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1. Introduction

We study single–facility location problems with a variable voter set and a fixed and finite
location set by using voting systems and a deliberative suggestion from the government.
Particularly, we associate an arbitrary NIMBY (Not In My Backyard) or YIMBY (Yes In My
Backyard) public facility (e.g., public hospital, public school, library, refuse dump) in this
study.

In the cross–sectional area of facility location problems and social choice theories, there
are two major settings: facility location problems with (1) single–peaked preferences over
points in a given area and (2) voters’ preferences over a given finite location set, respectively.

In the setting (1), there is a given area (e.g., line, circle), and we assume that voters’
preferences are single–peaked according to the duration between voters and points in the
area. The setting (1) has been developed by Moulin (1980); Schummer and Vohra (2002);
Procaccia and Tennenholtz (2009); Alon et al. (2010); Lu et al. (2010); Cheng et al. (2011);
Todo et al. (2011); Cheng et al. (2013); Ye et al. (2015); Fong et al. (2018), and so forth.

In the setting (2), we give the finite location set in a metric space and use only voters’
preferences. We do not use single–peaked preferences and the duration between voters and
locations. The setting (2) has been developed by Boutilier et al. (2015); Feldman et al. (2016);
Anshelevich and Postl (2017); Goel et al. (2017); Anshelevich et al. (2018); Anshelevich and
Zhu (2018); Cheng et al. (2018), and so forth.

This study employs an analytical method locating between the settings (1) and (2) since
there are conceptual problems in both settings when we study the public facility location
problem.

We cannot say that the outcome is determined democratically in the setting (1) if ‘assum-
ing that every voter has a single–peaked preference’ indicates that we cannot observe true
voters’ preferences. In the real world, several problems happen because of this assumption.
For example, if a hospital is very close to our housing, some people will have a sleep disorder
because of a siren in the deep of night. Furthermore, even if a resident needs to go to the
hospital frequently, the duration from the resident and the hospital may be quite far by as-
suming that ‘all’ voters prefer closer locations. Furthermore, if the government tries to solve
the problem, it will need enormous costs to collect information on voters’ circumstances and
attributes.

Should we then call an election to decide the facility location, such as the setting (2)?
There must exist a reason why the government has not done that up to now in the real world.
There are two main reasons. First, voters do not have enough specialised knowledge to
represent their preferences over the locations. Second, each public facility has a specific
role in society. Thus, if we use only voters’ preferences over the locations, that is, personal
considerations, it is possible that the facility does not work well. Hence, any prejudiced
method is sometimes inappropriate to decide the public facility location.

This study shows a method to reflect both voters’ preferences and a deliberative sugges-
tion of the government (the government’s preference) in the set of winners. Note that we
do not assume that every voter has a single–peaked preference. Every voter and the govern-
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ment are assumed to have complete preorders over the finite location set. We then propose
a democratic–deliberative preference update system (DD system) which updates the voters’
preferences according to the government’s preference as follows: if any two locations are
indifferent for a voter, the updated preference of the voter is equivalent to that of the gov-
ernment, and if any two locations are ordered strictly by the voter, the updated preference
is equal to the original one. We prove that every democratic–deliberative updated prefer-
ence (DD updated preference) is also a complete preorder over the location set. Note that
we should not add the government as a voter and call an election since the government’s
suggestion becomes meaningless if the number of voters is sufficiently large.

Our concept is similar to that of equilibriums in a market economy if we regard the vot-
ers’ preferences and the deliberative suggestion of the government as the demand and the
supply for feasible facility locations. We conceived the concept by referring to studies on
the judgement aggregation theory in social networks and diffusion of preferences that have
been developed by Brill et al. (2016); Botan et al. (2019) and Yildiz et al. (2010); Hassan-
zadeh et al. (2013); Bredereck and Elkind (2017), respectively. In the literature, we consider
communications among all voters. If voter i changes his/her preference into that of voter j
by communicating with j, we call j an influencer for i. After voters communicate with each
other, society outputs the set of winners. We then give the role of partial influencer to the
government, who is outside of the voter set, and do not use a social network structure. The
partial influencer reflects its preference in the voters’ preferences partially, such as the DD
system.

From the above arguments, the major difference between our and previous studies is that
we employ the combination of the settings (1) and (2) and consider the government as the
partial influencer for all voters according to the DD system.

We characterise the DD system by respectfulness, synchrony, and affinity. Respectful-
ness requires that if a voter and the government have reversal preference orders of any two
locations, the updated preference order of the two locations is the same as the voter’s one.
Synchrony requires that, for any two locations a and b, if either a voter or the government
strictly prefers a to b and the other considers that a and b are indifferent, the updated prefer-
ence order shows that a is strictly better than b. Affinity requires that, for any two locations,
if both a voter and the government have the same preference orders of the two locations, the
updated preference order is the same as their original orders. Furthermore, we prove that the
DD system updates the voters’ preferences in linear time by providing an algorithm.

Finally, we compare the set of winners by using (I) only the voters’ preferences, (II) only
the government’s preference, and (III) the DD updated preferences. We apply the (adjusted)
plurality, (adjusted) anti-plurality, and Borda rules for the comparative analyses. We prepare
294 pairs of the numbers of locations and voters: three to eight locations and two–50 voters.
We apply the five voting rules for each pair. Thus, there are 1,470 situations which are
identified based on the numbers of locations and voters and a kind of voting rules, such as
‘the Borda rule with five locations and 14 voters’. We assign a preference to each voter and
the government at random and calculate the outcomes for 10,000 times for each situation.
After that, we create data set whose number of observations is 1,470 and use the following
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three dependent variables for the log–link–log regressor in this study: the first is the number
of times that the outcomes using (III) includes only one location per 10,000 times. The second
is the ratio that the outcomes using (I) and (III) are the same and thoes using (II) and (III)
are different per 10,000 times. The third is the ratio that the outcomes using (I) and (III) are
different and thoes using (II) and (III) are the same per 10,000 times. The last two variables
are related to the weak points of settings (1) and (2) since if the first ratio increases, it indicates
that the DD system cannot avoid democratic and non–deliberative results even more, and if
the second ratio increases, it indicates that the DD system cannot avoid deliberative and non–
democratic results even more. We then estimate the relationship between the three dependent
variables, the numbers of locations and voters, and the voting rules. As a result, the Borda
rule has better performance than the others in our analyses.

The remainder of this paper is structured as follows. Section 2 reports our notations and
definitions. Section 3 characterises the DD system and proves that the DD system updates
the voters’ preferences in linear time. Section 4 introduces our analytical methods for the
comparative analyses of the set of winners by using the preference profiles (I)–(III) for each
voting rule and reports the results. Finally, Section 5 provides concluding remarks.

2. Preliminaries

Let V ⊆ Z+ be a finite voter (e.g., resident, or household) set, where Z+ is the set of
positive integers and |V | ≥ 1. The finite location set is denoted by X, and each location is
denoted by a, b, c, ... Furthermore, let g ∈ Z+ \ V be the government of the society giving
the citizenship for all voters in V . We suppose that locations in X are feasible locations for a
public facility, and the government has an arbitrary principle to decide facility location and a
deliberative preference ranking of all locations in X as a supplier.

A complete preorder over X is denoted by Ri ∈ R for each i ∈ V , where R is the set of
all complete preorders over X. The asymmetric and symmetric components are denoted by
Pi and Ii, respectively. Let R = (Ri)i∈V ∈ R |V | be a profile of all Ri. Thereby, we assume
unrestricted domain in this paper. Additionally, g has a complete preorder over X denoted by
Rg ∈ R. We then regard Rg as the deliberative suggestion from the government.

Let C : R |V′ | ⇒ X be a social choice correspondence over X, which outputs a non–empty
subset of X, for any V ′ ⊂ Z+ (both V and {g} are allowed to be V ′).

2.1. Deliberative preference update system
We assume that if the society decides to update R by using Rg for getting the deliberative

and democratic collective choice, the society employs an arbitrary update system s(Ri,Rg)
whose mapping is s : R2 → R.

In the beginning, we consider two specific update systems called democratic–deliberative
and moderate–deliberative preference update systems.

The democratic–deliberative preference update system (DD system), denoted by sdd, up-
dates Ri with Rg ‘only if’ there exist indifferent locations for i ∈ V . We define the DD system
as follows:
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Definition 1. democratic–deliberative preference update system:

s = sdd ⇔ s(Ri,Rg) = Rdd
i s.t. ∀a, b ∈ X, [aIib⇒ [aRdd

i b⇔ aRgb]] ∧ [aPib⇒ aPdd
i b].

From Definition 1, if all locations are indifferent for g, or i has a linear order over X,
Rdd

i = Ri, and if all locations are indifferent for i, Rdd
i = Rg.

Proposition 1 shows that Rdd
i is a complete preorder over X for every i ∈ V .

Proposition 1. Rdd
i satisfies reflexivity, completeness, and transitivity.

Proof. It is trivial that Rdd
i satisfies reflexivity and completeness. We then prove that Rdd

i
satisfies transitivity.

From Definition 1, we obtain that, for any a, b ∈ X,

aPdd
i b⇔ [aPib ∨ [aIib ∧ aPgb]], aIdd

i b⇔ [aIib ∧ aIgb].

Take any three locations a, b, c ∈ X. From the DD system and transitivity of Ri and Rg,

[aPdd
i b ∧ bPdd

i c]⇔[aPib ∨ [aIib ∧ aPgb]] ∧ [bPic ∨ [bIic ∧ bPgc]]
⇔[aPibPic ∨ [aPibIic ∧ bPgc] ∨ [aIibPic ∧ aPgb] ∨ [aIibIic ∧ aPgbPgc]]
⇒[aPic ∨ [aPic ∧ bPgc] ∨ [aPic ∧ aPgb] ∨ [aIic ∧ aPgc]]
⇔[aPic ∨ [aIic ∧ aPgc]]

⇔aPdd
i c,

and

[aPdd
i b ∧ bIdd

i c]⇔[[aPib ∨ [aIib ∧ aPgb]] ∧ [bIic ∧ bIgc]]
⇔[[aPibIic ∧ bIgc] ∨ [aIibIic ∧ aPgbIgc]]
⇒[[aPic ∧ bIgc] ∨ [aIic ∧ aPgc]]
⇔[aPic ∨ [aIic ∧ aPgc]]

⇔aPdd
i c.

Similarly, from the DD system and transitivity of Ri and Rg, aIdd
i b and bPdd

i c imply that aPdd
i c.

Finally, from the DD system and transitivity of Ri and Rg,

[aIdd
i b ∧ bIdd

i c]⇔[[aIib ∧ aIgb] ∧ [bIic ∧ bIgc]]
⇔[aIibIic ∧ bIgc ∧ bIic ∧ aIgbIgc]
⇒[aIic ∧ aIgc]

⇔aIdd
i c.

From these results, Rdd
i satisfies transitivity.
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Next, the moderate–deliberative preference update system (MD system), denoted by smd,
updates Ri with Rg if there exist indifferent locations for i ∈ V . Additionally, if i and g have
reverse strict preference orders of any two locations for each other, the system updates i’s
strict order with an indifference order for the two locations. We define the MD system as
follows:

Definition 2. Moderate–deliberative update system:

s = smd ⇔ s(Ri,Rg) = Rmd
i s.t. ∀a, b ∈ X, [aIib⇒ [aRmd

i b⇔ aRgb]]

∧[aPib ∧ aRgb⇒ aPmd
i b] ∧ [aPib ∧ bPga⇒ aImd

i b].

However, we obtain a negative result of the MD system, Proposition 2, which shows that
Rmd

i is not a complete preorder over X. For example, if aPibPic and bPgcPga, aImd
i b and

aImd
i c, but bPmd

i c from Definition 2.

Proposition 2. Rmd
i violates transitivity.

We then treat only the DD system in this study. We denote the DD updated preference
profiles Rdd = (Rdd

i )i∈V ∈ R |V |. If we interpret that R and Rg indicate the demand and the sup-
ply for each location, respectively, Rdd indicates an equilibrium on the |X|–location market.

This study considers the following three cases: the society determines the outcomes by
using (I) only Rg, (II) only R, and (III) Rdd hereafter.

2.2. Preference converters of the government
Next, we describe the construction processes of Rg as a background of this study. As said

earlier, we assume that the government has an arbitrary principle to decide facility location
and a deliberative preference ranking of all locations in X as a supplier.

Let yg ∈ Rw be the information vectors used to construct Rg. Suppose that f g : Rw → R
is a preference converter of the government such that f g(yg) = Rg. By using this setting, we
can interpret that the government uses exogenous factors (e.g. the duration between voters
and locations) or provisional voters’ preferences to construct Rg instead of assuming that the
voter’s preferences are single–peaked.

2.2.1. Examples
There are two fundamental preference converters in this area. Suppose that yg =

(tia)i∈V,a∈X, where tia ∈ R>0 is the duration between voter i ∈ V and location a ∈ X.
The first is the minisum location preference converter, which is appropriate to decide

YIMBY (yes in my backyard) facility location. Let the total duration be denoted by ta =

Σi∈V tia ∈ R>0 for each a ∈ X. We define the minisum location preference converter denoted
by f g

min as follows:

Definition 3. Minisum location preference converter:

f g = f g
min ⇔ f g((tia)i∈V,a∈X) = Rg s.t. aRgb⇔ ta ≤ tb ∀a, b ∈ X.
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The second is the maxisum location preference converter, which is appropriate to de-
cide NIMBY (not in my backyard) facility location. We then define the maxisum location
preference converter denoted by f g

max as follows:

Definition 4. Maxisum location preference converter:

f g = f g
max ⇔ f g((tia)i∈V,a∈X) = Rg s.t. aRgb⇔ ta ≥ tb ∀a, b ∈ X.

In the following analyses, we do not use a specific f g in our comparative analyses in
Section 4. We assume that the government employs an arbitrary preference converter f g,
such as f g

min and f g
max, and do not construct Rg based on their own benefit.

3. Characterisations of the DD system

3.1. Axiomatic analysis
We introduce the following axioms to characterise the DD system, sdd.

Anti–enforcement: For each i ∈ V , s(Ri,Rg) = R∗i such that aPib does not imply bP∗i a for
any a, b ∈ X. This requires that if each voter has a strict preference order for any
two locations, the order must not be reversed after updating Ri by an arbitrary update
system s.

Respectfulness: For each i ∈ V , s(Ri,Rg) = R∗i such that aPib and bPga imply that aP∗i b for
any a, b ∈ X. This requires that if i’s and g’s preference orders are reverse, i’s updated
preference order of the two locations is the same as i’s original one.

Synchrony: For each i ∈ V , s(Ri,Rg) = R∗i such that aP∗i b if (i) aPib and aIgb or (ii) aIib and
aPgb for any a, b ∈ X. This requires that, for any a, b ∈ X, if one of i and g strictly
prefers a to b and the other considers that a and b are indifferent, i’s updated preference
order shows that a is strictly better than b.

Affinity: For each i ∈ V , s(Ri,Rg) = R∗i such that (i)’ aPib and aPgb imply that aP∗i b, and
(ii)’ aIib and aIgb imply that aI∗i b. This requires that, for any a, b ∈ X, if both i and g
have the same preference order of a and b, i’s updated preference order of a and b is
the same as the original one.

Proposition 3 shows that respectfulness implies anti–enforcement. We do not propose
proofs of Proposition 3 since it is trivial from the statements of the axioms.

Proposition 3. If s satisfies respectfulness, it also satisfies anti–enforcement.

Theorem 1 shows the characterisation of the DD system.

Theorem 1. s = sdd if and only if s satisfies respectfulness, synchrony, and affinity.
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Proof. It is trivial that sdd satisfies respectfulness, synchrony, and affinity. We prove that
s = sdd if s satisfies respectfulness, synchrony, and affinity.

Suppose that s(Ri,Rg) = R∗i for each i ∈ V , and s satisfies respectfulness, synchrony, and
affinity.

From respectfulness, aPib and bPga imply that aP∗i b for any a, b ∈ X. From the part (i) of
synchrony, aPib and aIgb imply that aP∗i b. From the part (i)’ of affinity, aPib and aPgb imply
that aP∗i b. From these assumptions, we obtain that aPib implies that aP∗i b.

Next, from the part (ii) of synchrony, aIib and aPgb imply that aP∗i b. From the part (ii)’
of affinity, aIib and aIgb imply that aI∗i b. From these assumptions, we obtain that aIib implies
that R∗i = Rg.

We then find that R∗i = Rdd
i . Thus, s = sdd if and only if s satisfies respectfulness,

synchrony, and affinity.

We show the independence of respectfulness, synchrony, and affinity in the following
manner. First, the non–democratic preference update system sndem is defined as follows:
sndem(Ri,Rg) = Rndem

i such that aPndem
i b if ‘aPib and aRgb’ or ‘aRib and aPgb’, aIndem

i b if
aIib and aIgb, and bPndem

i a if aPib and bPga. Then, sndem violates only respectfulness. Sec-
ond, suppose that the non–deliberative preference update system, sndel, is defined as follows:
sndel(Ri,Rg) = Ri. Then, sndel violates only synchrony. Third, the contrarian preference up-
date system, sc is defined as follows: sc(Ri,Rg) = Rc

i such that aPc
i b if ‘aPib and bRga’ or

‘aRib and aPgb’, aIc
i b if aIib and aIgb, and bPc

i a if aPib and aPgb. Then, sc violates only
affinity.

From Proposition 3 and Theorem 1, we obtain Corollary 1.

Corollary 1. sdd satisfies anti–enforcement.

3.2. Algorithm and time complexity
Theorem 2 shows the time complexity of the DD system.

Theorem 2. We can compute the DD updated preferences in linear time.

Proof. Rename a, b, c, ...(∈ X) to a1, a2, a3, ..., a|X|. We introduce a function r : X2 × R →
{1, 0,−1} such that r(ak, al,R) = 1 if and only if akPal, r(ak, al,R) = 0 if and only if akIal,
and r(ak, al,R) = −1 if and only if alPak for all k, l ∈ {1, ..., |X|} and for any R ∈ R. We then
consider Algorithm 1.

Algorithm 1: the DD system
Input (r(ak, al,Ri′))k,l∈{1,...,|X|},k<l,i′∈V∪{g}
for each i ∈ V do

for each k, l ∈ {1, ..., |X|}, k < l do
if r(ak, al,Ri) = 0 then

set r(ak, al,Ri)← r(ak, al,Rg)
end if

end for
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end for
return (r(ak, al,Ri))k,l∈{1,...,|X|},k<l,i∈V ▷ The output is (r(ak, al,Rdd

i ))k,l∈{1,...,|X|},k<l,i∈V

Since r(al, ak,Ri′) = −r(ak, al,Ri′), we do not have to consider r(al, ak,Ri′) for all k, l ∈
{1, ..., |X|}, k < l, for all i′ ∈ V ∪ {g}. Then, the input size is n = |X|C2 · (|V | + 1). Furthermore,
since we do not update r(ak, al,Rg), the calculation amount is 2 · |X|C2 · |V | = 2n(1−1/(|V |+1)).
Finally, |V | ≥ 1 implies that n ≤ 2n(1 − 1/(|V | + 1)) < 2n, therefore the time complexity is
O(n).

4. Simulations and regression analyses

4.1. Examples of simple scoring rules
We use five scoring rules to simulate elections based on different preference profiles (R,

Rg, and Rdd).
Suppose that pla(R′) is the number of voters whose best location is a ∈ X, where R′ = R,

Rg, or Rdd. We then define the plurality rule as follows:

Definition 5. Plurality rule:

Cpl(R′) = {a ∈ X | pla(R′) ≥ pla′(R′) ∀a′ ∈ X}.

Each voter gives one point to the best locations. Thus, if a voter has more than two best
locations in X, all of them are assigned one point. It indicates that the point allotted to each
voter is changed according to his/her preference.

We then define the adjusted plurality rule. Suppose that Âi = {a ∈ X | aRib ∀b ∈ X}
includes the best locations for i. Suppose that

a ∈ Âi ⇒ aplia(Ri) = 1/|Âi|;

a ∈ X \ Âi ⇒ aplia(Ri) = 0

for each a ∈ X and for each i ∈ V ∪ {g}. Then, the point of each a ∈ X becomes

apla(R) = Σi∈Vaplia(Ri);

apla(Rg) = aplga(Rg);

apla(Rdd) = Σi∈Vaplia(Rdd
i ).

We then define the adjusted plurality rule as follows:

Definition 6. Adjusted plurality rule:

Capl(R′) = {a ∈ X | apla(R′) ≥ apla′(R′) ∀a′ ∈ X}.

Next, suppose that apa(R′) is the number of voters whose worst location is a for any
a ∈ X. We then define the anti–plurality rule as follows:
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Definition 7. Anti–Plurality rule:

Cap(R′) = {a ∈ X | apa(R′) ≤ apa′(R′) ∀a′ ∈ X}.

As with Cpl, the point allotted to each voter is changed according to his/her preference
if we apply the anti–plurality rule. We then define the adjusted anti–plurality rule. Suppose
that Ǎi = {a ∈ X | bRia ∀b ∈ X} includes the worst locations of i. Suppose that

a ∈ Ǎi ⇒ aapia(Ri) = 1/|Ǎi|;

a ∈ X \ Ǎi ⇒ aapia(Ri) = 0

for each a ∈ X and for each i ∈ V ∪ {g}. Then, the point of each a ∈ X becomes

aapa(R) = Σi∈Vaapia(Ri);

aapa(Rg) = aapga(Rg);

aapa(Rdd) = Σi∈Vaapia(Rdd
i ).

We then define the adjusted anti–plurality rule as follows:

Definition 8. Adjusted anti–plurality rule:

Caap(R′) = {a ∈ X | aapa(R′) ≤ aapa′(R′) ∀a′ ∈ X}.

Suppose that nab(R′) is the number of voters who strictly prefer a to b for any a, b ∈ X.
We then define the Borda score of a ∈ X as follows:

bra(R′) =
∑

b∈X\{a}
nab(R′) − nba(R′),

and the Borda rule is defined as follows:

Definition 9. Borda rule:

Cbr(R′) = {a ∈ X | bra(R′) ≥ bra′(R′) ∀a′ ∈ X}.

From Definition 1, we do not analyse the approval voting rule in our simulation. If ev-
ery voter has a dichotomous complete preorder over X, the approval voting rule is Pareto
efficient, but if not, the approval voting rule violates (weak) Pareto efficiency.1 In the case
of dichotomous complete preorders, X is divided into two groups A and N such that all lo-
cations in A (or N) are indifferent and every location in A is strictly better than that in N.
Consider that every voter and g has dichotomous complete preorders over X. If we update
voters’ dichotomous complete preorders by the DD system, it is possible that the updated

1Suppose that there are three locations a, b, c ∈ X, and all locations are approved for all voters. Then, the
social choice becomes X even if all voters strictly prefer a to b and c.
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preference relations over X become complete preorders or linear orders. For example, there
are three locations a, b, c ∈ X, and i’s preference is aIibPic. In this case, i approves a and
b. If g’s preference is aIgcPgb (it is also a dichotomous complete preorder), i’s DD updated
preference becomes aPdd

i bPdd
i c. This implies that the dichotomous complete preorder Ri is

updated to the linear order Pdd
i . From this argument, we cannot analyse the approval voting

rule satisfying (weak) Pareto efficiency by using the DD system.
Note that if the society determines the set of winners according to only Rg, Cpl(Rg) =

Cbr(Rg) includes the best location(s) for the government. Thus, we normally focus on g’s
preference converter, f g, when the society uses only Rg to decide the outcome. If f g =

f g
min (alternatively, f g = f g

max), we can call the plurality and the Borda rules the minisum
(alternatively, maxisum) location rule.

4.2. Analytical methods
4.2.1. Simulations

We prepare 294 pairs of |X| and |V | such that |X| ∈ {3, ..., 8} and |V | ∈ {2, ..., 50}. We
calculate the set of winners of all voting rules 10,000 times for each pair (|X|, |V |) by using
our program written in Python.2 Note that we apply the same 10,000 examples to the five
voting rules for each pair (|X|, |V |).

We choose preference profile at random. For example, if |X| = 3, there are 13 preference
rankings of a, b, and c in the case of complete preorders. We then choose preference rankings
of five voters and the government at random form the 13 preference rankings. We conduct
the following five comparative analyses:

• Plurality rule: Cpl(R) vs Cpl(Rg) vs Cpl(Rdd)
• Adjusted plurality rule: Capl(R) vs Capl(Rg) vs Capl(Rdd)
• Anti–plurality rule: Cap(R) vs Cap(Rg) vs Cap(Rdd)
• Adjusted anti–plurality rule: Caap(R) vs Caap(Rg) vs Caap(Rdd)
• Borda rule: Cbr(R) vs Cbr(Rg) vs Cbr(Rdd)

4.2.2. Regression models
After 1, 470 × 10, 000 times simulations, we analyse performance of the voting rules by

using a log–link–log model.3 We create a data set, including three dependent variables and
nine independent variables. We estimate all regressors by using STATA 15.1.

Before introducing the definitions of all variables, we introduce the log–link–log model.
Suppose that y is a dependent variable, x1, ..., xk are k independent variables, c1, ..., cl are l

2If we input the real data of preference profile, a 1.99 GHz personal laptop takes less than one second to
output the result at least for any |V | ≤ 50, for each run. However, the laptop does not work when we prepare all
weak orders over X for any |X| ≥ 9.

3This is one of generalised linear models. For further discussions, see Venables and Dichmont (2004).
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control variables, and ε is an error term. Then, we apply the following log–link–log regres-
sor:4

Model1 : ln (y − ε) = β0 + β1 ln x1 + · · · + βk ln xk + γ1c1 + · · · + γlcl

⇔ y = xβ1
1 · · · x

βk
k eβ0+γ1c1+···+γlcl + ε.

For each i ∈ {1, ..., k} and for any xi > 0, if x j > 0 for every j ∈ {1, ..., k}\{i}, βi > 1 implies
that ∂E(y)/∂xi, ∂

2y/∂x2
i > 0, βi = 1 implies that ∂y/∂xi > 0 and ∂2y/∂x2

i = 0, 1 > βi > 0
implies that ∂y/∂xi > 0 and ∂2y/∂x2

i < 0, βi = 0 implies that ∂y/∂xi = 0, and 0 > βi implies
that ∂y/∂xi < 0 and ∂2y/∂x2

i > 0. We thus find signs of partial first and second derivatives for
all independent variables.

The following log–log model is also usable:

ln y = β0 + β1 ln x1 + · · · + βk ln xk + γ1c1 + · · · + γlcl + ε
′

⇔ y = xβ1
1 · · · x

βk
k eβ0+γ1c1+···+γlcl+ε

′
.

Which model should we use according to our data? We derive an answer by estimating
the following level–log model and checking the distribution of residuals:

y = β0 + β1 ln x1 + · · · + βk ln xk + γ1c1 + · · · + γlcl + u,

where u is an error term of the level–log model. If the distribution of û is close to the normal
distribution, the log–link–log model is better than the log–log model since the logarithmic
transformation of (y − ε) = E(y) does not affect to the distribution of û, where û is a residual.
From this verification process, we employ the log–link–log model in this study.5

Next, we consider using cross–terms of one xi and dummy variables d1, ..., dl in the
log–link–log model as follows:

Model2 : ln (y − ε′′) = β′0 + β′1 ln xi + δ1 ln xi ∗ d1 + · · · + δl ln xi ∗ dl

⇔ y = xβ
′
1+δ1d1+···+δldl

i eβ0 + ε′′.

From the last equation, we can obtain the second derivative, which depends on each
dummy variable. In general, we add dummy variables independently. However, a correlation
coefficient of every x and every d our data is more than 0.9. We thus eliminate all isolated
terms of dummy variables from Model 2.

4We call the model ‘log–link–log’ since we combine the log–link and log–log models.
5By comparing with both results, AICs of the log–link–log model are larger than the log–log model (the log–

link–log model has worse performance than the log–log model). However, robust standard errors of coefficients
based on the log–link–log model are smaller than those based on the log–log model. Thus, we can obtain more
significant results for independent variables by using the log–link–log model than the log–log model in our data.
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4.3. Data
Each sample is identified based on values of (|X|, |V |) and a kind of voting rules such as

‘the Borda rule with (|X|, |V |) = (5, 14)’. Thus, the number of observations is 1,470.
In our analyses, we use the following three dependent variables: unique, nondelib, and

nondemoc. First, unique is the number of times that the the set of winners includes only one
location per 10,000 times. Second, nondelib is the rate of number of times that C(Rdd) = C(R)
and C(Rdd) , C(Rg) per 10,000 times. Third, nondemoc is the rate of number of times
that C(Rdd) , C(R) and C(Rdd) = C(Rg) per 10,000 times. We interpret that unique is an
appropriate evaluation criterion for single–winner voting systems, and nondelib or nondelib
is directly related to the weak point for deciding the set of winners based only on R or Rg.
The higher the values of unique, the better. Contrary, the lower the values of nondelib and
nondemoc, the better.

Next, we use nine independent variables |X|, |V |, pl apl, ap, aap, br, gl, and vl. |X| and
|V | are the numbers of locations and voters, respectively, and pl apl, ap, aap, br are dummy
variables. For example, pl = 1 if we apply the plurality rule, and otherwise pl = 0. The
same applies to apl (adjusted plurality), ap (anti–plurality), aap (adjusted anti–plurality),
and br (Borda). Finally, gl and vl are characteristics of preference profiles for 10,000 times
simulation. The rate of linear orders over X (%) is calculated as follows:

rliner(|X|) = 100|X|!(Σ|X|m=0m!S (|X|,m))−1,

S (|X|,m) = (m!)−1Σm
h=0(−1)h

(
m
h

)
(m − h)|X|.

Additionally, let rglinear(|X|) be the rate that Rg is a linear order over X per 10,000 times.
Then, gl takes the value of rglinear(|X|) − rliner(|X|) for each |X| ∈ {3, ..., 8}. Similarly,
suppose that rvlinear(|X|) is the average rate that Ri is a linear order over X per 10,000 times.
Then, vl takes the value of rvlinear(|X|) − rliner(|X|) for each |X| ∈ {3, ..., 8}. If Rg is a linear
order, the impact to Rdd

i from Rg becomes large, and if Ri is a linear order, Rdd
i = Ri. We thus

control the effect of preference profiles to the three dependent variables by using gl and vl.
Table 1 shows the descriptive statistics of all variables.

4.4. Results
Tables 2–4 report results of regression analyses based on Models 1 and 2. If there is no

asterisk mark, the result is not significant at the 10% level.
Note that every AIC in Tables 2–4 is calculated by using the following equation: AIC=

(−2 ln L + 2k′)/N, where ln L is the overall likelihood reported by the command ‘glm’ in
STATA, k′ is the number of parameters of the model, N is the number of observations. The
command ‘estat ic’ in STATA outputs a different AIC, that is, AIC= −2 ln L + 2k′. (See
Akaike, 1973, 1974.)
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Table 1: The descriptive statistics

variable mean std. dev. min max

unique 7872.783 1897.413 .000 9776.000
nondelib 87.258 11.891 54.627 100.000

nondemoc 60.372 20.518 12.782 100.000
|X| 5.500 1.708 3.000 8.000
|V | 26.000 14.147 2.000 50.000
pl .200 .400 .000 1.000

apl .200 .400 .000 1.000
ap .200 .400 .000 1.000

aap .200 .400 .000 1.000
br .200 .400 .000 1.000
gl .011 .380 -.974 1.520
vl -.013 .109 -.490 .640

4.4.1. Effects of |X| and |V |
From Table 2, |X| is negatively correlated to unique, and is positively correlated to

nondelib and nondemoc at 0.1% significance level. Additionally, ∂2unique/∂|X|2 > 0 and
∂2y/∂|X|2 < 0 for y = nondelib or nondemoc since |V | > 0. Next, |V | is positively correlated
to unique and nondemoc, and is negatively correlated to nondelib at 0.1% significance level.
Additionally, ∂2y/∂|V |2 < 0 for y = unique or nondemoc and ∂2nondelib/∂|V |2 > 0 since
|X| > 0.

From Table 3, if we do not employ the Borda rule, |X| is more negatively correlated to
unique, but ∂2unique/∂|X|2 > 0 still holds. If we do not employ the Borda or the adjusted
plurality rule, |X| is more positively correlated to nondelib, but ∂2nondelib/∂|X|2 < 0. Fur-
thermore, if we employ the Borda or (adjusted) plurality rule, |X| is negatively correlated to
nondemoc, and ∂2nondemoc/∂|X|2 > 0.

From Table 4, if we do not employ the Borda rule, |V | is more negatively correlated to
unique, but ∂2unique/∂|V |2 > 0 still holds. If we employ the Borda or (adjusted) plurality
rule, |V | is negatively correlated to nondelib, and ∂2nondelib/∂|V |2 > 0. According to the
coefficients of ln |V | ∗ pl, ln |V | ∗ apl, and ln |V | ∗ br, the adjusted plurality has the best per-
formance to reduce nondelib when |V | increases (, however the differences of the coefficients
are almost zero). Additionally, if we employ the Borda rule, |V | is negatively correlated to
nondemoc, and ∂2nondemoc/∂|X|2 > 0.

From the above results, if we apply the Borda rule, the effect of increasing |X| to each
dependent variable becomes the best. If we apply the Borda (alternatively, adjusted plurality)
rule, the effect of increasing |V | to unique or nondemoc (alternatively, nondelib) becomes the
best.
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Table 2: Results of Model 1 (without cross terms)

y: unique nondelib nondelib nondemoc
ln |X| -.212*** .248*** .248*** .104***

[.009] [.005] [.005] [.016]
ln |V | .185*** -.015*** -.015*** .100***

[.008] [.002] [.002] [.006]
pl -.177*** .006 -.176*** .177***

[.008] [.004] [.004] [.017]
apl -.119*** .001 -.181*** .082***

[.008] [.004] [.004] [.018]
ap -.299*** .181*** -.002 .661***

[.011] [.004] [.004] [.017]
aap -.233*** .182*** .594***

[.010] [.004] [.019]
br -.182***

[.004]
gl .002 .007 007 -.005

[.007] [.004] [.004] [.012]
vl .006 -.016 -.016 .029

[.052] [.014] [.014] [.045]
const. 8.911*** 4.025*** 4.207*** 3.283***

[.027] [.010] [.009] [.036]
obs. 1,470 1,470 1,470 1,470
AIC 16.830 5.987 5.987 7.582

Robust standard errors are reported in brackets.
*: p < 0.05, **: p < 0.01, and ***: p < 0.001.
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Table 3: Results of Model 2 (with cross terms of ln |X|)
y: unique nondelib nondelib nondemoc

ln |X| -.117*** .206*** .300*** -.180***
[.008] [.007] [.007] [.011]

ln |X| ∗ pl -.116*** .003 -.091*** .112***
[.004] [.002] [.003] [.006]

ln |X| ∗ apl -.078*** .000 -.094*** .053***
[.004] [.002] [.003] [.007]

ln |X| ∗ ap -.199*** .094*** -.001 .412***
[.006] [.003] [.003] [.007]

ln |X| ∗ aap -.156*** .094*** .374***
[.006] [.003] [.009]

ln |X| ∗ br -.094***
[.003]

ln |V | .183*** -.016*** -.016*** .099***
[.008] [.002] [.002] [.006]

gl .002 .007 .007 -.005
[.007] [.005] [.005] [.010]

vl .009 -.017 -.017 .033
[.049] [.015] [.015] [.040]

const. 8.775*** 4.107*** 4.107*** 3.742***
[.025] [.012] [.012] [.023]

obs. 1,470 1,470 1,470 1,470
AIC 16.707 6.395 6.395 7.170

Robust standard errors are reported in brackets.
*: p < 0.05, **: p < 0.01, and ***: p < 0.001.
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Table 4: Results of Model 2 (with cross terms of ln |V |)
y: unique nondelib nondelib nondemoc

ln |V | .230*** -.043*** .015*** .159***
[.009] [.002] [.002] [.009]

ln |V | ∗ pl -.047*** .001 -.057*** -.118***
[.002] [.001] [.001] [.005]

ln |V | ∗ apl -.030*** -.001 -.059*** -.147***
[.002] [.002] [.001] [.005]

ln |V | ∗ ap -.076*** .058*** -.001 .022***
[.003] [.001] [.001] [.005]

ln |V | ∗ aap -.056*** .058***
[.003] [.001]

ln |V | ∗ br -.058*** -.171***
[.001] [.007]

ln |X| -.217*** .247*** .247*** .095***
[.009] [.005] [.005] [.018]

gl .002 .007 .007 -.005
[.008] [.004] [.004] [.013]

vl .006 -.015 -.015 .027
[.058] [.011] [.011] [.059]

const. 8.746*** 4.113*** 4.113*** 3.680***
[.030] [.010] [.010] [.032]

obs. 1,470 1,470 1,470 1,470
AIC 16.993 5.944 5.944 7.872

Robust standard errors are reported in brackets.
*: p < 0.05, **: p < 0.01, and ***: p < 0.001.
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4.4.2. performance of voting rules
From Tables 2–4, we check the performance of voting rules for each evaluation criteria

(unique, nondelib, and nondemoc).
From Table 2, the ranking of voting rules based on their performance for unique or

nondemoc is as follows: (1) Borda, (2) adjusted plurality, (3) plurality, (4) adjusted anti-
plurality, and (5) anti-plurality rules. Next, the ranking of voting rules based on their per-
formance for nondelib is as follows: (1) Borda, (2) adjusted plurality, (3) plurality, (4) anti-
plurality, and (5) adjusted anti-plurality rules. Table 8 shows the summary of the above
results.

Table 5: performance of voting rules

Voting rules unique nondelib nondemoc

Plurality 3 3 3
Adjusted plurality 2 2 2
Anti–plurality 5 4 5
Adjusted anti–plurality 4 5 4
Borda 1 1 1

We thus find that the Borda rule has the best performance between the five voting rules.
Furthermore, if we apply the Borda rule, the effects of increasing |X| and |V | will be improved
from Section 4.4.1. From all results, the Borda rule with the DD system has relatively a good
performance based on the evaluation criteria, that is, unique, nondelib, and nondemoc.

5. Conclusions

We propose a method to decide a single–public facility location based on voters’ prefer-
ences and a suggestion from the government over the finite location set, that is, the DD sys-
tem. This system considers communication between voters and the government, not among
the voters. The setting of this study shows a new possible research direction in the cross-
sectional field of facility location problems, social choice theories, and democratic delibera-
tion theories.

We obtain the following three results: First, we characterise the DD system by respectful-
ness, synchrony, and affinity. Second, we show that the DD updated preferences are computed
in linear time. Third, we find that the Borda rule based on the DD updated preferences has
better performance than other rules by simulation analyses using our program in Python 3
and regression analyses using the log–link–log model.

Finally, the major remained study is to propose and characterise a preference update sys-
tem which is suitable to the approval voting rule and dichotomous preference relations over
the finite location set. Futheremore, we can consider social networks and the communication
among the voters as an extended framework.
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