, it follows that x ≤ 3C0 −W0 ≤ x. Therefore, u′′ < 0 is sufficient to ensure
that 3C0 −W0 is in the support of X .
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This condition is satisfied if and only if u′′′ ≥ 0. Moreover, in the same way, the necessary
condition for C0(LR) ≥ C0(ER) collapses to u′′′ ≤ 0.

To prove sufficiency, substituting m = 2 into (12), then a necessary and sufficient condition for
(11) becomes

u′(C0)− u′(W0 − 2C0 + x)− 2

󰀗
u′(C0)− u′

󰀕
W0 − C0

2
+

x

2

󰀖󰀘
≤ 0 ∀x. (16)

Thus, we must show that u′′′ ≥ 0 is sufficient for (16). Rearranging (16) leads to

u′
󰀕
W0 − C0 + x

2

󰀖
− u′(C0) ≤ u′(W0 − 2C0 + x)− u′

󰀕
W0 − C0 + x

2

󰀖
∀x. (17)

When x = 3C0 −W0, (17) follows immediately. When x > 3C0 −W0, note that

C0 <
W0 − C0 + x

2
< W0 − 2C0 + x (18)

and
W0 + x− 3C0

2
=

W0 − C0 + x

2
− C0 = W0 − 2C0 + x− W0 − C0 + x

2
. (19)

Then, dividing both sides of (17) by (W0 + x− 3C0)/2 yields

u′(W0−C0+x
2

)− u′(C0)
W0+x−3C0

2

≤
u′(W0 − 2C0 + x)− u′(W0−C0+x

2
)

W0+x−3C0

2

∀x > 3C0 −W0. (20)

When u′′′ = 0 (i.e., u′ is linear), (20) holds with equality. When u′′′ > 0, since

u′(b)− u′(a)

b− a
<

u′(c)− u′(b)

c− b
∀a < b < c, (21)

for any strictly convex function u′, combining (21) with (18) and (19) implies (20). This proves
that u′′′ ≥ 0 is sufficient for (16) to hold when x > 3C0 − W0. When x < 3C0 − W0, the proof
is similar to the case where x > 3C0 −W0; thus, u′′′ ≥ 0 implies C0(LR) ≤ C0(ER). Following
the same steps, it can also be verified that u′′′ ≤ 0 implies C0(LR) ≥ C0(ER). Note also that
C0(LR) = C0(ER) only if u′′′ = 0 since C0(LR) = C0(ER) is sufficient for u′′′ ≥ 0 and u′′′ ≤ 0.
Furthermore, using the fact that the precautionary premium for an agent with u′′′ = 0 is zero, it
can be proved that u′′′ = 0 is sufficient for C0(LR) = C0(ER). This establishes the equivalence
between C0(LR) = C0(ER) and u′′′ = 0, which completes the proof.

An immediate corollary of this proposition is that

Corollary 1. C0(LR) = C0(ER) if and only if the agent has a quadratic utility function.

Figure 1-3 illustrate the results of Proposition 1 and Corollary 1. By (17), C0(LR) ≤ C0(ER)
if and only if B ≤ A and B∗ ≤ A∗ for any realization values x, while C0(LR) ≥ C0(ER) if and
only if A ≤ B and A∗ ≤ B∗ for any x since the inequality in (17) is reversed. Figure 1 shows
that u′′′ > 0 implies B ≤ A and B∗ ≤ A∗, while Figure 2 shows that u′′′ < 0 implies A ≤ B and
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Figure 1: u′′′ > 0

Figure 2: u′′′ < 0
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Figure 3: u′′′ = 0

A∗ ≤ B∗. Furthermore, since C0(LR) = C0(ER) is equivalent to A = B and A∗ = B∗ for any
realization values x, C0(LR) = C0(ER) if and only if u′ is linear (see Figure 3).

Scott and Horvath (1980) and Menegatti (2001) show that the first sentence of the previous
proposition also implies that the third derivative of a utility function is positive under more restric-
tive conditions on D. The key feature of their study is that D is unbounded from above. In that
case, it can be verified that the concavity of a utility function implies that the third derivative of
utility is positive by using the mean value theorem. Thus, we have the following corollary.

Corollary 2. Consider an agent who has an increasing, concave utility function defined on D that
is unbounded from above, and suppose the derivatives do not alternate in wealth. Then, the agent
increases the current consumption during the early resolution of uncertainty.

Without any restrictions imposed on D, however, concavity is not sufficient to guarantee the
positivity of the third derivative. For example,

u(z) = −(A− Bz)γ,

where A − Bz > 0, B > 0, 2 > γ > 1 can be viewed as an example of a utility function that
is increasing, concave, and imprudent. It is also clear that the domain of this utility function is
bounded from above since A− Bz > 0 if and only if z < A/B.

3 Conclusion
In this paper, the optimal saving/consumption problem for a risk-averse agent is considered with
respect to the timing of uncertainty resolution. We demonstrate that when the occurrence of
background risk is postponed, a positive third derivative of the utility function is proved to be
a necessary and sufficient condition for increasing optimal savings for an agent under the time-
separable utility setting. Compared with previous research, therefore, this study clarifies that the
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time-separable utility setting implicitly contains a preference for the early resolution of uncertainty
in its widely used assumption of u′′′ > 0.

This study presents a strong relation between the sign of the third derivative of the utility func-
tion and the preference for the timing of the uncertainty resolution. However, there are still several
unanswered questions. In particular, it is natural to consider the relation between the timing of
uncertainty resolution and optimal current consumption under the Kreps–Porteus (1978) recursive
utility because we expect that the recursive utility will enable us to express the preference for the
timing of the uncertainty resolution in a more flexible way. These problems are left for further
research.
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